Startseite Kinetic evaluation of the uranyl peroxide synthetic route on morphology
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Kinetic evaluation of the uranyl peroxide synthetic route on morphology

  • Erik C. Abbott , Logan D. Gibb , Cody A. Nizinski , Elijah W. Allen , Hiram E. E. O’Connor und Luther W. McDonald IV ORCID logo EMAIL logo
Veröffentlicht/Copyright: 16. Mai 2024

Abstract

An important challenge in utilizing particle morphology in nuclear forensic or fuel fabrication applications is understanding why differences in morphologies are observed following varying processing conditions. This is often due to competition and interplay between thermodynamic and kinetic influences. To that end, some of the kinetic influences in the uranyl peroxide precipitation reaction were evaluated and compared to thermodynamic influences studied previously. Metastudtite (UO2O2·2H2O) was synthesized from solutions of uranyl nitrate or chloride, and the reaction time was varied from 100 s to 230 min enabling an evaluation of kinetic and thermodynamic influences. The metastudtite was then calcined to U3O8, and all materials were analyzed by powder X-ray diffraction (p-XRD) and scanning electron microscopy (SEM). Analysis by p-XRD confirmed the sample purity of metastudtite and U3O8. SEM images were analyzed using the Morphological Analysis for Materials (MAMA) software to measure the size and shape of the nanoparticles for a statistical comparison between materials. Metastudtite produced at shorter reaction times exhibited a kinetically controlled shape by forming smaller and rounder particles than metastudtite produced at longer reaction times. Metastudtite produced at the longer reaction times exhibited differences between the uranyl nitrate and uranyl chloride routes with the nitrate exhibiting a more angular and faceted morphology than the chloride. Overall, the control of the supersaturation ratio (S) played a significant role in determining the morphology of the metastudtite. Morphological differences between the U3O8 confirmed the role of nanoparticle agglomeration in forming larger sintered particles. The results help demonstrate the importance of understanding particle formation mechanisms in the long-term development of morphology in nuclear forensics or in developing advanced fuels with specific characteristics.


Corresponding author: Luther W. McDonald IV, Nuclear Engineering Program, Department of Civil and Environmental Engineering, University of Utah, 201 Presidents Circle, 110 Central Campus Drive, Suite 2000, Salt Lake City, UT 84112, USA, E-mail:

Funding source: Department of Homeland Security

Award Identifier / Grant number: 2015-DN-077ARI092

Award Identifier / Grant number: 2016-DN-077-ARI10

Funding source: DOE NNSA Office of Defense Nuclear Nonproliferation Research and Development

Acknowledgments

This work made use of the University of Utah Shared facilities of the Surface Analysis and Nanoscale Imaging Group sponsored by the College of Engineering, Health Sciences Center, Office of the Vice President for Research, and the Utah Science Technology and Research (USTAR) Initiative of the State of Utah. This work used the Material Characterization Lab at the University of Utah.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Erik C. Abbott: conceptualization, methodology, data curation, formal analysis, investigation, writing – original draft, review, and editing. Logan D. Gibb: data curation. Cody A. Nizinski: data curation, formal analysis, writing – review and editing. Elijah W. Allen: data curation. Hiram E. E. O’Connor: data curation. Luther W. McDonald IV: supervision, project administration, funding acquisition, writing – review and editing.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: ynthesis and characterization of the U-oxides were supported by the U.S. Department of Homeland Security, Domestic Nuclear Detection Office, under grant award nos. 2015-DN-077ARI092 and 2016-DN-077-ARI10. Data analysis and interpretation were completed using support from the Department of Energy’s National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation Research and Development.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Keegan, E.; Kristo, M. J.; Colella, M.; Robel, M.; Williams, R.; Lindvall, R.; Eppich, G.; Roberts, S.; Borg, L.; Gaffney, A.; Plaue, J.; Wong, H.; Davis, J.; Loi, E.; Reinhard, M.; Hutcheon, I. Nuclear Forensic Analysis of an Unknown Uranium Ore Concentrate Sample Seized in a Criminal Investigation in Australia. Forensic Sci. Int. 2014, 240, 111; https://doi.org/10.1016/j.forsciint.2014.04.004.Suche in Google Scholar PubMed

