Home Fabrication and characterization of graphene oxide and reduced graphene oxide decorated diatomite composite materials and their adsorption performance for uranium ions
Article
Licensed
Unlicensed Requires Authentication

Fabrication and characterization of graphene oxide and reduced graphene oxide decorated diatomite composite materials and their adsorption performance for uranium ions

  • Sabriye Yusan ORCID logo EMAIL logo , Burak Mumcu , Eduardo A. López-Maldonado ORCID logo EMAIL logo , Rachid EL Kaim Billah and Lahoucine Bahsis
Published/Copyright: July 8, 2024

Abstract

In this study, the composite materials based on the incorporation of diatomite of graphene oxide (GO)/reduced graphene oxide (rGO/diatomite) were developed and characterized by different techniques (SEM, XRD, FTIR and BET). Developed composites were used for the first time in the removal of uranium ions from aqueous solutions. In adsorption studies, parameters affecting the adsorption efficiency such as solution pH, temperature, contact time and initial U(VI) concentration were investigated using full factorial experimental design (FFED). ANOVA (analysis of variance) analysis within the 95 % confidence interval of the model applied to control the compatibility of the model and the experimental findings was examined. Langmuir, Freundlich and Temkin isotherms were used to determine the adsorption model and related parameters were calculated. In addition, adsorption thermodynamic parameters such as enthalpy, Gibbs free energy change and entropy were calculated. The uranium removal behaviour on GO/diatomite and rGO/diatomite was better characterized by the pseudo-second order and Langmuir models, indicating that uranium ions were chemically adsorbed onto composite materials. Additionally, it was observed that higher temperatures promoted the uranium removal on GO/diatomite and rGO/diatomite, suggesting that the removal process was a spontaneous endothermic and exothermic reaction, respectively. In addition, the adsorption of U(VI) with GO/diatomite and rGO/diatomite was investigated using density functional theory (DFT) study. Configuration and adsorption energy were determined. The GO/diatomite composite materials can be a promising candidate as an adsorbent for the removal of uranium from aqueous solutions.


Corresponding authors: Sabriye Yusan, Institute of Nuclear Sciences, Ege University, Bornova-Izmir 35100, Türkiye, E-mail: ; and Eduardo A. López-Maldonado, Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, Baja California, Mexico, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: Sabriye Yusan: conceptualization, supervision, methodology and writing – review & editing. Burak Mumcu: investigation, data curation, validation. Eduardo A. López-Maldonado: calculation, data acquisition, writing – review & editing. Rachid EL Kaim Billah: calculation, data acquisition. Lahoucine Bahsis: calculation: data acquisition.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Bilal, M.; Ihsanullah, I.; Younas, M.; Ul Hassan Shah, M. Recent Advances in Applications of Low-Cost Adsorbents for the Removal of Heavy Metals from Water: A Critical Review. Sep. Purif. Technol. 2022, 278, 119510; https://doi.org/10.1016/j.seppur.2021.119510.Search in Google Scholar

2. Xiong, T.; Jia, L.; Li, Q.; Zhang, Y.; Zhu, W. Efficient Removal of Uranium by Hydroxyapatite Modified Kaolin Aerogel. Sep. Purif. Technol. 2022, 299 (1–12), 121776; https://doi.org/10.1016/j.seppur.2022.121776.Search in Google Scholar

3. Chen, T.; Li, M.; Zhou, L.; Feng, X.; Lin, D.; Ding, X.; Li, C.; Yan, R.; Duan, T.; He, R.; Zhu, W. Harmonizing the Energy Band between Adsorbent and Semiconductor Enables Efficient Uranium Extraction. Chem. Eng. J. 2021, 420, 127645; https://doi.org/10.1016/j.cej.2020.127645.Search in Google Scholar

4. Saleh, T. A.; Naeemullah, T. M.; Sarı, A.; Sarı, A. Polyethylenimine Modified Activated Carbon as Novel Magnetic Adsorbent for the Removal of Uranium from Aqueous Solution. Chem. Eng. Res. Des. 2017, 117, 218–227; https://doi.org/10.1016/j.cherd.2016.10.030.Search in Google Scholar

