Home Crystalline orthorhombic Ln[CO3][OH] (Ln=La, Pr, Nd, Sm, Eu, Gd) compounds hydrothermally synthesised with CO2 from air as carbonate source
Article
Licensed
Unlicensed Requires Authentication

Crystalline orthorhombic Ln[CO3][OH] (Ln=La, Pr, Nd, Sm, Eu, Gd) compounds hydrothermally synthesised with CO2 from air as carbonate source

  • Matthias Hämmer ORCID logo and Henning A. Höppe ORCID logo EMAIL logo
Published/Copyright: December 11, 2018
Become an author with De Gruyter Brill

Abstract

Crystalline orthorhombic rare earth carbonate hydroxides Ln[CO3][OH] (Ln=La, Pr, Nd, Sm, Eu, Gd) were synthesised as phase pure powders via a simple hydrothermal reaction. CO2 from air acted as natural carbonate source and cetyltrimethylammonium bromide was added as templating agent to an aqueous rare earth nitrate solution. Single-crystal X-ray structure determination was performed on La[CO3][OH] (Pnma, a=7.4106(5), b=5.0502(3), c=8.5901(6) Å, 563 independent reflections, 38 refined parameters, wR2=0.037), Pr[CO3][OH] (Pnma, a=7.2755(4), b=4.9918(3), c=8.5207(5) Å, 744 independent reflections, 38 refined parameters, wR2=0.04), Eu[CO3][OH] (Pnma, a=7.1040(4), b=4.8940(3), c=8.4577(5) Å, 1649 independent reflections, 38 refined parameters, wR2=0.05) and Gd[CO3][OH] (Pnma, a=7.069(7), b=4.874(5), c=8.464(9) Å, 431 independent reflections, 38 refined parameters, wR2=0.051). These findings are supported by powder XRD, infrared spectroscopy, UV/Vis spectroscopy and, for Pr[CO3][OH] and Eu[CO3][OH], by measurements of the non-linear optical properties. Thermal analysis could demonstrate the possible use of the Ln[CO3][OH] phases as precursors for rare earth carbonate dioxides Ln2[CO3]O2 and rare earth oxides Ln2O3. The decomposition products inherit the precursor’s morphology. The lattice parameters of Pr2[CO3]O2 were refined from high-temperature powder XRD data.


Dedicated to: Professor Wolfgang Bensch on the Occasion of his 65th birthday.


Acknowledgements

The authors would like to thank R. Ettlinger (Universität Augsburg) for the EDX/SEM measurements and L. Bayarjargal (Universität Frankfurt) for testing our powder samples for non-linear optical SHG activity.

References

[1] S. G. Jantz, M. Dialer, L. Bayarjargal, B. Winkler, L. van Wüllen, F. Pielnhofer, J. Brgoch, R. Weihrich, H. A. Höppe, Adv. Opt. Mater.2018, 7, 1800497.10.1002/adom.201800497Search in Google Scholar

[2] S. G. Jantz, F. Pielnhofer, M. Dialer, H. A. Höppe, Z. Anorg. Allg. Chem.2017, 643, 2024.10.1002/zaac.201700334Search in Google Scholar

[3] S. G. Jantz, F. Pielnhofer, M. Dialer, H. A. Höppe, Z. Anorg. Allg. Chem.2017, 643, 2031.10.1002/zaac.201700335Search in Google Scholar

[4] S. G. Jantz, F. Pielnhofer, L. van Wüllen, R. Weihrich, M. J. Schäfer, H. A. Höppe, Chem. Eur. J.2018, 24, 443.10.1002/chem.201704324Search in Google Scholar PubMed

[5] P. Netzsch, P. Gross, H. Takahashi, H. A. Höppe, Inorg. Chem.2018, 57, 8530.10.1021/acs.inorgchem.8b01234Search in Google Scholar PubMed

[6] A. M. Kaczmarek, L. Miermans, R. van Deun, Dalton Trans.2013, 42, 4639.10.1039/c3dt32799jSearch in Google Scholar PubMed

[7] M.-H. Lee, W.-S. Jung, Bull. Kor. Chem. Soc.2013, 34, 3609.10.5012/bkcs.2013.34.12.3609Search in Google Scholar

[8] B. Pan, Q. Xie, H. Wang, J. Zhu, Y. Zhang, W. Su, X. Wang, J. Mater. Chem. A2013, 1, 6629.10.1039/c3ta01553jSearch in Google Scholar

[9] Y.-C. Chen, L. Qin, Z.-S. Meng, D.-F. Yang, C. Wu, Z. Fu, Y.-Z. Zheng, J.-L. Liu, R. Tarasenko, M. Orendáč, J. Prokleška, V. Sechovskýe, M.-L. Tong, J. Mater. Chem. A2014, 2, 9851.10.1039/C4TA01646GSearch in Google Scholar

