Fabrication and characterization of graphene oxide and reduced graphene oxide decorated diatomite composite materials and their adsorption performance for uranium ions
-
Sabriye Yusan
, Burak Mumcu
, Rachid EL Kaim Billah
Abstract
In this study, the composite materials based on the incorporation of diatomite of graphene oxide (GO)/reduced graphene oxide (rGO/diatomite) were developed and characterized by different techniques (SEM, XRD, FTIR and BET). Developed composites were used for the first time in the removal of uranium ions from aqueous solutions. In adsorption studies, parameters affecting the adsorption efficiency such as solution pH, temperature, contact time and initial U(VI) concentration were investigated using full factorial experimental design (FFED). ANOVA (analysis of variance) analysis within the 95 % confidence interval of the model applied to control the compatibility of the model and the experimental findings was examined. Langmuir, Freundlich and Temkin isotherms were used to determine the adsorption model and related parameters were calculated. In addition, adsorption thermodynamic parameters such as enthalpy, Gibbs free energy change and entropy were calculated. The uranium removal behaviour on GO/diatomite and rGO/diatomite was better characterized by the pseudo-second order and Langmuir models, indicating that uranium ions were chemically adsorbed onto composite materials. Additionally, it was observed that higher temperatures promoted the uranium removal on GO/diatomite and rGO/diatomite, suggesting that the removal process was a spontaneous endothermic and exothermic reaction, respectively. In addition, the adsorption of U(VI) with GO/diatomite and rGO/diatomite was investigated using density functional theory (DFT) study. Configuration and adsorption energy were determined. The GO/diatomite composite materials can be a promising candidate as an adsorbent for the removal of uranium from aqueous solutions.
-
Research ethics: Not applicable.
-
Author contributions: Sabriye Yusan: conceptualization, supervision, methodology and writing – review & editing. Burak Mumcu: investigation, data curation, validation. Eduardo A. López-Maldonado: calculation, data acquisition, writing – review & editing. Rachid EL Kaim Billah: calculation, data acquisition. Lahoucine Bahsis: calculation: data acquisition.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Bilal, M.; Ihsanullah, I.; Younas, M.; Ul Hassan Shah, M. Recent Advances in Applications of Low-Cost Adsorbents for the Removal of Heavy Metals from Water: A Critical Review. Sep. Purif. Technol. 2022, 278, 119510; https://doi.org/10.1016/j.seppur.2021.119510.Search in Google Scholar
2. Xiong, T.; Jia, L.; Li, Q.; Zhang, Y.; Zhu, W. Efficient Removal of Uranium by Hydroxyapatite Modified Kaolin Aerogel. Sep. Purif. Technol. 2022, 299 (1–12), 121776; https://doi.org/10.1016/j.seppur.2022.121776.Search in Google Scholar
3. Chen, T.; Li, M.; Zhou, L.; Feng, X.; Lin, D.; Ding, X.; Li, C.; Yan, R.; Duan, T.; He, R.; Zhu, W. Harmonizing the Energy Band between Adsorbent and Semiconductor Enables Efficient Uranium Extraction. Chem. Eng. J. 2021, 420, 127645; https://doi.org/10.1016/j.cej.2020.127645.Search in Google Scholar