5. Yin, W.; Liu, M.; Chen, Y.-Y.; Yao, Q.-Z.; Fu, S.-Q.; Zhou, G.-T. Microwave-Assisted Preparation of Mn3O4@sepiolite Nanocomposite for Highly Efficient Removal of Uranium. Appl. Clay Sci. 2022, 228, 1–9; https://doi.org/10.1016/j.clay.2022.106597.Search in Google Scholar

6. Jian, Y.; Ma, Y.; Cao, M.; Zhao, S.; Peng, Q.; Wang, H.; Liu, T.; Yuan, Y.; Wang, N. Phosphate Functionalized Silicide for Efficient Removal of Uranium Contamination from Hypersaline Effluents at Ultralow Dosage. Chem. Eng. J. 2023, 474, 1–9; https://doi.org/10.1016/j.cej.2023.145775.Search in Google Scholar

7. Kaptanoglu, I. G.; Yusan, S. Adsorption of Uranium Ions from Aqueous Solutions by Graphene-Based Zinc Oxide Nanocomposites. J. Radioanal. Nucl. Chem. 2023, 332, 4705–4719; https://doi.org/10.1007/s10967-023-08876-7.Search in Google Scholar

8. Pang, H.; Huang, S.; Wu, Y.; Yang, D.; Wang, X.; Yu, S.; Chen, Z.; Alsaedi, A.; Hayat, T.; Wang, X. Efficient Elimination of U(VI) by Polyethyleneimine-Decorated Fly Ash. Inorg. Chem. Front. 2018, 5, 2399–2407; https://doi.org/10.1039/c8qi00253c.Search in Google Scholar

9. Sheng, L.; Ding, D.; Zhang, H. Efficient Removal of Uranium from Acidic Mining Wastewater Using Magnetic Phosphate Composites. Sep. Purif. Technol. 2024, 337, 126397; https://doi.org/10.1016/j.seppur.2024.126397.Search in Google Scholar

10. Ma, F.; Nian, J.; Bi, C.; Yang, M.; Zhang, C.; Liu, L.; Dong, H.; Zhu, M.; Dong, B. Preparation of Carboxylated Graphene Oxide for Enhanced Adsorption of U(VI). J. Solid State Chem. 2019, 277, 9–16; https://doi.org/10.1016/j.jssc.2019.05.042.Search in Google Scholar

11. Cheng, Z.; Liao, J.; He, B.; Zhang, F.; Zhang, F.; Huang, X.; Zhou, L. One-Step Fabrication of Graphene Oxide Enhanced Magnetic Composite Gel for Highly Efficient Dye Adsorption and Catalysis. ACS Sustain. Chem. Eng. 2015, 3, 1677–1685; https://doi.org/10.1021/acssuschemeng.5b00383.Search in Google Scholar

12. Ramesha, G. K.; Kumara, A. V.; Muralidhara, H. B.; Sampath, S. Graphene and Graphene Oxide as Effective Adsorbents Toward Anionic and Cationic Dyes. J. Colloid Interface Sci. 2011, 361 (1), 270–277; https://doi.org/10.1016/j.jcis.2011.05.050.Search in Google Scholar PubMed

13. Song, X.; Zhou, J.; Fan, J.; Zhang, Q.; Wang, S. Preparation and Adsorption Properties of Magnetic Graphene Oxide Composites for the Removal of Methylene Blue from Water. Mater. Res. Express 2022, 9, 020002; https://doi.org/10.1088/2053-1591/ac52c6.Search in Google Scholar

14. Fang, J.; Liu, Q.; Zhang, W.; Gu, J.; Su, Y.; Su, H.; Guo, C.; Zhang, D. Ag/diatomite for Highly Efficient Solar Vapor Generation under One-Sun Irradiation. J. Mater. Chem. A 2017, 5, 17817–17821; https://doi.org/10.1039/c7ta05976k.Search in Google Scholar