[10] J. M. Calderon Moreno, V. G. Pol, S.-H. Suh, M. Popa, Inorg. Chem.2010, 49, 10067.10.1021/ic101414xSearch in Google Scholar PubMed

[11] L. M. D’Assunção, I. Giolito, M. Ionashiro, Thermochim. Acta1989, 137, 319.10.1016/0040-6031(89)87224-7Search in Google Scholar

[12] P. Jeevanandam, Y. Koltypin, O. Palchik, A. Gedanken, J. Mater. Chem.2001, 11, 869.10.1039/b007370iSearch in Google Scholar

[13] A. M. Kaczmarek, K. van Hecke, R. van Deun, Chem. Soc. Rev.2015, 44, 2032.10.1039/C4CS00433GSearch in Google Scholar PubMed

[14] Z. Xu, S. Bian, J. Wang, T. Liu, L. Wang, Y. Gao, RSC Adv2013, 3, 1410.10.1039/C2RA22480ASearch in Google Scholar

[15] Y. Zhang, Z. Xu, X. Yin, Z. Fang, W. Zhu, H. He, Cryst. Res. Technol.2010, 45, 1183.10.1002/crat.201000342Search in Google Scholar

[16] L. Bischoff, M. Stephan, C. S. Birkel, C. F. Litterscheid, A. Dreizler, B. Albert, Sci. Rep.2018, 8, 602.10.1038/s41598-017-18942-2Search in Google Scholar PubMed PubMed Central

[17] S. Huang, D. Wang, Y. Wang, L. Wang, X. Zhang, P. Yang, J. Alloys Compd.2012, 529, 140.10.1016/j.jallcom.2012.02.156Search in Google Scholar

[18] Y. Zhang, L. Jin, K. Sterling, Z. Luo, T. Jiang, R. Miao, C. Guild, S. L. Suib, Green Chem.2015, 17, 3600.10.1039/C4GC02429JSearch in Google Scholar

[19] G. Mao, H. Zhang, H. Li, J. Jin, S. Niu, J. Electrochem. Soc.2012, 159, J48.10.1149/2.031203jesSearch in Google Scholar

[20] I. Nelli, A. M. Kaczmarek, F. Locardi, V. Caratto, G. A. Costa, R. van Deun, Dalton Trans.2017, 46, 2785.10.1039/C6DT04629KSearch in Google Scholar

[21] H. A. Höppe, G. Kotzyba, R. Pöttgen, W. Schnick, J. Solid State Chem.2002, 167, 393.10.1016/S0022-4596(02)99677-5Search in Google Scholar

[22] H. A. Höppe, Angew. Chem. Int. Ed.2009, 48, 3572.10.1002/anie.200804005Search in Google Scholar PubMed

[23] C. S. Riccardi, R. C. Lima, M. L. dos Santos, P. R. Bueno, J. A. Varela, E. Longo, Solid State Ionics2009, 180, 288.10.1016/j.ssi.2008.11.016Search in Google Scholar

[24] T. Tahara, I. Nakai, R. Miyawaki, S. Matsubara, Z.Kristallogr.2007, 222, 326.10.1524/zkri.2007.222.7.326Search in Google Scholar

[25] A. N. Christensen, G. Sundström, C. A. Wachtmeister, J. Songstad, A. H. Norbury, C.-G. Swahn, Acta Chem. Scand.1973, 27, 2973.10.3891/acta.chem.scand.27-2973Search in Google Scholar

[26] T. Doert, O. Rademacher, J. Getzschmann, Z. Kristallogr. – NCS1999, 214, 11.10.1515/ncrs-1999-0107Search in Google Scholar

[27] K. Michiba, T. Tahara, I. Nakai, R. Miyawaki, S. Matsubara, Z. Kristallogr.2011, 226, 314.10.1524/zkri.2011.1222Search in Google Scholar

[28] C. Heinrichs, Synthese und Charakterisierung wasserfreier Seltenerdmetall-Nitrate, -Acetate und -Oxyacetate, Dissertation, Universität zu Köln, Köln, 2013.Search in Google Scholar

[29] G. W. Beall, W. O. Milligan, S. Mroczkowski, Acta Crystallogr. B1976, 32, 3143.10.1107/S0567740876009801Search in Google Scholar

[30] H.-S. Sheu, W.-J. Shih, W.-T. Chuang, I.-F. Li, C.-S. Yeh, J. Chin. Chem. Soc.2010, 57, 938.10.1002/jccs.201000130Search in Google Scholar

[31] Y. Zhang, K. Han, X. Yin, Z. Fang, Z. Xu, W. Zhu, J. Crystal Growth2009, 311, 3883.10.1016/j.jcrysgro.2009.06.024Search in Google Scholar

