Abstract
Ionic liquids (ILs) offer the remarkable possibility of the direct synthesis of Eu2+-doped nanophosphors in solution, under atmospheric conditions, without the necessity of a high-temperature post-synthetic reduction from its trivalent oxidation state. This work uses for the first time in situ luminescence measurements for monitoring the solvation process of Eu2+ from the solid salt to the IL and its stability against oxidation under atmospheric conditions. Upon the addition of EuBr2 to 1-butyl-3-methyl-imidazolium tetrafluoroborate, the formation of the solvation shell is detected by the shift of the emission band at approximately 24 100 cm−1 assigned to the 5d→4f electronic transitions of Eu2+ within EuBr2 to approximately 22 000 cm−1, assigned to Eu2+ within BminBF4, tracking the time-dependent influence of the Eu2+ coordination environment on the crystal field splitting of its d orbitals. Even though the solubility of EuBr2 was demonstrated to be improved by reducing the concentration and increasing the temperature to 60°C, the performance of reactions at room temperature is recommended for future synthesis of Eu2+ materials in ILs due to the slight oxidation to Eu3+ observed upon heating.
Dedicated to: Professor Wolfgang Bensch on the occasion of his 65th birthday.
Acknowledgments
The authors would like to thank Prof. Dr. W. Bensch for the access to the equipment necessary to perform the experiments as well as the German Research Foundation’s (DFG) Priority Program 1415 and project TE 1147/1-1, the MATsynCell consortium and the Daimler and Benz Foundation (project 32-11/15) for the financial support.
References
[1] R. E. Rojas-Hernandez, F. Rubio-Marcos, M. Á. Rodriguez, J. F. Fernandez, Renew. Sustain. Energy Rev.2018, 81, 2759.10.1016/j.rser.2017.06.081Search in Google Scholar
[2] W. Liu, D. Wu, H. Chang, R. Duan, W. Wu, G. Amu, K. Chao, F. Bao, O. Tegus, Nanomaterials2018, 8, 66.10.3390/nano8020066Search in Google Scholar PubMed PubMed Central
[3] J. Bierwagen, S. Yoon, N. Gartmann, B. Walfort, H. Hagemann, Opt. Mater. Express2016, 6, 793.10.1364/OME.6.000793Search in Google Scholar
[4] K. Van den Eeckhout, P. F. Smet, D. Poelman, Materials2010, 3, 2536.10.3390/ma3042536Search in Google Scholar
[5] L. Chen, M. Fei, Z. Zhang, Y. Jiang, S. Chen, Y. Dong, Z. Sun, Z. Zhao, Y. Fu, J. He, C. Li, Z. Jiang, Chem. Mater.2016, 28, 5505.10.1021/acs.chemmater.6b02121Search in Google Scholar
[6] H. Terraschke, C. Wickleder, Chem. Rev.2015, 115, 11352.10.1021/acs.chemrev.5b00223Search in Google Scholar PubMed
[7] C. Janiak, AIMS Mater. Sci.2014, 1, 41.10.3934/matersci.2014.1.41Search in Google Scholar
[8] K. Ghandi, Green Sustain. Chem.2014, 4, 44.10.4236/gsc.2014.41008Search in Google Scholar
[9] G. G. Eshetu, M. Armand, H. Ohno, B. Scrosati, S. Passerini, Energy Environ. Sci.2016, 9, 49.10.1039/C5EE02284CSearch in Google Scholar
[10] D. Freudenmann, S. Wolf, M. Wolff, C. Feldmann, Angew. Chem. Int. Ed.2011, 50, 11050.10.1002/anie.201100904Search in Google Scholar PubMed
[11] X. Kang, X. Sun, B. Han, Adv. Mater.2016, 28, 1011.10.1002/adma.201502924Search in Google Scholar PubMed
[12] C. Lorbeer, A.-V. Mudring, ChemSusChem2013, 6, 2382.10.1002/cssc.201200915Search in Google Scholar PubMed
[13] N. von Prondzinski, J. Cybinska, A.-V. Mudring, Chem. Commun.2010, 46, 4393.10.1039/c000817fSearch in Google Scholar PubMed
[14] N. Recham, J. N. Chotard, J. C. Jumas, L. Laffont, M. Armand, J. M. Tarascon, Chem. Mater.2010, 22, 1142.10.1021/cm9021497Search in Google Scholar
[15] Z. He, P. Alexandridis, Phys. Chem. Chem. Phys.2015, 17, 18238.10.1039/C5CP01620GSearch in Google Scholar
[16] J. Olchowka, M. Suta, C. Wickleder, Chem. Eur. J.2017, 23, 12092.10.1002/chem.201702375Search in Google Scholar PubMed
[17] H. Terraschke, J. Olchowka, E. Geringer, A. V. Rodrigues, C. Wickleder, Small2018, 14, 1703707.10.1002/smll.201703707Search in Google Scholar PubMed
[18] I. Billard, G. Moutiers, A. Labet, A. El Azzi, C. Gaillard, C. Mariet, K. Lützenkirchen, Inorg. Chem.2003, 42, 1726.10.1021/ic0260318Search in Google Scholar PubMed
[19] A. Chaumont, G. Wipff, Chem. Eur. J.2004, 10, 3919.10.1002/chem.200400207Search in Google Scholar PubMed
[20] A. Getsis, A.-V. Mudring, Z. Anorg. Allg. Chem.2010, 636, 1726.10.1002/zaac.201000070Search in Google Scholar
[21] H. Terraschke, M. Rothe, A. M. Tsirigoni, P. Lindenberg, L. Ruiz Arana, N. Heidenreich, F. Bertram, M. Etter, Inorg. Chem. Front.2017, 4, 1157.10.1039/C7QI00172JSearch in Google Scholar
[22] H. Terraschke, M. Rothe, P. Lindenberg, Rev. Anal. Chem.2018, 37, 20170003.10.1515/revac-2017-0003Search in Google Scholar