15. Gao, L.; Wang, L.; Yang, L.; Zhao, Y.; Shi, N.; An, C.; Sun, Y.; Xie, J.; Wang, H.; Song, Y.; Ren, Y. Preparation, Characterization and Antibacterial Activity of Silver Nanoparticle/Graphene Oxide/Diatomite Composite. Appl. Surf. Sci. 2019, 484, 628–636; https://doi.org/10.1016/j.apsusc.2019.04.153.Search in Google Scholar

16. Paudyal, H.; Pangeni, B.; Inoue, K.; Ohto, K.; Kawakita, H.; Kn, G.; Harada, H.; Alam, S. Adsorptive Removal of Strontium from Water by Using Chemically Modifed Orange Juice Residue. Sep. Sci. Technol. 2014, 49, 1244–1250; https://doi.org/10.1080/01496395.2013.877032.Search in Google Scholar

17. Elhalil, A.; Tounsadi, H.; Elmoubarki, R.; Mahjoubi, F. Z.; Farnane, M.; Sadiq, M.; Abdennouri, M.; Qourzal, S.; Barka, N. Factorial Experimental Design for the Optimization of Catalytic Degradation of Malachite Green Dye in Aqueous Solution by Fenton Process. Water Resour. Ind. 2016, 15, 41; https://doi.org/10.1016/j.wri.2016.07.002.Search in Google Scholar

18. Brasil, J. L.; Martins, L. C.; Ev, R. R.; Dupont, J.; Dias, S. L. P.; Sales, J. A. A.; Airoldi, C.; Lima, É. C. Factorial Design for Optimization of Flow-Injection Preconcentration Procedure for Copper (II) Determination in Natural Waters, Using 2-aminomethylpyridine Grafted Silica Gel as Adsorbent and Spectrophotometric Detection. Int. J. Environ. Anal. Chem. 2005, 85, 475; https://doi.org/10.1080/03067310500117350.Search in Google Scholar

19. Gürkan, E. H.; Tibet, Y.; Çoruh, S. Application of Full Factorial Design Method for Optimization of Heavy Metal Release from Lead Smelting Slag. Sustainability 2021, 13, 4890; https://doi.org/10.3390/su13094890.Search in Google Scholar

20. Garg, U. K.; Kaur, M. P.; Garg, V. K. Sud D. Removal of Nickel (II) from Aqueous Solution by Adsorption on Agricultural Waste Biomass Using a Response Surface Methodological Approach. Bioresour. Technol. 2008, 99, 1325; https://doi.org/10.1016/j.biortech.2007.02.011.Search in Google Scholar PubMed

21. Strachowski, T.; Woluntarski, M.; Djas, M.; Kowiorsk, K.; Wiliński, Z.; Baran, M.; Jagiełło, J.; Winkowska, M.; Lipińsk, L. The Influence of Reducing Agents on the Reduced Graphene Oxide Specific Surface Area Determined on the Basis of Nitrogen Adsorption Isotherm. Electron. Mater. 2017, 45, 2–4.Search in Google Scholar

22. Li, M. K.; Gao, C. X.; Zhang, X.; Zheng, W. T.; Zhao, Z. D.; Meng, F. L. Electrical Conductivity of Calcined Graphene Oxide/Diatomite Composites with a Segregated Structure. Mater. Lett. 2015, 141, 125–127; https://doi.org/10.1016/j.matlet.2014.11.036.Search in Google Scholar

23. Hidayah, N. M. S.; Liu, W.-W.; Lai, C.-W.; Noriman, N. Z.; Khe, C.-S.; Hashim, U.; Lee, H. C. Comparison on Graphite, Graphene Oxide and Reduced Graphene Oxide: Synthesis and Characterization. AIP Conf. Proc. 2017, 1892, 150002.10.1063/1.5005764Search in Google Scholar

