Abstract
Radioactive radium (Ra) mainly comes from the mining and milling of uranium and other metal or non-metal mines, phosphate production and fertilizer use, production of oil and gas, coal combustion, wastewater treatment, and various wastes from the above activities, which is ubiquitous in the environment. Phytoremediation is a green and cheap remediation technology for metal/radionuclide-contaminated sites. Radium is often of particular interest and there are many literatures on parameters of Ra concentration in plants and transfer factors from soil to plant from a radiological impact assessment point of view. However, review articles on phytoremediation of Ra-polluted soil are relatively few. This review focused on radium-polluted soil phytoremediation, involving two main strategies of phytoextraction and phytostabilization, which covered the potential (hyper)accumulators for Ra, characteristics of Ra uptake from soil by plants, influencing factors, and phytostabilization application. In future research works, more attention should be paid to the deep insights and mechanism researches of Ra uptake/immobilization by plants. This review will deepen the understanding of the relationship of radium-soil-plants, and to enhance the potential application of phytoremediation as an alternative treatment technology for remediation of Ra-polluted soil site.
Funding source: LingChuang Research Project of China National Nuclear Corporation
Award Identifier / Grant number: Unassigned
Funding source: National Key Research and Development Program of China
Award Identifier / Grant number: 2020YFC1806603
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: The research was supported by National Key Research and Development Program of China (2020YFC1806603) and the LingChuang Research Project of China National Nuclear Corporation.
-
Data availability: Not applicable.
References
1. Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press, Boca Raton, FL, 2011.10.1201/b10158Suche in Google Scholar
2. Guadalupe Pinna-Hernandez, M., Salas, A., Rodriguez-Ruano, I., Guillen, J., Baeza, A., Javier Martinez-Rodriguez, F., Casas Lopez, J. L. Reduction of natural radioactivity in groundwater with different salinity through adsorption of uranium and radium in filter materials. Environ. Sci. Pollut. Res. 2023, 30, 48988; https://doi.org/10.1007/s11356-023-25638-w.Suche in Google Scholar PubMed
3. Burnett, W. C., Peterson, R., Moore, W. S., de Oliveira, J. Radon and radium isotopes as tracers of submarine groundwater discharge – results from the Ubatuba Brazil SGD assessment intercomparison. Estuar. Coast. Shelf Sci. 2008, 76, 501–511; https://doi.org/10.1016/j.ecss.2007.07.027.Suche in Google Scholar
4. Xu, B., Li, S., Burnett, W. C., Zhao, S., Santos, I. R., Lian, E., Chen, X., Yu, Z. Radium-226 in the global ocean as a tracer of thermohaline circulation: synthesizing half a century of observations. Earth Sci. Rev. 2022, 226, 103956; https://doi.org/10.1016/j.earscirev.2022.103956.Suche in Google Scholar
5. Nilsson, S., Franzen, L., Parker, C., Tyrrell, C., Blom, R., Tennvall, J., Lennernas, B., Petersson, U., Johannessen, D. C., Sokal, M., Pigott, K., Yachnin, J., Garkavij, M., Strang, P., Harmenberg, J., Bolstad, B., Bruland, O. S. Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol. 2007, 8, 587–594; https://doi.org/10.1016/s1470-2045(07)70147-x.Suche in Google Scholar PubMed
6. Quist, S. W., Paulissen, J. H. J., Wyndaele, D. N. J., Nagarajah, J., Freriks, R. D. Costs of radium-223 and the pharmacy preparation 177Lu-PSMA-I&T for metastatic castration-resistant prostate cancer in Dutch hospitals. J. Med. Econ. 2023, 26, 366–375; https://doi.org/10.1080/13696998.2023.2183618.Suche in Google Scholar PubMed
7. Paul, A. C., Pillai, K. C. Transfer and uptake of radium in a natural and in a technologically modified radiation environment. J. Environ. Radioact. 1986, 3, 55–73; https://doi.org/10.1016/0265-931x(86)90049-4.Suche in Google Scholar
8. Abreu, M. M., Lopes, J., Santos, E. S., Magalhaes, M. C. F. Ecotoxicity evaluation of an amended soil contaminated with uranium and radium using sensitive plants. J. Geochem. Explor. 2014, 142, 112–121; https://doi.org/10.1016/j.gexplo.2014.01.029.Suche in Google Scholar
9. Hu, N., Ding, D., Li, G., Zheng, J., Li, L., Zhao, W., Wang, Y. Vegetation composition and 226Ra uptake by native plant species at a uranium mill tailings impoundment in South China. J. Environ. Radioact. 2014, 129, 100–106; https://doi.org/10.1016/j.jenvrad.2013.12.012.Suche in Google Scholar PubMed
10. Liu, Y., Zhou, W., Liu, H., Wei, Q., Gao, B., Chen, G. Spatial variability and radiation assessment of the radionuclides in soils and sediments around a uranium tailings reservoir, South of China. J. Radioanal. Nucl. Chem. 2020, 324, 33–42; https://doi.org/10.1007/s10967-020-07077-w.Suche in Google Scholar
11. Petrova, R. T., Tsvetkova, E. H. Modelling of the behavior of natural radionuclides and the environmental risk in the sites from the mining uranium ore in Bulgaria. Ecol. Balk. 2019, 11, 155–163.Suche in Google Scholar
12. Pearson, A. J., Gaw, S., Hermanspahn, N., Glover, C. N., Anderson, C. W. N. Radium in New Zealand agricultural soils: phosphate fertiliser inputs, soil activity concentrations and fractionation profiles. J. Environ. Radioact. 2019, 205, 119–126; https://doi.org/10.1016/j.jenvrad.2019.05.010.Suche in Google Scholar PubMed
13. Saba, D., El Samad, O., Baydoun, R., Khozam, R., Manouchehri, N., Kassir, L., Kassouf, A., Chebib, H., Cambier, P., Ouaini, N. Radiological impact on uncultivated soil and Dittrichia viscosa plants around a Lebanese coastal fertilizer industry. Radiat. Protect. Environ. 2020, 43, 61–69; https://doi.org/10.4103/rpe.rpe_15_20.Suche in Google Scholar
14. Attallah, M. F., Metwally, S. S., Moussa, S. I., Soliman, M. A. Environmental impact assessment of phosphate fertilizers and phosphogypsum waste: elemental and radiological effects. Microchem. J. 2019, 146, 789–797; https://doi.org/10.1016/j.microc.2019.02.001.Suche in Google Scholar
15. Korany, K. A., Masoud, A. M., Rushdy, O. E., Alrowaili, Z. A., Hassanein, F. H., Taha, M. H. Phosphate, phosphoric acid and phosphogypsum natural radioactivity and radiological hazards parameters. J. Radioanal. Nucl. Chem. 2021, 329, 391–399; https://doi.org/10.1007/s10967-021-07796-8.Suche in Google Scholar
16. Louw, I. Potential radiological impact of the phosphate industry in South Africa on the public and the environment (paper 1). J. Environ. Radioact. 2020, 217, 106214; https://doi.org/10.1016/j.jenvrad.2020.106214.Suche in Google Scholar PubMed