2. Cordfunke, E. H. P.; Van Der Giessen, A. A. Particle Properties and Sintering Behaviour of Uranium Dioxide. J. Nucl. Mater. 1967, 24, 141; https://doi.org/10.1016/0022-3115(67)90002-5.Suche in Google Scholar

3. Cordfunke, E. H. P.; Van Der Giessen, A. A. Pseudomorphic Decomposition of Uranium Peroxide into UO3. J. Inorg. Nucl. Chem. 1963, 25, 553; https://doi.org/10.1016/0022-1902(63)80240-7.Suche in Google Scholar

4. Clayton, J. C.; Aronson, S. Some Preparative Methods and Physical Characteristics of Uranium Dioxide Powders. J. Chem. Eng. Data 1961, 6, 43; https://doi.org/10.1021/je60009a013.Suche in Google Scholar

5. Lucuta, P. G.; Verrall, R. A.; Palmer, B. J. Microstructural Features of SIMFUEL—Simulated High-Burnup UO2-Based Nuclear Fuel. J. Nucl. Mater. 1991, 178, 48; https://doi.org/10.1016/0022-3115(91)90455-g.Suche in Google Scholar

6. Tucker, M. O.; Turnbull, J. A. The Morphology of Interlinked Porosity in Nuclear Fuels. Proc. R. Soc. London A: Math. Phys. Sci. 1975, 343, 299.10.1098/rspa.1975.0067Suche in Google Scholar

7. Hobbins, R. R.; Osetek, D. J.; Petti, D. A.; Hagrman, D. L. Fission Product Release as a Function of Chemistry and Fuel Morphology. In Fission Prod. Transp. Process. React. Accid., Vol. 215, 2020.10.1201/9781003070344-17Suche in Google Scholar

8. Rondinella, V. V.; Wiss, T. The High Burn-Up Structure in Nuclear Fuel. Mater. Today 2010, 13, 24; https://doi.org/10.1016/s1369-7021(10)70221-2.Suche in Google Scholar

9. Rest, J.; Cooper, M. W. D.; Spino, J.; Turnbull, J. A.; Van Uffelen, P.; Walker, C. T. Fission Gas Release from UO2 Nuclear Fuel: A Review. J. Nucl. Mater. 2019, 513, 310; https://doi.org/10.1016/j.jnucmat.2018.08.019.Suche in Google Scholar

10. Girard, M.; Hagen, A.; Schwerdt, I.; Gaumer, M.; McDonald, L.; Hodas, N.; Jurrus, E. Uranium Oxide Synthetic Pathway Discernment through Unsupervised Morphological Analysis. J. Nucl. Mater. 2021, 552, 152983; https://doi.org/10.1016/j.jnucmat.2021.152983.Suche in Google Scholar

11. Ly, C.; Vachet, C.; Schwerdt, I.; Abbott, E.; Brenkmann, A.; McDonald, L. W.; Tasdizen, T. Determining Uranium Ore Concentrates and Their Calcination Products via Image Classification of Multiple Magnifications. J. Nucl. Mater. 2020, 533, 152082; https://doi.org/10.1016/j.jnucmat.2020.152082.Suche in Google Scholar

12. Wang, Y.; He, J.; Liu, C.; Chong, W. H.; Chen, H. Thermodynamics versus Kinetics in Nanosynthesis. Angew. Chem., Int. Ed. 2015, 54, 2022; https://doi.org/10.1002/anie.201402986.Suche in Google Scholar PubMed

13. Dirksen, J. A.; Ring, T. A. Fundamentals of Crystallization: Kinetic Effects on Particle Size Distributions and Morphology. Chem. Eng. Sci. 1991, 46, 2389; https://doi.org/10.1016/0009-2509(91)80035-w.Suche in Google Scholar