24. Zhao, D. L.; Feng, S. J.; Chen, C. L.; Chen, S. H.; Xu, D.; Wang, X. K. Adsorption of Thorium (IV) on MX-80 Bentonite: Effect of pH, Ionic Strength and Temperature. Appl. Clay Sci. 2008, 41, 17–23; https://doi.org/10.1016/j.clay.2007.09.012.Search in Google Scholar

25. Yusan, S.; Gok, C.; Erenturk, S.; Aytas, S. Adsorptive Removal of Thorium (IV) Using Calcined and Flux Calcined Diatomite from Turkey: Evaluation of Equilibrium, Kinetic and Thermodynamic Data. Appl. Clay Sci. 2012, 67–68, 106–116; https://doi.org/10.1016/j.clay.2012.05.012.Search in Google Scholar

26. Smith, A. T.; La Chance, A. M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, Properties, and Applications of Graphene Oxide/Reduced Graphene Oxide and Their Nanocomposites. Nano Mater. Sci. 2019, 1, 31–47; https://doi.org/10.1016/j.nanoms.2019.02.004.Search in Google Scholar

27. Can, M. Y.; Yıldız, E. Phosphate Removal from Water by Fly Ash: Factorial Experimental Design. J. Hazard. Mater. 2006, B135, 165–170; https://doi.org/10.1016/j.jhazmat.2005.11.036.Search in Google Scholar PubMed

28. El Kaim, B. R.; El Bachraoui, F.; El, I. B.; Oualid, H. A.; Kassab, Z.; Giácoman-Vallejos, G.; Sillanpää, M.; Agunaou, M.; Soufiane, A.; Abdellaoui, Y. Mechanistic Understanding of Nickel(II) Adsorption onto Fluorapatite-Based Natural Phosphate via Rietveld Refinement Combined with Monte Carlo Simulations. J. Solid State Chem. 2022, 310, 123023; https://doi.org/10.1016/j.jssc.2022.123023.Search in Google Scholar

29. Li, Z.; Chen, F.; Yuan, L.; Liu, Y.; Zhao, Y.; Chai, Z.; Shi, W. Uranium(VI) Adsorption on Graphene Oxide Nanosheets from Aqueous Solutions. Chem. Eng. J. 2012, 210, 539–546; https://doi.org/10.1016/j.cej.2012.09.030.Search in Google Scholar

30. Zhao, G.; Wen, T.; Yang, X.; Yang, S.; Liao, J.; Hu, J.; Shao, D.; Wang, X. Preconcentration of U(VI) Ions on Few-Layered Graphene Oxide Nanosheets from Aqueous Solutions. Dalt. Trans. 2012, 41, 6182–6188; https://doi.org/10.1039/c2dt00054g.Search in Google Scholar PubMed

31. Tan, L.; Wang, J.; Liu, Q.; Sun, Y.; Jing, X.; Liu, L.; Liu, J.; Song, D. The Synthesis of a Manganese Dioxide–Iron Oxide–Graphene Magnetic Nanocomposite for Enhanced Uranium (VI) Removal. New J. Chem. 2015, 39, 868–876; https://doi.org/10.1039/c4nj01256a.Search in Google Scholar

32. Zhang, Q.; Zhao, D.; Ding, Y.; Chen, Y.; Li, F.; Alsaedi, A.; Hayat, T.; Chen, C. Synthesis of Fe–Ni/graphene Oxide Composite and its Highly Efcient Removal of Uranium (VI) from Aqueous Solution. J. Clean Prod. 2019, 230, 1305–1315; https://doi.org/10.1016/j.jclepro.2019.05.193.Search in Google Scholar

33. Chen, S.; Hong, J.; Yang, H.; Yang, J. Adsorption of Uranium (VI) from Aqueous Solution Using a Novel Graphene Oxide-Activated Carbon Felt Composite. J. Environ. Radioact. 2013, 126, 253–258; https://doi.org/10.1016/j.jenvrad.2013.09.002.Search in Google Scholar PubMed