17. Willey, N., Timbs, P. Radioactivity in future phosphogypsum: new predictions based on estimates of ‘peak P’ and rock phosphate resources. J. Environ. Radioact. 2022, 244, 106828; https://doi.org/10.1016/j.jenvrad.2022.106828.Suche in Google Scholar PubMed
18. Amin, Y. M., Khandaker, M. U., Shyen, A. K. S., Mahat, R. H., Nor, R. M., Bradley, D. A. Radionuclide emissions from a coal-fired power plant. Appl. Radiat. Isot. 2013, 80, 109–116; https://doi.org/10.1016/j.apradiso.2013.06.014.Suche in Google Scholar PubMed
19. Habib, M. A., Khan, R., Phoungthong, K. Evaluation of environmental radioactivity in soils around a coal burning power plant and a coal mining area in Barapukuria, Bangladesh: radiological risks assessment. Chem. Geol. 2022, 600, 120865; https://doi.org/10.1016/j.chemgeo.2022.120865.Suche in Google Scholar
20. Murniasih, S., Prabasiwi, D. S., Sukirno Assessment of radiological hazards in soil, water and plants around coal power plant. At. Indones. 2022, 48, 137–145; https://doi.org/10.17146/aij.2022.1174.Suche in Google Scholar
21. Abdelbary, H. M., Elsofany, E. A., Mohamed, Y. T., Abo-Aly, M. M., Attallah, M. F. Characterization and radiological impacts assessment of scale TENORM waste produced from oil and natural gas production in Egypt. Environ. Sci. Pollut. Res. 2019, 26, 30836–30846; https://doi.org/10.1007/s11356-019-06183-x.Suche in Google Scholar PubMed
22. Thakur, P., Ward, A. L., Gonzalez-Delgado, A. M. Optimal methods for preparation, separation, and determination of radium isotopes in environmental and biological samples. J. Environ. Radioact. 2021, 228, 106522; https://doi.org/10.1016/j.jenvrad.2020.106522.Suche in Google Scholar PubMed
23. Narloch, D. C., Paschuk, S. A., Correa, J. N., Rocha, Z., Mazer, W., Montenegro Peddis Torres, C. A., Del Claro, F., Denyak, V., Schelin, H. R. Characterization of radionuclides present in portland cement, gypsum and phosphogypsum mortars. Radiat. Phys. Chem. 2019, 155, 315–318; https://doi.org/10.1016/j.radphyschem.2018.07.011.Suche in Google Scholar
24. Curti, E., Xto, J., Borca, C. N., Henzler, K., Huthwelker, T., Prasianakis, N. I. Modelling Ra-bearing baryte nucleation/precipitation kinetics at the pore scale: application to radioactive waste disposal. Eur. J. Mineral. 2019, 31, 247–262; https://doi.org/10.1127/ejm/2019/0031-2818.Suche in Google Scholar
25. Leier, M., Kiisk, M., Suursoo, S., Vaasma, T., Putk, K. Formation of radioactive waste in Estonian water treatment plants. J. Radiol. Prot. 2019, 39, 1–10; https://doi.org/10.1088/1361-6498/aaed49.Suche in Google Scholar PubMed
26. Martinez, N. E., Jokisch, D. W., Dauer, L. T., Eckerman, K. F., Goans, R. E., Brockman, J. D., Tolmachev, S. Y., Avtandilashvili, M., MummaBoice, M. T. J. D.Jr., Leggett, R. W. Radium dial workers: back to the future. Int. J. Radiat. Biol. 2022, 98, 750–768; https://doi.org/10.1080/09553002.2021.1917785.Suche in Google Scholar PubMed PubMed Central
27. Ferguson, N. Radium contamination of military sites. In Environmental Radiochemical Analysis; Royal Society of Chemistry: Cambridge, 1999; pp. 30–36.Suche in Google Scholar
28. IAEA. The Environmental Behavior of Radium: Revised Edition; The International Atomic Energy Agency: Vienna, 2014. Technical Reports Series No. 476.Suche in Google Scholar
29. Abbasi, A., Mirekhtiary, F. Lifetime risk assessment of radium-226 in drinking water samples. Int. J. Radiat. Res. 2019, 17, 163–169.Suche in Google Scholar
30. Brugge, D., Buchner, V. Radium in the environment: exposure pathways and health effects. Rev. Environ. Health 2012, 27, 1–17; https://doi.org/10.1515/reveh-2012-0001.Suche in Google Scholar PubMed
31. Stebbings, J. H. Health risks from radium in workplaces: an unfinished story. Occup. Med. State Art Rev. 2001, 16, 259–270.Suche in Google Scholar
32. Yordanova, I. I., Banov, M. D., Misheva, L. G., Staneva, D. N., Bineva, T. K. Natural radioactivity in virgin soils and soils from some areas with closed uranium mining facilities in Bulgaria. Open Chem. 2015, 13, 600–605; https://doi.org/10.1515/chem-2015-0065.Suche in Google Scholar
33. Gbadamosi, M. R., Afolabi, T. A., Banjoko, O. O., Ogunneye, A. L., Abudu, K. A., Ogunbanjo, O. O., Jegede, D. O. Spatial distribution and lifetime cancer risk due to naturally occurring radionuclides in soils around tar-sand deposit area of Ogun state, Southwest Nigeria. Chemosphere 2018, 193, 1036–1048.10.1016/j.chemosphere.2017.11.132Suche in Google Scholar PubMed
34. Ivanova, K., Stojanovska, Z., Badulin, V., Kunovska, B., Yovcheva, M. Screening for risk assessment around closed uranium mining sites. Radioprotection 2016, 51, 193–198.10.1051/radiopro/2016021Suche in Google Scholar
35. Murith, C., Baechler, S., Estier, S., Palacios-Gruson, M. Remediation of radium legacies from the Swiss watch industry. Radiat. Prot. Dosim. 2017, 173, 245–251; https://doi.org/10.1093/rpd/ncw335.Suche in Google Scholar PubMed
36. Wang, J. L., Xu, B. W. Removal of radionuclide 99Tc from aqueous solution by various adsorbents: a review. J. Environ. Radioact. 2023, 270, 107267.10.1016/j.jenvrad.2023.107267Suche in Google Scholar PubMed
37. Wang, J. L., Zhuang, S. T. Extraction and adsorption of U(Ⅵ) from aqueous solution using affinity ligand-based technologies: an overview. Rev. Environ. Sci. Biotechnol. 2019, 18, 437–452; https://doi.org/10.1007/s11157-019-09507-y.Suche in Google Scholar
38. Zhuang, S. T., Wang, J. L. Cesium removal from radioactive wastewater by adsorption and membrane technology. Front. Environ. Sci. Eng. 2024, 18, 38; https://doi.org/10.1007/s11783-024-1798-1.Suche in Google Scholar
39. Groudev, S. N., Spasova, I. I., Georgiev, P. S. In situ bioremediation of soils contaminated with radioactive elements and toxic heavy metals. Int. J. Miner. Process. 2001, 62, 301–308; https://doi.org/10.1016/s0301-7516(00)00061-2.Suche in Google Scholar
40. Kim, G., Kim, S., Park, H., Kim, W., Park, U., Moon, J. Remediation of soil/concrete contaminated with uranium and radium by biological method. J. Radioanal. Nucl. Chem. 2013, 297, 71–78; https://doi.org/10.1007/s10967-012-2321-x.Suche in Google Scholar
41. Ali, H., Khan, E., Sajad, M. A. Phytoremediation of heavy metals -concepts and applications. Chemosphere 2013, 91, 869–881; https://doi.org/10.1016/j.chemosphere.2013.01.075.Suche in Google Scholar PubMed
42. Dushenkov, S. Trends in phytoremediation of radionuclides. Plant Soil 2003, 249, 167–175; https://doi.org/10.1023/a:1022527207359.10.1023/A:1022527207359Suche in Google Scholar