[32] Z. Li, J. Zhang, J. Du, H. Gao, Y. Gao, T. Mu, B. Han, Mater. Lett.2005, 59, 963.10.1016/j.matlet.2004.09.052Search in Google Scholar

[33] A. dal Negro, G. Rossi, V. Tazzoli, Am. Mineral.1975, 60, 280.Search in Google Scholar

[34] R. Miyawaki, S. Matsubara, K. Yokoyama, S. Iwano, K. Hamasaki, I. Yukinori, J. Miner. Petr. Sci.2003, 98, 137.10.2465/jmps.98.137Search in Google Scholar

[35] R. Miyawaki, S. Matsubara, K. Yokoyama, K. Takeuchi, Y. Terada, I. Nakai, Am. Mineral.2000, 85, 1076.10.2138/am-2000-0724Search in Google Scholar

[36] P. Orlandi, M. Pasero, G. Vezzalini, Eur. J. Miner.1990, 2, 413.10.1127/ejm/2/3/0413Search in Google Scholar

[37] J. P. Attfield, G. Férey, J. Solid State Chem.1989, 82, 132.10.1016/0022-4596(89)90232-6Search in Google Scholar

[38] A. Olafsen, A.-K. Larsson, H. Fjellvåg, B. C. Hauback, J.Solid State Chem.2001, 158, 14.10.1006/jssc.2000.9048Search in Google Scholar

[39] I. Kutlu, G. Meyer, Z. Anorg. Allg. Chem.1999, 625, 402.10.1002/(SICI)1521-3749(199903)625:3<402::AID-ZAAC402>3.0.CO;2-SSearch in Google Scholar

[40] A. N. Christensen, S. E. Rasmussen, E. Kvamme, R. Ohlson, A. Shimizu, Acta Chem. Scand.1970, 24, 2440.10.3891/acta.chem.scand.24-2440Search in Google Scholar

[41] T. Zhang, G. Xu, J. Puckette, F. D. Blum, J. Phys. Chem. C2012, 116, 11626.10.1021/jp303338tSearch in Google Scholar

[42] C. Pan, D. Zhang, L. Shi, J. Solid State Chem.2008, 181, 1298.10.1016/j.jssc.2008.02.011Search in Google Scholar

[43] P. Schmidt, Thermodynamische Analyse der Existenzbereiche fester Phasen – Prinzipien der Syntheseplanung in der anorganischen Festkörperchemie, Habilitationsschrift, Technische Universität Dresden, Dresden, 2007.Search in Google Scholar

[44] R. D. Shannon, Acta Cryst A1976, 32, 751.10.1107/S0567739476001551Search in Google Scholar

[45] S. A. Morozov, Russ. J. Gen. Chem.2003, 73, 37.10.1023/A:1023466200445Search in Google Scholar

[46] F. A. Andersen, L. Brečević, G. Beuter, D. B. Dell‘Amico, F. Calderazzo, N. J. Bjerrum, A. E. Underhill, Acta Chem. Scand.1991, 45, 1018.10.3891/acta.chem.scand.45-1018Search in Google Scholar

[47] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th edition, Wiley-Blackwell, Oxford, 2008.10.1002/9780470405888Search in Google Scholar

[48] A. L. Spek, Acta Crystallogr.2009, D65, 148.10.1107/S090744490804362XSearch in Google Scholar

[49] J. P. Dougherty, S. K. Kurtz, J. Appl. Crystallogr.1976, 9, 145.10.1107/S0021889876010789Search in Google Scholar

[50] S. K. Kurtz, T. T. Perry, J. Appl. Phys.1968, 39, 3798.10.1063/1.1656857Search in Google Scholar

[51] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr.2014, 229, 345.10.1515/zkri-2014-1737Search in Google Scholar

[52] H. A. Höppe, Z. Naturforsch.2015, 70b, 769.10.1515/znb-2015-0112Search in Google Scholar

[53] R. Hoppe, Angew. Chem.1966, 78, 52.10.1002/ange.19660780106Search in Google Scholar

[54] R. Hoppe, Angew. Chem. Int. Ed. Engl.1970, 9, 25.10.1002/anie.197000251Search in Google Scholar

[55] R. Hübenthal, Maple, Program for the Calculation of the Madelung Part of Lattice Energy, Universität Gießen, Gießen (Germany), 1993.Search in Google Scholar

[56] G. Schiller, Die Kristallstrukturen von Ce2O3 (A-Form), LiCeO2 und CeF3 – Ein Beitrag zur Kristallchemie des dreiwertigen Cers, Dissertation, Universität Karlsruhe, Karlsruhe, 1985.Search in Google Scholar

[57] A. Goto, T. Hondoh, S. Mae, J. Chem. Phys.1990, 93, 1412.10.1063/1.459150Search in Google Scholar