4. Saleh, T. A.; Naeemullah, T. M.; Sarı, A.; Sarı, A. Polyethylenimine Modified Activated Carbon as Novel Magnetic Adsorbent for the Removal of Uranium from Aqueous Solution. Chem. Eng. Res. Des. 2017, 117, 218–227; https://doi.org/10.1016/j.cherd.2016.10.030.Search in Google Scholar
5. Yin, W.; Liu, M.; Chen, Y.-Y.; Yao, Q.-Z.; Fu, S.-Q.; Zhou, G.-T. Microwave-Assisted Preparation of Mn3O4@sepiolite Nanocomposite for Highly Efficient Removal of Uranium. Appl. Clay Sci. 2022, 228, 1–9; https://doi.org/10.1016/j.clay.2022.106597.Search in Google Scholar
6. Jian, Y.; Ma, Y.; Cao, M.; Zhao, S.; Peng, Q.; Wang, H.; Liu, T.; Yuan, Y.; Wang, N. Phosphate Functionalized Silicide for Efficient Removal of Uranium Contamination from Hypersaline Effluents at Ultralow Dosage. Chem. Eng. J. 2023, 474, 1–9; https://doi.org/10.1016/j.cej.2023.145775.Search in Google Scholar
7. Kaptanoglu, I. G.; Yusan, S. Adsorption of Uranium Ions from Aqueous Solutions by Graphene-Based Zinc Oxide Nanocomposites. J. Radioanal. Nucl. Chem. 2023, 332, 4705–4719; https://doi.org/10.1007/s10967-023-08876-7.Search in Google Scholar
8. Pang, H.; Huang, S.; Wu, Y.; Yang, D.; Wang, X.; Yu, S.; Chen, Z.; Alsaedi, A.; Hayat, T.; Wang, X. Efficient Elimination of U(VI) by Polyethyleneimine-Decorated Fly Ash. Inorg. Chem. Front. 2018, 5, 2399–2407; https://doi.org/10.1039/c8qi00253c.Search in Google Scholar
9. Sheng, L.; Ding, D.; Zhang, H. Efficient Removal of Uranium from Acidic Mining Wastewater Using Magnetic Phosphate Composites. Sep. Purif. Technol. 2024, 337, 126397; https://doi.org/10.1016/j.seppur.2024.126397.Search in Google Scholar
10. Ma, F.; Nian, J.; Bi, C.; Yang, M.; Zhang, C.; Liu, L.; Dong, H.; Zhu, M.; Dong, B. Preparation of Carboxylated Graphene Oxide for Enhanced Adsorption of U(VI). J. Solid State Chem. 2019, 277, 9–16; https://doi.org/10.1016/j.jssc.2019.05.042.Search in Google Scholar
11. Cheng, Z.; Liao, J.; He, B.; Zhang, F.; Zhang, F.; Huang, X.; Zhou, L. One-Step Fabrication of Graphene Oxide Enhanced Magnetic Composite Gel for Highly Efficient Dye Adsorption and Catalysis. ACS Sustain. Chem. Eng. 2015, 3, 1677–1685; https://doi.org/10.1021/acssuschemeng.5b00383.Search in Google Scholar
12. Ramesha, G. K.; Kumara, A. V.; Muralidhara, H. B.; Sampath, S. Graphene and Graphene Oxide as Effective Adsorbents Toward Anionic and Cationic Dyes. J. Colloid Interface Sci. 2011, 361 (1), 270–277; https://doi.org/10.1016/j.jcis.2011.05.050.Search in Google Scholar PubMed
13. Song, X.; Zhou, J.; Fan, J.; Zhang, Q.; Wang, S. Preparation and Adsorption Properties of Magnetic Graphene Oxide Composites for the Removal of Methylene Blue from Water. Mater. Res. Express 2022, 9, 020002; https://doi.org/10.1088/2053-1591/ac52c6.Search in Google Scholar
14. Fang, J.; Liu, Q.; Zhang, W.; Gu, J.; Su, Y.; Su, H.; Guo, C.; Zhang, D. Ag/diatomite for Highly Efficient Solar Vapor Generation under One-Sun Irradiation. J. Mater. Chem. A 2017, 5, 17817–17821; https://doi.org/10.1039/c7ta05976k.Search in Google Scholar