43. Shen, X., Dai, M., Yang, J., Sun, L., Tan, X., Peng, C., Ali, I., Naz, I. A critical review on the phytoremediation of heavy metals from environment: performance and challenges. Chemosphere 2022, 291, 132979.10.1016/j.chemosphere.2021.132979Suche in Google Scholar PubMed
44. Soudek, P., Petrik, P., Vagner, M., Tykva, R., Plojhar, V., Petrova, S., Vanek, T. Botanical survey and screening of plant species which accumulate 226Ra from contaminated soil of uranium waste depot. Eur. J. Soil Biol. 2007, 43, 251–261; https://doi.org/10.1016/j.ejsobi.2007.02.008.Suche in Google Scholar
45. Soudek, P., Petrova, S., Benesova, D., Tykva, R., Vankova, R., Vanek, T. Comparison of 226Ra nuclide from soil by three woody species Betula pendula, Sambucus nigra and Alnus glutinosa during the vegetation period. J. Environ. Radioact. 2007, 97, 76–82; https://doi.org/10.1016/j.jenvrad.2007.03.008.Suche in Google Scholar PubMed
46. Kennen, K., Phyto, K. N. Principles and Resources for Site Remediation and Landscape Design; Routledge: New York, NY, 2015.Suche in Google Scholar
47. Gong, Y., Zhao, D., Wang, Q. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade. Water Res. 2018, 147, 440–460; https://doi.org/10.1016/j.watres.2018.10.024.Suche in Google Scholar PubMed
48. Mendez, M. O., Maier, R. M. Phytostabilization of mine tailings in arid and semiarid environments – an emerging remediation technology. Environ. Health Perspect. 2008, 116, 278–283; https://doi.org/10.1289/ehp.10608.Suche in Google Scholar PubMed PubMed Central
49. Simon, S. L., Ibrahim, S. A. Biological uptake of radium by terrestrial plants. In The Environmental Behaviour of Radium, Vol. 1, Technical Reports Series No. 310, IAEA: Vienna, 1990; pp. 545–599.Suche in Google Scholar
50. Mortvedt, J. J. Plant and soil relationships of uranium and thorium decay series radionuclides – a review. J. Environ. Qual. 1994, 23, 643–650; https://doi.org/10.2134/jeq1994.00472425002300040004x.Suche in Google Scholar
51. Kaewtubtim, P., Meeinkuirt, W., Seepom, S., Pichtel, J. Radionuclide (226Ra, 232Th, 40K) accumulation among plant species in mangrove ecosystems of Pattani Bay, Thailand. Mar. Pollut. Bull. 2017, 115, 391–400; https://doi.org/10.1016/j.marpolbul.2016.12.050.Suche in Google Scholar PubMed
52. Chao, J. H., Chuang, C. Y. Accumulation of radium in relation to some chemical analogues in Dicranopteris linearis. Appl. Radiat. Isot. 2011, 69, 261–267; https://doi.org/10.1016/j.apradiso.2010.08.012.Suche in Google Scholar PubMed
53. Fabritius, O., Puhakka, E., Li, X., Nurminen, A., Siitari-Kauppi, M. Radium sorption on biotite; surface complexation modeling study. Appl. Geochem. 2022, 140, 105289; https://doi.org/10.1016/j.apgeochem.2022.105289.Suche in Google Scholar
54. Langmuir, D., Riese, A. C. The thermodynamic properties of radium. Geochim. Cosmochim. Acta 1985, 49, 1593–1601; https://doi.org/10.1016/0016-7037(85)90264-9.Suche in Google Scholar
55. Urso, L., Hormann, V., Diener, A., Achatz, M. Modelling partition coefficients of radium in soils. Appl. Geochem. 2019, 105, 78–86; https://doi.org/10.1016/j.apgeochem.2019.04.014.Suche in Google Scholar
56. Vandenhove, H., Eyckmans, T., Van Hees, V. Can barium and strontium Be used as tracers for radium in soil-plant transfer studies? J. Environ. Radioact. 2005, 81, 255–267; https://doi.org/10.1016/j.jenvrad.2004.01.039.Suche in Google Scholar PubMed
57. Medley, P., Bollhoefer, A. Influence of group II metals on radium-226 concentration ratios in the native green plum (Buchanania obovata) from the Alligator rivers region, Northern Territory, Australia. J. Environ. Radioact. 2016, 151, 551–557; https://doi.org/10.1016/j.jenvrad.2015.07.013.Suche in Google Scholar PubMed
58. IAEA. Analytical Methodology for the Determination of Radium Isotopes in Environmental Samples. IAEA Analytical Quality in Nuclear Applications Series No. 19. The International Atomic Energy Agency: Vienna, 2010.Suche in Google Scholar
59. Peterson, R. N., Burnett, W. C., Dimova, N., Santos, I. R. Comparison of measurement methods for radium-226 on manganese-fiber. Limnol. Oceanogr. Meth. 2009, 7, 196–205; https://doi.org/10.4319/lom.2009.7.196.Suche in Google Scholar
60. Suarez-Navarro, J. A., Exposito-Suarez, V. M., Crespo, M. T., Sanchez-Castano, B., Suarez-Navarro, M. J., Gasco, C., Barragan, M., Gascon, J. L., Pecker, R., Sanchez-Perez, L., Gonzalez-Cano, L., Rosario, A. Improvements in the radiochemical method for separating 226Ra in solid samples through coprecipitation with BaSO4. Appl. Radiat. Isot. 2022, 187, 110321; https://doi.org/10.1016/j.apradiso.2022.110321.Suche in Google Scholar PubMed
61. Girault, F., Perrier, F. Measuring effective radium concentration with large numbers of samples. Part I – experimental method and uncertainties. J. Environ. Radioact. 2012, 113, 177–188; https://doi.org/10.1016/j.jenvrad.2012.06.006.Suche in Google Scholar PubMed
62. Girault, F., Perrier, F. Measuring effective radium concentration with large numbers of samples. Part II – general properties and representativity. J. Environ. Radioact. 2012, 113, 189–202; https://doi.org/10.1016/j.jenvrad.2012.06.009.Suche in Google Scholar PubMed
63. Girault, F., Perrier, F., Ourcival, J., Ferry, R., Gaudemer, Y., Bourges, F., Didon-Lescot, J. Substratum influences uptake of radium-226 by plants. Sci. Total Environ. 2021, 766, 142655.10.1016/j.scitotenv.2020.142655Suche in Google Scholar PubMed
64. Perrier, F., Girault, F., Bouquerel, H. Effective radium-226 concentration in rocks, soils, plants and bones. In Radon, Health and Natural Hazards; Gilmore, G. K., Perrier, F. E., Crockett, R., Eds.; Geological Society, London, Special Publications, Vol. 451, 2018; pp. 113–129.10.1144/SP451.8Suche in Google Scholar
65. Prakash, M. M., Kaliprasad, C. S., Narayana, Y., Jagadeesha, B. G. Distribution of radionuclides in vertical profile and physico – chemical parameters of soil in Somwarpet taluk, Coorg district, Karnataka state, India. Int. J. Environ. Anal. Chem. 2024, 104(3), 718–734.10.1080/03067319.2022.2032686Suche in Google Scholar
66. Gottschling, E. C. B., Lettner, H., Hubmer, A. K., Schiller, A. Vegetation induced distinctions between radionuclide distribution in soils (Austria). J. Environ. Radioact. 2023, 256, 107038.10.1016/j.jenvrad.2022.107038Suche in Google Scholar PubMed
67. Geras’Kin, S. A., Evseeva, T. I., Belykh, E. S., Majstrenko, T. A., Michalik, B., Taskaev, A. I. Effects on non-human species inhabiting areas with enhanced level of natural radioactivity in the North of Russia: a review. J. Environ. Radioact. 2007, 94, 151–182; https://doi.org/10.1016/j.jenvrad.2007.01.003.Suche in Google Scholar PubMed