[23] H. Terraschke, L. Ruiz Arana, P. Lindenberg, W. Bensch, Analyst2016, 141, 2588.10.1039/C6AN00075DSearch in Google Scholar
[24] L. H. Brixner, Mat. Res. Bul.1976, 11, 269.10.1016/0025-5408(76)90190-2Search in Google Scholar
[25] J. Olchowka, H. Hagemann, M. T. Delgado Pérez, C. Wickleder, Nanoscale2018, 10, 19706.10.1039/C8NR06842ASearch in Google Scholar PubMed
[26] A. Samanta, J. Phys. Chem. B2006, 110, 13704.10.1021/jp060441qSearch in Google Scholar PubMed
[27] S. N. Baker, G. A. Baker, Angew. Chem. Int. Ed.2010, 49, 6726.10.1002/anie.200906623Search in Google Scholar PubMed
[28] K. Binnemans, Coord. Chem. Rev.2015, 295, 1.10.1016/j.ccr.2015.02.015Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2018-0201).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this Issue
- Preface
- Congratulations to Professor Wolfgang Bensch on the occasion of his 65th birthday
- Orthorhombic sulfur from Cap Garonne, Mine du Pradet
- An unprecedented structural phase transition in struvite-type compounds: dimorphism of KMgAsO4(H2O)6
- ZrNiAl-type gallides with pronounced metal-metal bonding, and the dimorphism of ScPdGa
- Tripodal methanetrisulfonate ligands in the trinuclear complex {Ni3[CH(SO3)3]2(NMP)8}
- Crystal structure of the high-temperature form of the trisulfide Cs2S3 and the (3+1)D modulated structure of the telluride K37Te28
- Synthesis, crystal structure and properties of Cd(NCS)2 coordination compounds with two different Cd coordination modes
- Crystalline orthorhombic Ln[CO3][OH] (Ln=La, Pr, Nd, Sm, Eu, Gd) compounds hydrothermally synthesised with CO2 from air as carbonate source
- The role of synthesis conditions for structural defects and lattice strain in β-TaON and their effect on photo- and photoelectrocatalysis
- Determination of the charge of Al13 Keggin oligocations intercalated into synthetic hectorite
- Electronic and magnetic properties of the 2H-NbS2 intercalated by 3d transition metal atoms
- CsTb3STe4 und CsTb5S2Te6: Zwei pseudo-ternäre Caesium-Terbium-Chalkogenide mit geordneten S2−- und Te2−-Anionen
- Synthesis, molecular, and crystal structures of 3d transition metal cyanocyclopentadienides [M(MeOH)n(H2O)4–n{C5(CN)4X}2] (M=Mn, Fe, Co, Ni, Cu, Zn; X=H, CN, NH2, NO2)
- Crystal structures and FT-IR spectra of three N,N-dicyclohexylmethylammonium halides C13H26N+X− (X = Cl, Br, I)
- Crystal structure and magnetic properties of the ternary rare earth metal-rich transition metallides RE14T3Al3 (RE = Y, Gd–Tm, Lu; T = Co, Ni)
- Modulated vacancy ordering in SrGe6−x (x≈0.45)
- Monitoring the solvation process and stability of Eu2+ in an ionic liquid by in situ luminescence analysis
Articles in the same Issue
- Frontmatter
- In this Issue
- Preface
- Congratulations to Professor Wolfgang Bensch on the occasion of his 65th birthday
- Orthorhombic sulfur from Cap Garonne, Mine du Pradet
- An unprecedented structural phase transition in struvite-type compounds: dimorphism of KMgAsO4(H2O)6
- ZrNiAl-type gallides with pronounced metal-metal bonding, and the dimorphism of ScPdGa
- Tripodal methanetrisulfonate ligands in the trinuclear complex {Ni3[CH(SO3)3]2(NMP)8}
- Crystal structure of the high-temperature form of the trisulfide Cs2S3 and the (3+1)D modulated structure of the telluride K37Te28
- Synthesis, crystal structure and properties of Cd(NCS)2 coordination compounds with two different Cd coordination modes
- Crystalline orthorhombic Ln[CO3][OH] (Ln=La, Pr, Nd, Sm, Eu, Gd) compounds hydrothermally synthesised with CO2 from air as carbonate source
- The role of synthesis conditions for structural defects and lattice strain in β-TaON and their effect on photo- and photoelectrocatalysis
- Determination of the charge of Al13 Keggin oligocations intercalated into synthetic hectorite
- Electronic and magnetic properties of the 2H-NbS2 intercalated by 3d transition metal atoms
- CsTb3STe4 und CsTb5S2Te6: Zwei pseudo-ternäre Caesium-Terbium-Chalkogenide mit geordneten S2−- und Te2−-Anionen
- Synthesis, molecular, and crystal structures of 3d transition metal cyanocyclopentadienides [M(MeOH)n(H2O)4–n{C5(CN)4X}2] (M=Mn, Fe, Co, Ni, Cu, Zn; X=H, CN, NH2, NO2)
- Crystal structures and FT-IR spectra of three N,N-dicyclohexylmethylammonium halides C13H26N+X− (X = Cl, Br, I)
- Crystal structure and magnetic properties of the ternary rare earth metal-rich transition metallides RE14T3Al3 (RE = Y, Gd–Tm, Lu; T = Co, Ni)
- Modulated vacancy ordering in SrGe6−x (x≈0.45)
- Monitoring the solvation process and stability of Eu2+ in an ionic liquid by in situ luminescence analysis