14. Demopoulos, G. P. Aqueous Precipitation and Crystallization for the Production of Particulate Solids with Desired Properties. Hydrometallurgy 2009, 96, 199; https://doi.org/10.1016/j.hydromet.2008.10.004.Suche in Google Scholar

15. Planteur, S.; Bertrand, M.; Plasari, E.; Courtaud, B.; Gaillard, J.-P. Thermodynamic and Crystal Growth Kinetic Study of Uranium Peroxide. CrystEngComm 2013, 15, 2305; https://doi.org/10.1039/c2ce26483h.Suche in Google Scholar

16. Cordfunke, E. H. P. The Chemistry of Uranium: Including its Applications in Nuclear Technology; Elsevier Science & Technology: Amsterdam, New York, 1970.Suche in Google Scholar

17. Kim, K.-W.; Hyun, J.-T.; Lee, K.-Y.; Lee, E.-H.; Lee, K.-W.; Song, K.-C.; Moon, J.-K. Effects of the Different Conditions of Uranyl and Hydrogen Peroxide Solutions on the Behavior of the Uranium Peroxide Precipitation. J. Hazard. Mater. 2011, 193, 52; https://doi.org/10.1016/j.jhazmat.2011.07.032.Suche in Google Scholar PubMed

18. Zhu, C.; Zeng, J.; Tao, J.; Johnson, M. C.; Schmidt-Krey, I.; Blubaugh, L.; Zhu, Y.; Gu, Z.; Xia, Y. Kinetically Controlled Overgrowth of Ag or Au on Pd Nanocrystal Seeds: from Hybrid Dimers to Nonconcentric and Concentric Bimetallic Nanocrystals. J. Am. Chem. Soc. 2012, 134, 15822; https://doi.org/10.1021/ja305329g.Suche in Google Scholar PubMed

19. Abbott, E. C., O’Connor, H. E., Nizinski, C. A., Gibb, L. D., Allen, E. W., McDonaldIV, L. W. Thermodynamic Evaluation of the Uranyl Peroxide Synthetic Route on Morphology. J. Nucl. Mater. 2022, 561, 153533–1–8; https://doi.org/10.1016/j.jnucmat.2022.153533.Suche in Google Scholar

20. Ruggiero, C., Bloch, J. J. J.B.: Morphological Analysis for Material Attribution Version 3.0; Los Alamos National Laboratory: Los Alamos, New Mexico, 2018.Suche in Google Scholar

21. Olsen, A. M.; Richards, B.; Schwerdt, I.; Heffernan, S.; Lusk, R.; Smith, B.; Jurrus, E.; Ruggiero, C.; McDonald IV, L. W. Quantifying Morphological Features of α-U3O8 with Image Analysis for Nuclear Forensics. Anal. Chem. 2017, 89, 3177; https://doi.org/10.1021/acs.analchem.6b05020.Suche in Google Scholar PubMed

22. JMP Version 15.2.0; SAS Institute Inc.: Cary, NC, 1989-2023.Suche in Google Scholar

23. Tamasi, A. L.; Cash, L. J.; Eley, C.; Porter, R. B.; Pugmire, D. L.; Ross, A. R.; Ruggiero, C. E.; Tandon, L.; Wagner, G. L.; Walensky, J. R.; Wall, A. D.; Wilkerson, M. P. A Lexicon for Consistent Description of Material Images for Nuclear Forensics. J. Radioanal. Nucl. Chem. 2016, 307, 1611; https://doi.org/10.1007/s10967-015-4455-0.Suche in Google Scholar

24. Nakaso, K.; Shimada, M.; Okuyama, K.; Deppert, K. Evaluation of the Change in the Morphology of Gold Nanoparticles during Sintering. J. Aerosol Sci. 2002, 33, 1061; https://doi.org/10.1016/s0021-8502(02)00058-7.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ract-2024-0277).


Received: 2024-01-17
Accepted: 2024-04-26
Published Online: 2024-05-16
Published in Print: 2024-09-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0277/html
Button zum nach oben scrollen