[58] T. Pilati, F. Demartin, C. M. Gramaccioli, Acta Crystallogr.1998, A54, 515.10.1107/S0108768197018181Search in Google Scholar

[59] I. Oftedal, Z. Phys. Chem.1927, 128U, 154.10.1515/zpch-1927-12810Search in Google Scholar

[60] H. C. R. Wolf, R. Hoppe, Z. Anorg. Allg. Chem.1985, 529, 61.10.1002/zaac.19855291009Search in Google Scholar

[61] A. Saiki, N. Ishizawa, N. Mizutani, M. Kato, J. Ceram. Assoc. Jpn.1985, 93, 649.10.2109/jcersj1950.93.1082_649Search in Google Scholar

[62] S. A. Mohitkar, J. Nuss, H. A. Höppe, C. Felser, M. Jansen, Dalton Trans.2018, 47, 5968.10.1039/C8DT00528ASearch in Google Scholar

[63] T. Steiner, Angew. Chem. Int. Ed.2002, 41, 48.10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-USearch in Google Scholar

[64] N. T. McDevitt, W. L. Baun, Spectrochim. Acta1964, 20, 799.10.1016/0371-1951(64)80079-5Search in Google Scholar

[65] W. T. Carnall, P. R. Fields, K. Rajnak, J. Chem. Phys.1968, 49, 4424.10.1063/1.1669893Search in Google Scholar

[66] W. T. Carnall, P. R. Fields, K. Rajnak, J. Chem. Phys.1968, 49, 4450.10.1063/1.1669896Search in Google Scholar

[67] S. Ni, T. Li, X. Yang, J. Alloys Compd.2011, 509, 7874.10.1016/j.jallcom.2011.04.064Search in Google Scholar

[68] W. T. Carnall, P. R. Fields, K. Rajnak, J. Chem. Phys.1968, 49, 4412.10.1063/1.1669892Search in Google Scholar

[69] H. Heinrichs, H.-J. Brumsack, N. Loftfield, N. König, Z. Pflanzenernaehr. Bodenkd.1986, 149, 350.10.1002/jpln.19861490313Search in Google Scholar

[70] G. M. Sheldrick, Acta Crystallogr.2015, C71, 3.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2018-0170).


Received: 2018-08-15
Accepted: 2018-10-26
Published Online: 2018-12-11
Published in Print: 2019-01-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this Issue
  3. Preface
  4. Congratulations to Professor Wolfgang Bensch on the occasion of his 65th birthday
  5. Orthorhombic sulfur from Cap Garonne, Mine du Pradet
  6. An unprecedented structural phase transition in struvite-type compounds: dimorphism of KMgAsO4(H2O)6
  7. ZrNiAl-type gallides with pronounced metal-metal bonding, and the dimorphism of ScPdGa
  8. Tripodal methanetrisulfonate ligands in the trinuclear complex {Ni3[CH(SO3)3]2(NMP)8}
  9. Crystal structure of the high-temperature form of the trisulfide Cs2S3 and the (3+1)D modulated structure of the telluride K37Te28
  10. Synthesis, crystal structure and properties of Cd(NCS)2 coordination compounds with two different Cd coordination modes
  11. Crystalline orthorhombic Ln[CO3][OH] (Ln=La, Pr, Nd, Sm, Eu, Gd) compounds hydrothermally synthesised with CO2 from air as carbonate source
  12. The role of synthesis conditions for structural defects and lattice strain in β-TaON and their effect on photo- and photoelectrocatalysis
  13. Determination of the charge of Al13 Keggin oligocations intercalated into synthetic hectorite
  14. Electronic and magnetic properties of the 2H-NbS2 intercalated by 3d transition metal atoms
  15. CsTb3STe4 und CsTb5S2Te6: Zwei pseudo-ternäre Caesium-Terbium-Chalkogenide mit geordneten S2−- und Te2−-Anionen
  16. Synthesis, molecular, and crystal structures of 3d transition metal cyanocyclopentadienides [M(MeOH)n(H2O)4–n{C5(CN)4X}2] (M=Mn, Fe, Co, Ni, Cu, Zn; X=H, CN, NH2, NO2)
  17. Crystal structures and FT-IR spectra of three N,N-dicyclohexylmethylammonium halides C13H26N+X (X = Cl, Br, I)
  18. Crystal structure and magnetic properties of the ternary rare earth metal-rich transition metallides RE14T3Al3 (RE = Y, Gd–Tm, Lu; T = Co, Ni)
  19. Modulated vacancy ordering in SrGe6−x (x≈0.45)
  20. Monitoring the solvation process and stability of Eu2+ in an ionic liquid by in situ luminescence analysis
Downloaded on 15.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0170/html
Scroll to top button