68. Matyskin, A. V., Ylmen, R., Lagerkvist, P., Rameback, H., Ekberg, C. Crystal structure of radium sulfate: an X-ray powder diffraction and density functional theory study. J. Solid State Chem. 2017, 253, 15–20; https://doi.org/10.1016/j.jssc.2017.05.024.Suche in Google Scholar
69. Rigali, M. J., Brady, P. V., Moore, R. C. Radionuclide removal by apatite. Am. Miner. 2016, 101, 2611–2619; https://doi.org/10.2138/am-2016-5769.Suche in Google Scholar
70. Greeman, D. J., Rose, A. W., Washington, J. W., Dobos, R. R., Ciolkosz, E. J. Geochemistry of radium in soils of the Eastern United States. Appl. Geochem. 1999, 14, 365–385; https://doi.org/10.1016/s0883-2927(98)00059-6.Suche in Google Scholar
71. Schultz, M. K., Burnett, W. C., Inn, K. Evaluation of a sequential extraction method for determining actinide fractionation in soils and sediments. J. Environ. Radioact. 1998, 40, 155–174; https://doi.org/10.1016/s0265-931x(97)00075-1.Suche in Google Scholar
72. Abreu, M. M., Magalhaes, M. C. F. Assessment and reclamation of soils from uranium mining areas: case studies from Portugal. In Assessment, Restoration and Reclamation of Mining Influenced Soils; Bech, J., Bini, C., Pashkevich, M. A., Eds.; Academic Press Ltd-Elsevier Science Ltd: London, England, 2017; pp. 203–234.10.1016/B978-0-12-809588-1.00007-4Suche in Google Scholar
73. Prieto, C., Lozano, J. C., Blanco Rodriguez, P., Vera Tome, F. Enhancing radium solubilization in soils by citrate, EDTA, and EDDS chelating amendments. J. Hazard. Mater. 2013, 250, 439–446; https://doi.org/10.1016/j.jhazmat.2013.02.021.Suche in Google Scholar PubMed
74. Blanco, P., Tomé, F. V., Lozano, J. C. Fractionation of natural radionuclides in soils from a uranium mineralized area in the south-west of Spain. J. Environ. Radioact. 2005, 79, 315–330; https://doi.org/10.1016/j.jenvrad.2004.08.006.Suche in Google Scholar PubMed
75. Al Abdullah, J., Al-Masri, M. S., Amin, Y., Awad, I., Sheaib, Z. Chemical fractionation of radium-226 in NORM contaminated soil from oilfields. J. Environ. Radioact. 2016, 165, 47–53; https://doi.org/10.1016/j.jenvrad.2016.09.003.Suche in Google Scholar PubMed
76. Nguyen, P. T. H., Van Thang, N., Ngoc, B. V., Cong, H. L., Thi, H. L. T. Treatment for removing radium in soil and groundwater. Appl. Radiat. Isot. 2022, 182, 110127; https://doi.org/10.1016/j.apradiso.2022.110127.Suche in Google Scholar PubMed
77. Guillen, J., Munoz-Serrano, A., Salvador Baeza, A., Salas, A. Speciation of naturally occurring radionuclides in mediterranean soils: bioavailabilty assessment. Environ. Sci. Pollut. Res. 2018, 25, 6772–6782; https://doi.org/10.1007/s11356-017-1021-z.Suche in Google Scholar PubMed
78. Mitchell, N., Perez-Sanchez, D., Thorne, M. C. A review of the behaviour of U-238 series radionuclides in soils and plants. J. Radiol. Prot. 2013, 33, R17–R48; https://doi.org/10.1088/0952-4746/33/2/r17.Suche in Google Scholar
79. Sheppard, S. C., Sheppard, M. I., Tait, J. C., Sanipelli, B. L. Revision and meta-analysis of selected biosphere parameter values for chlorine, iodine, neptunium, radium, radon and uranium. J. Environ. Radioact. 2006, 89, 115–137; https://doi.org/10.1016/j.jenvrad.2006.03.003.Suche in Google Scholar PubMed
80. Vandenhove, H., Van Hees, M. Predicting radium availability and uptake from soil properties. Chemosphere 2007, 69, 664–674; https://doi.org/10.1016/j.chemosphere.2007.02.054.Suche in Google Scholar PubMed
81. Payne, T. E., Brendler, V., Ochs, M., Baeyens, B., Brown, P. L., Davis, J. A., Ekberg, C., Kulik, D. A., Lutzenkirchen, J., Missana, T., Tachi, Y., Van Loon, L. R., Altmann, S. Guidelines for thermodynamic sorption modelling in the context of radioactive waste disposal. Environ. Modell. Softw. 2013, 42, 143–156; https://doi.org/10.1016/j.envsoft.2013.01.002.Suche in Google Scholar
82. IAEA. Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments; The International Atomic Energy Agency: Vienna, 2009. IAEA-TECDOC-1616.Suche in Google Scholar
83. IAEA. Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments; The International Atomic Energy Agency: Vienna, Technical Report Series No. 472, 2010.Suche in Google Scholar
84. Dalcorso, G., Fasani, E., Manara, A., Visioli, G., Furini, A. Heavy metal pollution: state of the art and innovation in phytoremediation. Int. J. Mol. Sci. 2019, 20, 3412; https://doi.org/10.3390/ijms20143412.Suche in Google Scholar PubMed PubMed Central
85. Zine, H., Midhat, L., Hakkou, R., El Adnani, M., Ouhammou, A. Guidelines for a phytomanagement plan by the phytostabilization of mining wastes. Sci. Afr. 2020, 10, e00654; https://doi.org/10.1016/j.sciaf.2020.e00654.Suche in Google Scholar
86. Suman, J., Uhlik, O., Viktorova, J., Macek, T. Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Front. Plant Sci. 2018, 9, 1476; https://doi.org/10.3389/fpls.2018.01476.Suche in Google Scholar PubMed PubMed Central
87. Moffett, D., Tellier, M. Uptake of radioisotopes by vegetation growing on uranium tailings. Can. J. Soil Sci. 1977, 57, 417–424; https://doi.org/10.4141/cjss77-047.Suche in Google Scholar
88. Medley, P., Bollhoefer, A., Parry, D., Martin, P. Radium concentration factors in passionfruit (Passiflora foetida) from the Alligator rivers region, Northern Territory, Australia. J. Environ. Radioact. 2013, 126, 137–146; https://doi.org/10.1016/j.jenvrad.2013.07.018.Suche in Google Scholar PubMed
89. Gerzabek, M. H., Strebl, F., Temmel, B. Plant uptake of radionuclides in lysimeter experiments. Environ. Pollut. 1998, 99, 93–103; https://doi.org/10.1016/s0269-7491(97)00167-x.Suche in Google Scholar PubMed
90. Nezami, S., Malakouti, M. J., Samani, A. B., Maragheh, M. G. Effect of low molecular weight organic acids on the uptake of 226Ra by corn (Zea mays L.) in a region of high natural radioactivity in Ramsar-Iran. J. Environ. Radioact. 2016, 164, 145–150; https://doi.org/10.1016/j.jenvrad.2016.07.021.Suche in Google Scholar PubMed
91. Tome, F. V., Rodriguez, P. B., Lozano, J. C. Elimination of natural uranium and 226Ra from contaminated waters by rhizofiltration using Helianthus annuus L. Sci. Total Environ. 2008, 393, 351–357; https://doi.org/10.1016/j.scitotenv.2008.01.013.Suche in Google Scholar PubMed
92. Tome, F. V., Rodriguez, P. B., Lozano, J. C. The ability of Helianthus annuus L. And Brassica juncea to uptake and translocate natural uranium and 226Ra under different milieu conditions. Chemosphere 2009, 74, 293–300; https://doi.org/10.1016/j.chemosphere.2008.09.002.Suche in Google Scholar PubMed
