Home Crystal structures and FT-IR spectra of three N,N-dicyclohexylmethylammonium halides C13H26N+X− (X = Cl, Br, I)
Article
Licensed
Unlicensed Requires Authentication

Crystal structures and FT-IR spectra of three N,N-dicyclohexylmethylammonium halides C13H26N+X (X = Cl, Br, I)

  • Sebastian Fäth , Max Vilsmeier and Arno Pfitzner EMAIL logo
Published/Copyright: December 11, 2018
Become an author with De Gruyter Brill

Abstract

The title compounds C13H26N+Cl (N,N-dicyclohexylmethylammonium chloride), C13H26N+Br (N,N- dicyclohexylmethylammonium bromide) and C13H26N+I (N,N-dicyclohexylmethylammonium iodide) are isostructural and crystallize in the orthorhombic space group Pna21 with the lattice parameters a=7.580(1), b=19.072(1), c=9.165(1) Å, V=1324.9(1) Å3 for X=Cl, a=7.765(1), b=19.054(1), c=9.270(1) Å, V=1371.5(1) Å3 for X=Br, and a=8.102(1), b=19.084(1), c=9.535(1) Å, V=1474.2(1) Å3 for X=I with Z=4 for each compound. Their cyclohexyl groups are aligned along [010] while their halide ions are coordinated along [100] by a strong linear N–H···X (X=Cl, Br, I) hydrogen bond. Fourier-transform infrared spectra show a decreasing hydrogen bond acceptor strength from the chloride to the iodide.


Dedicated to: Professor Wolfgang Bensch on the occasion of his 65th birthday.


References

[1] C. Gürtler, S. L. Buchwald, Chem. Eur. J.1999, 5, 3107.10.1002/(SICI)1521-3765(19991105)5:11<3107::AID-CHEM3107>3.0.CO;2-#Search in Google Scholar

[2] H. Yin, T. Skrydstrup, J. Org. Chem.2017, 82, 6474.10.1021/acs.joc.7b00942Search in Google Scholar

[3] I. D. Hills, G. C. Fu, J. Am. Chem. Soc.2004, 126, 13178.10.1021/ja0471424Search in Google Scholar

[4] C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr.2016, B72, 171.10.1107/S2052520616003954Search in Google Scholar

[5] G. A. Timco, A. S. Batsanov, F. K. Larsen, C. A. Muryn, J. Overgaard, S. J. Teat, R. E. P. Winpenny, Chem. Commun.2005, 3649.10.1039/b504912aSearch in Google Scholar

[6] G. A. Timco, A. Fernandez, A. K. Kostopoulos, C. A. Muryn, R. G. Pritchard, I. Strashnov, I. J. Vitorica-Yrezebal, G. F. S. Whitehead, R. E. P. Winpenny, Angew. Chem. Int. Ed.2017, 56, 13629.10.1002/anie.201706679Search in Google Scholar

[7] M.-J. Chen, B.-H. Wu, C.-Y. Li, C.-H. Lin, B.-T. Ko, Acta Crystallogr.2012, E68, o2944.Search in Google Scholar

[8] D. Heitmann, C. Jones, P. C. Junk, K.-A. Lippert, A. Stasch, Dalton Trans.2007, 187. DOI: 10.1039/B614028A.10.1039/B614028ASearch in Google Scholar

[9] CrysAlis Pro Software System, Intelligent Data Collection and Processing Software for Small Molecule and Protein Crystallography, Rigaku Oxford Diffraction, Rigaku Corporation, Tokyo (Japan) 2015.Search in Google Scholar

[10] G. M. Sheldrick, Acta Crystallogr.2015, A71, 3.10.1107/S2053273314026370Search in Google Scholar

[11] G. M. Sheldrick, Acta Crystallogr.2015, C71, 3.Search in Google Scholar

[12] K. Brandenburg, Diamond, Crystal and Molecular Structure Visualization, Crystal Impact – H. Putz & K. Brandenburg GbR, Bonn (Germany) 2018.Search in Google Scholar

[13] R. D. Shannon, Acta Crystallogr.1976, A32, 751.10.1107/S0567739476001551Search in Google Scholar

[14] T. Steiner, Angew. Chem. Int. Ed.2002, 41, 49.10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-USearch in Google Scholar

[15] G. A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures, Springer-Verlag, Berlin 1991.10.1007/978-3-642-85135-3Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2018-1192).


Received: 2018-09-13
Accepted: 2018-10-30
Published Online: 2018-12-11
Published in Print: 2019-01-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this Issue
  3. Preface
  4. Congratulations to Professor Wolfgang Bensch on the occasion of his 65th birthday
  5. Orthorhombic sulfur from Cap Garonne, Mine du Pradet
  6. An unprecedented structural phase transition in struvite-type compounds: dimorphism of KMgAsO4(H2O)6
  7. ZrNiAl-type gallides with pronounced metal-metal bonding, and the dimorphism of ScPdGa
  8. Tripodal methanetrisulfonate ligands in the trinuclear complex {Ni3[CH(SO3)3]2(NMP)8}
  9. Crystal structure of the high-temperature form of the trisulfide Cs2S3 and the (3+1)D modulated structure of the telluride K37Te28
  10. Synthesis, crystal structure and properties of Cd(NCS)2 coordination compounds with two different Cd coordination modes
  11. Crystalline orthorhombic Ln[CO3][OH] (Ln=La, Pr, Nd, Sm, Eu, Gd) compounds hydrothermally synthesised with CO2 from air as carbonate source
  12. The role of synthesis conditions for structural defects and lattice strain in β-TaON and their effect on photo- and photoelectrocatalysis
  13. Determination of the charge of Al13 Keggin oligocations intercalated into synthetic hectorite
  14. Electronic and magnetic properties of the 2H-NbS2 intercalated by 3d transition metal atoms
  15. CsTb3STe4 und CsTb5S2Te6: Zwei pseudo-ternäre Caesium-Terbium-Chalkogenide mit geordneten S2−- und Te2−-Anionen
  16. Synthesis, molecular, and crystal structures of 3d transition metal cyanocyclopentadienides [M(MeOH)n(H2O)4–n{C5(CN)4X}2] (M=Mn, Fe, Co, Ni, Cu, Zn; X=H, CN, NH2, NO2)
  17. Crystal structures and FT-IR spectra of three N,N-dicyclohexylmethylammonium halides C13H26N+X (X = Cl, Br, I)
  18. Crystal structure and magnetic properties of the ternary rare earth metal-rich transition metallides RE14T3Al3 (RE = Y, Gd–Tm, Lu; T = Co, Ni)
  19. Modulated vacancy ordering in SrGe6−x (x≈0.45)
  20. Monitoring the solvation process and stability of Eu2+ in an ionic liquid by in situ luminescence analysis
Downloaded on 15.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-1192/html
Scroll to top button