34. Zong, P.; Wang, S.; Zhao, Y.; Wang, H.; Pan, H.; He, C. Synthesis and Application of Magnetic Graphene/Iron Oxides Composite for the Removal of U(VI) from Aqueous Solutions. Chem. Eng. J. 2013, 220, 45–52; https://doi.org/10.1016/j.cej.2013.01.038.Search in Google Scholar

35. Tan, L.; Liu, Q.; Jing, X.; Liu, J.; Song, D.; Hu, S.; Liu, L.; Wang, J. Removal of Uranium (VI) Ions from Aqueous Solution by Magnetic Cobalt Ferrite/Multiwalled Carbon Nanotubes Composites. Chem. Eng. J. 2015, 273, 307–315; https://doi.org/10.1016/j.cej.2015.01.110.Search in Google Scholar

36. Hu, X.; Wang, Y.; Yang, J. O.; Li, Y.; Wu, P.; Zhang, H.; Yuan, D.; Liu, Y.; Wu, Z.; Liu, Z. Synthesis of Graphene Oxide Nanoribbons/chitosan Composite Membranes for the Removal of Uranium from Aqueous Solutions. Front. Chem. Sci. Eng. 2020, 14, 1029–1038; https://doi.org/10.1007/s11705-019-1898-9.Search in Google Scholar

37. Xia, H.; Ren, Q.; Lv, J.; Wang, Y.; Feng, Z.; Li, Y.; Wang, C.; Liu, Y.; Wang, Y. Hydrothermal Fabrication of Phytic Acid Decorated Chitosan-Graphene Oxide Composites for Efficient and Selective Adsorption of Uranium (VI). J. Environ. Chem. Eng. 2023, 11 (5), 110760; https://doi.org/10.1016/j.jece.2023.110760.Search in Google Scholar

38. You, Z.; Zhang, N.; Guan, Q.; Xing, Y.; Bai, F.; Sun, L. High Sorption Capacity of U(VI) by COF-Based Material Doping Hydroxyapatite Microspheres: Kinetic, Equilibrium and Mechanism Investigation. J. Inorg. Organomet. Polym. Mater. 2020, 30, 1966–1979; https://doi.org/10.1007/s10904-019-01420-9.Search in Google Scholar

39. Rashidashmagh, F.; Doekhi-Bennani, Y.; Tizghadam-Ghazani, M.; Hoek, J. P. V. D.; Mashayekh-Salehi, A.; Heijman, B. S. G. J.; Yaghmaeian, K. Synthesis and Characterization of SnO2 Crystalline Nanoparticles: A New Approach for Enhancing the Catalytic Ozonation of Acetaminophen. J. Hazard. Mater. 2021, 404, 124154; https://doi.org/10.1016/j.jhazmat.2020.124154.Search in Google Scholar PubMed

40. Ai, Y.; Liu, Y.; Lan, W.; Jin, J.; Xing, J.; Zou, Y.; Zhao, C.; Wang, X. The Effect of pH on the U(VI) Sorption on Graphene Oxide (GO): A Theoretical Study. Chem. Eng. J. 2018, 343, 460–466; https://doi.org/10.1016/j.cej.2018.03.027.Search in Google Scholar

41. Materials Studio, Accelrys Software Inc., San Diego, 2016.Search in Google Scholar

42. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar

43. Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592; https://doi.org/10.1002/jcc.22885.Search in Google Scholar PubMed

44. Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506; https://doi.org/10.1021/ja100936w.Search in Google Scholar PubMed PubMed Central

45. Humphrey, W.; Dalke, A.; Schulten, K. MD: Visual Molecular Dynamics. J. Mol. Grap. 1996, 14, 33–38; https://doi.org/10.1016/0263-7855(96)00018-5.Search in Google Scholar PubMed

Received: 2024-03-18
Accepted: 2024-04-30
Published Online: 2024-07-08
Published in Print: 2024-09-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0292/html
Scroll to top button