93. Ellili, A., Rabier, J., Prudent, P., Salducci, M., Heckenroth, A., Lachaal, M., Laffont-Schwob, I. Decision-making criteria for plant-species selection for phytostabilization: issues of biodiversity and functionality. J. Environ. Manage. 2017, 201, 215–226; https://doi.org/10.1016/j.jenvman.2017.06.041.Suche in Google Scholar PubMed
94. Pollard, A. J., Reeves, R. D., Baker, A. J. M. Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci. 2014, 217, 8–17; https://doi.org/10.1016/j.plantsci.2013.11.011.Suche in Google Scholar PubMed
95. Broadley, M. R., Willey, N. J. Differences in root uptake of radiocaesium by 30 plant taxa. Environ. Pollut. 1997, 97, 11–15; https://doi.org/10.1016/s0269-7491(97)00090-0.Suche in Google Scholar PubMed
96. Van der Ent, A., Baker, A. J. M., Reeves, R. D., Pollard, A. J., Schat, H. Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 2013, 362, 319–334; https://doi.org/10.1007/s11104-012-1287-3.Suche in Google Scholar
97. Chao, J. H., Lee, H. P., Chiu, C. Y. Measurement of 224Ra uptake in a fern actively accumulating radium. Chemosphere 2006, 62, 1656–1664; https://doi.org/10.1016/j.chemosphere.2005.06.046.Suche in Google Scholar PubMed
98. Song, G., Feng, Y. S., Zhu, Q. P., Lu, M. X., Chen, D. Y., Chen, Y. H. Dicranopteris dichotoma: a newly found radium and thorium-accumulating plant. J. Guangzhou Univ. 2014, 13, 81–87.Suche in Google Scholar
99. Chen, H., Chen, H., Chen, Z. A review of in situ phytoextraction of rare earth elements from contaminated soils. Int. J. Phytoremediation 2022, 24, 557–566; https://doi.org/10.1080/15226514.2021.1957770.Suche in Google Scholar PubMed
100. Xiao, H. Q., Zhang, Z. Y., Li, F. L., Chai, Z. F. Study on contents and distribution characteristics of REE in fern by NAA. Nuclear Tech. 2003, 26, 420–424.Suche in Google Scholar
101. Jally, B., Laubie, B., Chour, Z., Muhr, L., Qiu, R., Morel, J. L., Tang, Y., Simonnot, M. A new method for recovering rare earth elements from the hyperaccumulating fern Dicranopteris linearis from China. Miner. Eng. 2021, 166, 106879; https://doi.org/10.1016/j.mineng.2021.106879.Suche in Google Scholar
102. Ichihashi, H., Morita, H., Tatsukawa, R. Rare-earth elements (REEs) in naturally grown plants in relation to their variation in soils. Environ. Pollut. 1992, 76, 157–162; https://doi.org/10.1016/0269-7491(92)90103-h.Suche in Google Scholar PubMed
103. Chen, T., Lei, M., Wan, X., Zhou, X., Yang, J., Guo, G., Cai, W. Element case studies: arsenic. In Agromining: Farming for Metals Extracting Unconventional Resources Using Plants; Vanderent, A., Echevarria, G., Baker, A., Morel, J. L., Eds.; Springer International Publishing: Cham, 2018; pp. 275–281.10.1007/978-3-319-61899-9_17Suche in Google Scholar
104. Ma, L. Q., Komar, K. M., Tu, C., Zhang, W. H., Cai, Y., Kennelley, E. D. A fern that hyperaccumulates arsenic – a hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 2001, 409, 579; https://doi.org/10.1038/35054664.Suche in Google Scholar PubMed
105. Madruga, M. J., Brogueira, A., Alberto, G., Cardoso, F. 226Ra bioavailability to plants at the Urgeirica uranium mill tailings site. J. Environ. Radioact. 2001, 54, 175–188; https://doi.org/10.1016/s0265-931x(00)00173-9.Suche in Google Scholar PubMed
106. Zhao, F. J., Dunham, S. J., Mcgrath, S. P. Arsenic hyperaccumulation by different fern species. New Phytol. 2002, 156, 27–31; https://doi.org/10.1046/j.1469-8137.2002.00493.x.Suche in Google Scholar
107. Kohda, Y. H., Endo, G., Kitajima, N., Sugawara, K., Chien, M., Inoue, C., Miyauchi, K. Arsenic uptake by Pteris vittata in a subarctic arsenic-contaminated agricultural field in Japan: an 8-year study. Sci. Total Environ. 2022, 831, 154830; https://doi.org/10.1016/j.scitotenv.2022.154830.Suche in Google Scholar PubMed
108. Kopp, P., Oestling, O., Burkart, W. Availability to and uptake by plants of radionuclides under different environmental-conditions. Toxicol. Environ. Chem. 1989, 23, 53–63; https://doi.org/10.1080/02772248909357450.Suche in Google Scholar
109. Pennafranca, E., Fiszman, M., Lobao, N., Costarib, C., Trindade, H., Dossant, P. L., Batista, D. Radioactivity of Brazil nuts. Health Phys. 1968, 14, 95–99; https://doi.org/10.1097/00004032-196802000-00002.Suche in Google Scholar
110. Willey, N. J. Soil to plant transfer of radionuclides: predicting the fate of multiple radioisotopes in plants. J. Environ. Radioact. 2014, 133, 31–34; https://doi.org/10.1016/j.jenvrad.2013.07.023.Suche in Google Scholar PubMed
111. Evseeva, T., Majstrenko, T., Geras’Kin, S., Brown, J. E., Belykh, E. Estimation of ionizing radiation impact on natural Vicia cracca populations inhabiting areas contaminated with uranium mill tailings and radium production wastes. Sci. Total Environ. 2009, 407, 5335–5343; https://doi.org/10.1016/j.scitotenv.2009.06.037.Suche in Google Scholar PubMed
112. James, J. P., Dileep, B. N., Ravi, P. M., Joshi, R. M., Ajith, T. L., Hegde, A. G., Sarkar, P. K. Soil to leaf transfer factor for the radionuclides 226Ra, 40K, 137Cs and 90Sr at Kaiga region, India. J. Environ. Radioact. 2011, 102, 1070–1077; https://doi.org/10.1016/j.jenvrad.2011.07.011.Suche in Google Scholar PubMed
113. Leslie, B.W., Pickett, D.A., Pearcy, E.C. Vegetation-Derived Insights on the Mobilization and Potential:Transport of Radionuclides from the Nopal I Natural Analog Site, Mexico. Mater Res. Soc. Symp. Proc. 1999, 556, 833–842.10.1557/PROC-556-833Suche in Google Scholar
114. Soudek, P., Petrova, S., Benesova, D., Kotyza, J., Vagner, M., Vankova, R., Vanek, T. Study of soil-plant transfer of 226Ra under greenhouse conditions. J. Environ. Radioact. 2010, 101, 446–450; https://doi.org/10.1016/j.jenvrad.2008.08.003.Suche in Google Scholar PubMed
115. Asaduzzaman, K., Khandaker, M. U., Amin, Y. M., Bradley, D. A., Mahat, R. H., Nor, R. M. Soil-to-root vegetable transfer factors for 226Ra, 232Th, 40K, and 88Y in Malaysia. J. Environ. Radioact. 2014, 135, 120–127; https://doi.org/10.1016/j.jenvrad.2014.04.009.Suche in Google Scholar PubMed
116. Bal, S. S., Kursat, M., Kuluozturk, M. F., Celik, S. K., Yilmaz, E. Soil to plant transfer of 226Ra, 232Th and 137Cs to some medicinal and aromatic plants growing in Bitlis (Turkey). J. Environ. Radioact. 2023, 257, 107089.10.1016/j.jenvrad.2022.107089Suche in Google Scholar PubMed
117. Ibikunle, S. B., Arogunjo, A. M., Ajayi, O. S. Characterization of radiation dose and soil-to-plant transfer factor of natural radionuclides in some cities from South-Western Nigeria and its effect on man. Sci. Afr. 2019, 3, e00062; https://doi.org/10.1016/j.sciaf.2019.e00062.Suche in Google Scholar
118. Pulhani, V. A., Dafauti, S., Hegde, A. G., Sharma, R. M., Mishra, U. C. Uptake and distribution of natural radioactivity in wheat plants from soil. J. Environ. Radioact. 2005, 79, 331–346; https://doi.org/10.1016/j.jenvrad.2004.08.007.Suche in Google Scholar PubMed
119. Markose, P. M., Bhat, I. S., Pillai, K. C. Some characteristics of 226Ra transfer from soil and uranium mill tailings to plants. J. Environ. Radioact. 1993, 21, 131–142; https://doi.org/10.1016/0265-931x(93)90050-h.Suche in Google Scholar
120. Azeez, H. H., Mansour, H. H., Ahmad, S. T. Transfer of natural radioactive nuclides from soil to plant crops. Appl. Radiat. Isot. 2019, 147, 152–158; https://doi.org/10.1016/j.apradiso.2019.03.010.Suche in Google Scholar PubMed
121. Abu Shayeb, M., Alharbi, T., Baloch, M. A., Alsamhan, O. A. R. Transfer factors for natural radioactivity into date palm pits. J. Environ. Radioact. 2017, 167, 75–79; https://doi.org/10.1016/j.jenvrad.2016.11.014.Suche in Google Scholar PubMed
122. Changizi, V., Jafarpoor, Z., Naseri, M. Measurement of 226Ra, 228Ra, 137CS and 40K in edible parts of two types of leafy vegetables cultivated in tehran province-Iran and resultant annual ingestion radiation dose. Iran. J. Radiat. Res. 2010, 8, 103–110.Suche in Google Scholar
123. Shanthi, G., Maniyan, C. G., Raj, G. A. G., Kumaran, J. T. T. Radioactivity in food crops from high-background radiation area in Southwest India. Curr. Sci. 2009, 97, 1331–1335.Suche in Google Scholar
124. Pozolotina, V. N., Sobakin, P. I., Molchanova, I. V., Karavaeva, E. N., Mikhailovskaya, L. N. Migration and biological effect of natural heavy radionuclides on plants. Russ. J. Ecol. 2000, 31, 14–19; https://doi.org/10.1007/bf02799720.Suche in Google Scholar
125. Soudek, P., Podracká, E., Vágner, M., Vanek, T., Petrík, P., Tykva, R. 226Ra uptake from soils into different plant species. J. Radioanal. Nucl. Chem. 2004, 262, 187–189; https://doi.org/10.1023/b:jrnc.0000040872.61650.a3.10.1023/B:JRNC.0000040872.61650.a3Suche in Google Scholar
126. Mislevy, P., Blue, W. G., Roessler, C. E. Productivity of clay tailings from phosphate mining. 2. Forage crops. J. Environ. Qual. 1990, 19, 694–700; https://doi.org/10.2134/jeq1990.00472425001900040011x.Suche in Google Scholar
127. Mislevy, P., Blue, W. G., Roessler, C. E. Productivity of clay tailings from phosphate mining. 1. Biomass crops. J. Environ. Qual. 1989, 18, 95–100; https://doi.org/10.2134/jeq1989.00472425001800010017x.Suche in Google Scholar
128. Mislevy, P., Blue, W. G., Roessler, C. E., Martin, F. G. Productivity of clay tailings from phosphate mining. 3. Grain crops. J. Environ. Qual. 1991, 20, 788–794; https://doi.org/10.2134/jeq1991.00472425002000040013x.Suche in Google Scholar
129. Aviv, O., Tripler, E., Yungrais, Z., Baziza, T., Vaknin, D., Koch, J. Uptake of 226Ra from irrigation water by basil crops. Radiat. Prot. Dosim. 2020, 192, 496–504; https://doi.org/10.1093/rpd/ncab013.Suche in Google Scholar PubMed
130. Bettencourt, A. O., Teixeira, M., Elias, M., Faisca, M. C. Soil to plant transfer of Ra-226. J. Environ. Radioact. 1988, 6, 49–60; https://doi.org/10.1016/0265-931x(88)90067-7.Suche in Google Scholar
131. Blanco Rodriguez, P., Vera Tome, F., Lozano, J. C. About the assumption of linearity in soil-to-plant transfer factors for uranium and thorium isotopes and 226Ra. Sci. Total Environ. 2002, 284, 167–175; https://doi.org/10.1016/s0048-9697(01)00877-4.Suche in Google Scholar PubMed
132. Vasconcellos, L., Amaral, E., Vianna, M. E., Franca, E. P. Uptake of Ra-226 and Pb-210 by food crops cultivated in a region of high natural radioactivity in Brazil. J. Environ. Radioact. 1987, 5, 287–302; https://doi.org/10.1016/0265-931x(87)90004-x.Suche in Google Scholar
133. Uchida, S., Tagami, K. Soil-to-crop transfer factors of radium in Japanese agricultural fields. J. Nuclear Radiochem. Sci. 2007, 8, 137–142; https://doi.org/10.14494/jnrs2000.8.137.Suche in Google Scholar
134. Tome, F. V., Rodríguez, M., Lozano, J. C. Soil-to-plant transfer factors for natural radionuclides and stable elements in a mediterranean area. J. Environ. Radioact. 2003, 65, 161–175; https://doi.org/10.1016/s0265-931x(02)00094-2.Suche in Google Scholar PubMed
135. Cerne, M., Smodis, B., Strok, M., Jacimovic, R. Plant accumulation of natural radionuclides as affected by substrate contaminated with uranium-mill tailings. Water, Air, Soil Pollut. 2018, 229, 371; https://doi.org/10.1007/s11270-018-4000-1.Suche in Google Scholar
136. Chen, S. B., Zhu, Y. G., Hu, Q. H. Soil to plant transfer of 238U 226Ra and 232Th on a uranium mining-impacted soil from southeastern China. J. Environ. Radioact. 2005, 82, 223–236; https://doi.org/10.1016/j.jenvrad.2005.01.009.Suche in Google Scholar PubMed
137. Uchida, S., Tagami, K., Shang, Z. R., Choi, Y. H. Uptake of radionuclides and stable elements from paddy soil to rice: a review. J. Environ. Radioact. 2009, 100, 739–745; https://doi.org/10.1016/j.jenvrad.2008.10.008.Suche in Google Scholar PubMed
138. Blanco Rodriguez, P., Vera Tome, F., Lozano, J. C. Influence of soil structure on the “fv approach” applied to 238U and 226Ra. Chemosphere 2017, 168, 832–838; https://doi.org/10.1016/j.chemosphere.2016.10.127.Suche in Google Scholar PubMed
139. Salt, D. E., Smith, R. D., Raskin, I. Phytoremediation. Annu. Rev. Plant Physiol. Plant Molec. Biol. 1998, 49, 643–668; https://doi.org/10.1146/annurev.arplant.49.1.643.Suche in Google Scholar PubMed
140. Sheppard, S. C., Evenden, W. G. The assumption of linearity in soil and plant concentration ratios – an experimental evaluation. J. Environ. Radioact. 1988, 7, 221–247; https://doi.org/10.1016/0265-931x(88)90030-6.Suche in Google Scholar
141. Bui, N. T., Vu, N. B., Nguyen, T. T. V., Truong, T. H. L. Estimation of the soil to plant transfer factor and the annual organ equivalent dose due to ingestion of food crops in Ho Chi Minh city, Vietnam. Chemosphere 2020, 259, 127432; https://doi.org/10.1016/j.chemosphere.2020.127432.Suche in Google Scholar PubMed
142. Blanco Rodriguez, P., Vera Tome, F., Perez Fernandez, M., Lozano, J. C. Linearity assumption in soil-to-plant transfer factors of natural uranium and radium in Helianthus annuus L. Sci. Total Environ. 2006, 361, 1–7; https://doi.org/10.1016/j.scitotenv.2005.08.020.Suche in Google Scholar PubMed
143. Simon, S. L., Ibrahim, S. A. The plant-soil concentration ratio for calcium, radium, lead, and polonium – evidence for nonlinearity with reference to substrate concentration. J. Environ. Radioact. 1987, 5, 123–142; https://doi.org/10.1016/0265-931x(87)90028-2.Suche in Google Scholar
144. Sheppard, S. C., Evenden, W. G. Critical compilation and review of plant-soil concentration ratios for uranium, thorium and lead. J. Environ. Radioact. 1988, 8, 255–285; https://doi.org/10.1016/0265-931x(88)90051-3.Suche in Google Scholar
145. Tuovinen, T. S., Kolehmainen, M., Roivainen, P., Kumlin, T., Makkonen, S., Holopainen, T., Juutilainen, J. Nonlinear transfer of elements from soil to plants: impact on radioecological modeling. Radiat. Environ. Biophys. 2016, 55, 393–400; https://doi.org/10.1007/s00411-016-0655-4.Suche in Google Scholar PubMed
146. Tagami, K., Uchida, S. Radium-226 transfer factor from soils to crops and its simple estimation method using uranium and barium concentrations. Chemosphere 2009, 77, 105–114; https://doi.org/10.1016/j.chemosphere.2009.05.012.Suche in Google Scholar PubMed
147. Vandenhove, H., Olyslaegers, G., Sanzharova, N., Shubina, O., Reed, E., Shang, Z., Velasco, H. Proposal for new best estimates of the soil-to-plant transfer factor of U, Th, Ra, Pb and Po. J. Environ. Radioact. 2009, 100, 721–732; https://doi.org/10.1016/j.jenvrad.2008.10.014.Suche in Google Scholar PubMed
148. Velasco, H., Ayub, J. J., Sansone, U. Analysis of radionuclide transfer factors from soil to plant in tropical and subtropical environments. Appl. Radiat. Isot. 2008, 66, 1759–1763; https://doi.org/10.1016/j.apradiso.2007.06.015.Suche in Google Scholar PubMed
149. Velasco, H., Ayub, J. J., Sansone, U. B. Influence of crop types and soil properties on radionuclide soil-to-plant transfer factors in tropical and subtropical environments. J. Environ. Radioact. 2009, 100, 733–738; https://doi.org/10.1016/j.jenvrad.2008.12.014.Suche in Google Scholar PubMed
150. Strok, M., Smodis, B. Soil-to-plant transfer factors for natural radionuclides in grass in the vicinity of a former uranium mine. Nucl. Eng. Des. 2013, 261, 279–284; https://doi.org/10.1016/j.nucengdes.2013.03.036.Suche in Google Scholar
151. Kritsananuwat, R., Chanyotha, S., Kranrod, C., Pengvanich, P. Transfer factor of 226Ra, 232Th and 40K from soil to alpinia galangal plant grown in northern Thailand. In International Nuclear Science and Technology Conference 2016; Thammasat Univ, Bangkok, Thailand. Journal of Physics Conference Series, 2017, Vol. 860, p. 012008.Suche in Google Scholar
152. Ehlken, S., Kirchner, G. Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: a review. J. Environ. Radioact. 2002, 58, 97–112; https://doi.org/10.1016/s0265-931x(01)00060-1.Suche in Google Scholar PubMed
153. Charro, E., Moyano, A. Soil and vegetation influence in plants natural radionuclides uptake at a uranium mining site. Radiat. Phys. Chem. 2017, 141, 200–206; https://doi.org/10.1016/j.radphyschem.2017.07.014.Suche in Google Scholar
154. Hao, D. V., Thanh, D. N., Peka, A., Hegedus, M., Csordas, A., Kovacs, T. Study of soil to plant transfer factors of 226Ra, 232Th, 40K and 137Cs in Vietnamese crops. J. Environ. Radioact. 2020, 223, 106416; https://doi.org/10.1016/j.jenvrad.2020.106416.Suche in Google Scholar PubMed
155. Karunakara, N., Somashekarappa, H. M., Narayana, Y., Avadhani, D. N., Mahesh, H. M., Siddappa, K. 226Ra, 40K and 7Be activity concentrations in plants in the environment of Kaiga, India. J. Environ. Radioact. 2003, 65, 255–266; https://doi.org/10.1016/s0265-931x(02)00101-7.Suche in Google Scholar PubMed
156. Sam, A. K., Eriksson, A. Ra-226 uptake by vegetation grown in Western Sudan. J. Environ. Radioact. 1995, 29, 27–38; https://doi.org/10.1016/0265-931x(95)90935-r.Suche in Google Scholar
157. Nurtjahya, E., Mellawati, J., Pratama, D., Syahrir, S. Study of soil-to-plant transfer factors (TFs) of 226Ra, 232Th, and 40K on plants cultivated on ex-tin mining land in bangka belitung, Indonesia. J. Environ. Radioact. 2023, 261, 107144; https://doi.org/10.1016/j.jenvrad.2023.107144.Suche in Google Scholar PubMed
158. Linsalata, P., Morse, R. S., Ford, H., Eisenbud, M., Franca, E. P., Decastro, M. B., Lobao, N., Sachett, I., Carlos, M. An assessment of soil-to-plant concentration ratios for some natural analogs of the transuranic elements. Health Phys. 1989, 56, 33–46; https://doi.org/10.1097/00004032-198901000-00003.Suche in Google Scholar PubMed
159. Al-Hamarneh, I. F., Alkhomashi, N., Almasoud, F. I. Study on the radioactivity and soil-to-plant transfer factor of 226Ra, 234U and 238U radionuclides in irrigated farms from the Northwestern Saudi Arabia. J. Environ. Radioact. 2016, 160, 1–7; https://doi.org/10.1016/j.jenvrad.2016.04.012.Suche in Google Scholar PubMed
160. Mrdakovic Popic, J., Oughton, D. H. H., Salbu, B., Skipperud, L. Transfer of naturally occurring radionuclides from soil to wild forest flora in an area with enhanced legacy and natural radioactivity in Norway. Environ. Sci.: Process. Impacts 2020, 22, 350–363; https://doi.org/10.1039/c9em00408d.Suche in Google Scholar PubMed
161. Saenboonruang, K., Phonchanthuek, E., Prasandee, K. Soil-to-plant transfer factors of natural radionuclides (226Ra and 40K) in selected Thai medicinal plants. J. Environ. Radioact. 2018, 184, 1–5; https://doi.org/10.1016/j.jenvrad.2018.01.004.Suche in Google Scholar PubMed
162. Davies, H. S., Rosas-Moreno, J., Cox, F., Lythgoe, P., Bewsher, A., Livens, F. R., Robinson, C. H., Pittman, J. K. Multiple environmental factors influence 238U, 232Th and 226Ra bioaccumulation in arbuscular mycorrhizal-associated plants. Sci. Total Environ. 2018, 640, 921–934; https://doi.org/10.1016/j.scitotenv.2018.05.370.Suche in Google Scholar PubMed
163. Million, J. B., Sartain, J. B., Gonzalez, R. X., Carrier, W. D. Ra-226 and calcium-uptake by crops grown in mixtures of sand and clay tailings from phosphate mining. J. Environ. Qual. 1994, 23, 671–676; https://doi.org/10.2134/jeq1994.00472425002300040008x.Suche in Google Scholar
164. Tome, F. V., Rodriguez, P. B., Lozano, J. C. Distribution and mobilization of U, Th and 226Ra in the plant-soil compartments of a mineralized uranium area in South-West Spain. J. Environ. Radioact. 2002, 59, 41–60; https://doi.org/10.1016/s0265-931x(01)00035-2.Suche in Google Scholar PubMed
165. Lauria, D. C., Ribeiro, F. C. A., Conti, C. C., Loureiro, F. A. Radium and uranium levels in vegetables grown using different farming management systems. J. Environ. Radioact. 2009, 100, 176–183; https://doi.org/10.1016/j.jenvrad.2008.11.006.Suche in Google Scholar PubMed
166. Asaduzzaman, K., Khandaker, M. U., Amin, Y. M., Mahat, R. Uptake and distribution of natural radioactivity in rice from soil in north and west part of peninsular Malaysia for the estimation of ingestion dose to man. Ann. Nucl. Energy 2015, 76, 85–93; https://doi.org/10.1016/j.anucene.2014.09.036.Suche in Google Scholar
167. Naidu, R., Harter, R. D. Effect of different organic ligands on cadmium sorption by and extractability from soils. Soil Sci. Soc. Am. J. 1998, 62, 644–650; https://doi.org/10.2136/sssaj1998.03615995006200030014x.Suche in Google Scholar
168. Borggaard, O. K., Holm, P. E., Strobel, B. W. Potential of dissolved organic matter (DOM) to extract as, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: a review. Geoderma 2019, 343, 235–246; https://doi.org/10.1016/j.geoderma.2019.02.041.Suche in Google Scholar
169. Keith-Roach, M. J. The speciation, stability, solubility and biodegradation of organic co-contaminant radionuclide complexes: a review. Sci. Total Environ. 2008, 396, 1–11; https://doi.org/10.1016/j.scitotenv.2008.02.030.Suche in Google Scholar PubMed
170. Means, J. L., Alexander, C. A. The environmental biogeochemistry of chelating agents and recommendations for the disposal of chelated radioactive wastes. Nuclear Chem. Waste Manage. 1981, 2, 183–196; https://doi.org/10.1016/0191-815x(81)90014-0.Suche in Google Scholar
171. Serne, R., Cantrell, C., Lindenmeier, C., Owen, A., Kutnyakov, I., Orr, R., Felmy, A. Radionuclide-chelating agent complexes in low-level radioactive decontamination waste; stability, adsorption and transport potential. Technical Report: NUREG/CR- 6758; PNNL-13774. U.S. Department of Energy, Richland, WA (United States), 2002.10.2172/975006Suche in Google Scholar
172. Gunn, K. B., Mistry, K. B. Effect of chelating agents on absorption of radium by plants. Plant Soil 1970, 33, 7; https://doi.org/10.1007/bf01378192.Suche in Google Scholar
173. Georgiev, P., Groudev, S., Spasova, I., Nicolova, M. Ecotoxicological characteristic of a soil polluted by radioactive elements and heavy metals before and after its bioremediation. J. Geochem. Explor. 2014, 142, 122–129; https://doi.org/10.1016/j.gexplo.2014.02.024.Suche in Google Scholar
174. Hu, N., Chen, S., Lang, T., Zhang, H., Chen, W., Li, G., Ding, D. A novel method for determining the adequate dose of a chelating agent for phytoremediation of radionulides contaminated soils by M. cordata. J. Environ. Radioact. 2021, 227, 106468; https://doi.org/10.1016/j.jenvrad.2020.106468.Suche in Google Scholar PubMed
175. Huang, J., Blaylock, M. J., Kapulnik, Y., Ensley, B. D. Phytoremediation of uranium contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ. Sci. Technol. 1998, 32, 2004–2008; https://doi.org/10.1021/es971027u.Suche in Google Scholar
176. Duquene, L., Tack, F., Meers, E., Baeten, J., Wannijn, J., Vandenhovea, H. Effect of biodegradable amendments on uranium solubility in contaminated soils. Sci. Tot. Environ. 2008, 391, 26–33; https://doi.org/10.1016/j.scitotenv.2007.10.042.Suche in Google Scholar PubMed
177. Nezami, S., Malakouti, M. J., Samani, A. B., Maragheh, M. G. The role of organic acids on 226Ra transfer factor in corn (Zea mays L.). J. Radioanal. Nucl. Chem. 2017, 313, 13–18; https://doi.org/10.1007/s10967-017-5265-3.Suche in Google Scholar
178. Thiry, Y., Van Hees, M. Evolution of pH, organic matter and 226radium/calcium partitioning in U-mining debris following revegetation with pine trees. Sci. Total Environ. 2008, 393, 111–117; https://doi.org/10.1016/j.scitotenv.2007.12.020.Suche in Google Scholar PubMed
179. Mang, K. C., Ntushelo, K. Phytoextraction and phytostabilisation approaches of heavy metal remediation in acid mine drainage with case studies: a review. Appl. Ecol. Environ. Res. 2019, 17, 6129–6149; https://doi.org/10.15666/aeer/1703_61296149.Suche in Google Scholar
180. Li, X., Huang, L. Toward a new paradigm for tailings phytostabilization-nature of the substrates, amendment options, and anthropogenic pedogenesis. Crit. Rev. Environ. Sci. Technol. 2015, 45, 813–839; https://doi.org/10.1080/10643389.2014.921977.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review
- Phytoremediation of radium contaminated soils: recent advances and prospects
- Original Papers
- Kinetic evaluation of the uranyl peroxide synthetic route on morphology
- Fabrication and characterization of graphene oxide and reduced graphene oxide decorated diatomite composite materials and their adsorption performance for uranium ions
- The performance of iron-silicate-based biochar as a sorbent material towards 133Ba retention from radioactive liquid waste
- Challenges in the solution phase synthesis of PSMA-11 and PSMA-617: organic ligands for radiopharmaceutical preparations in prostate cancer medication
- Synthesis, MTT assay, 99m-Technetium radiolabeling, biodistribution evaluation of radiotracer and in vitro magnetic resonance imaging study of P,N-doped graphene quantum dots as a new multipurpose imaging nano-agent
- Assessment of radioactivity and radiological risk indices in the sediments of the Tam Giang-Cau Hai, Thi Nai, and Nai lagoons in the Center of Vietnam
- Study of gamma, neutron, and proton interaction parameters of some immunotherapy drugs using EpiXs, NGCal, and PSTAR software
- Gamma and neutron attenuation of SiO2–B2O3–BaO–Li2O glasses doped with CeO2
Artikel in diesem Heft
- Frontmatter
- Review
- Phytoremediation of radium contaminated soils: recent advances and prospects
- Original Papers
- Kinetic evaluation of the uranyl peroxide synthetic route on morphology
- Fabrication and characterization of graphene oxide and reduced graphene oxide decorated diatomite composite materials and their adsorption performance for uranium ions
- The performance of iron-silicate-based biochar as a sorbent material towards 133Ba retention from radioactive liquid waste
- Challenges in the solution phase synthesis of PSMA-11 and PSMA-617: organic ligands for radiopharmaceutical preparations in prostate cancer medication
- Synthesis, MTT assay, 99m-Technetium radiolabeling, biodistribution evaluation of radiotracer and in vitro magnetic resonance imaging study of P,N-doped graphene quantum dots as a new multipurpose imaging nano-agent
- Assessment of radioactivity and radiological risk indices in the sediments of the Tam Giang-Cau Hai, Thi Nai, and Nai lagoons in the Center of Vietnam
- Study of gamma, neutron, and proton interaction parameters of some immunotherapy drugs using EpiXs, NGCal, and PSTAR software
- Gamma and neutron attenuation of SiO2–B2O3–BaO–Li2O glasses doped with CeO2