15. Gao, L.; Wang, L.; Yang, L.; Zhao, Y.; Shi, N.; An, C.; Sun, Y.; Xie, J.; Wang, H.; Song, Y.; Ren, Y. Preparation, Characterization and Antibacterial Activity of Silver Nanoparticle/Graphene Oxide/Diatomite Composite. Appl. Surf. Sci. 2019, 484, 628–636; https://doi.org/10.1016/j.apsusc.2019.04.153.Search in Google Scholar
16. Paudyal, H.; Pangeni, B.; Inoue, K.; Ohto, K.; Kawakita, H.; Kn, G.; Harada, H.; Alam, S. Adsorptive Removal of Strontium from Water by Using Chemically Modifed Orange Juice Residue. Sep. Sci. Technol. 2014, 49, 1244–1250; https://doi.org/10.1080/01496395.2013.877032.Search in Google Scholar
17. Elhalil, A.; Tounsadi, H.; Elmoubarki, R.; Mahjoubi, F. Z.; Farnane, M.; Sadiq, M.; Abdennouri, M.; Qourzal, S.; Barka, N. Factorial Experimental Design for the Optimization of Catalytic Degradation of Malachite Green Dye in Aqueous Solution by Fenton Process. Water Resour. Ind. 2016, 15, 41; https://doi.org/10.1016/j.wri.2016.07.002.Search in Google Scholar
18. Brasil, J. L.; Martins, L. C.; Ev, R. R.; Dupont, J.; Dias, S. L. P.; Sales, J. A. A.; Airoldi, C.; Lima, É. C. Factorial Design for Optimization of Flow-Injection Preconcentration Procedure for Copper (II) Determination in Natural Waters, Using 2-aminomethylpyridine Grafted Silica Gel as Adsorbent and Spectrophotometric Detection. Int. J. Environ. Anal. Chem. 2005, 85, 475; https://doi.org/10.1080/03067310500117350.Search in Google Scholar
19. Gürkan, E. H.; Tibet, Y.; Çoruh, S. Application of Full Factorial Design Method for Optimization of Heavy Metal Release from Lead Smelting Slag. Sustainability 2021, 13, 4890; https://doi.org/10.3390/su13094890.Search in Google Scholar
20. Garg, U. K.; Kaur, M. P.; Garg, V. K. Sud D. Removal of Nickel (II) from Aqueous Solution by Adsorption on Agricultural Waste Biomass Using a Response Surface Methodological Approach. Bioresour. Technol. 2008, 99, 1325; https://doi.org/10.1016/j.biortech.2007.02.011.Search in Google Scholar PubMed
21. Strachowski, T.; Woluntarski, M.; Djas, M.; Kowiorsk, K.; Wiliński, Z.; Baran, M.; Jagiełło, J.; Winkowska, M.; Lipińsk, L. The Influence of Reducing Agents on the Reduced Graphene Oxide Specific Surface Area Determined on the Basis of Nitrogen Adsorption Isotherm. Electron. Mater. 2017, 45, 2–4.Search in Google Scholar
22. Li, M. K.; Gao, C. X.; Zhang, X.; Zheng, W. T.; Zhao, Z. D.; Meng, F. L. Electrical Conductivity of Calcined Graphene Oxide/Diatomite Composites with a Segregated Structure. Mater. Lett. 2015, 141, 125–127; https://doi.org/10.1016/j.matlet.2014.11.036.Search in Google Scholar
23. Hidayah, N. M. S.; Liu, W.-W.; Lai, C.-W.; Noriman, N. Z.; Khe, C.-S.; Hashim, U.; Lee, H. C. Comparison on Graphite, Graphene Oxide and Reduced Graphene Oxide: Synthesis and Characterization. AIP Conf. Proc. 2017, 1892, 150002.10.1063/1.5005764Search in Google Scholar
24. Zhao, D. L.; Feng, S. J.; Chen, C. L.; Chen, S. H.; Xu, D.; Wang, X. K. Adsorption of Thorium (IV) on MX-80 Bentonite: Effect of pH, Ionic Strength and Temperature. Appl. Clay Sci. 2008, 41, 17–23; https://doi.org/10.1016/j.clay.2007.09.012.Search in Google Scholar
25. Yusan, S.; Gok, C.; Erenturk, S.; Aytas, S. Adsorptive Removal of Thorium (IV) Using Calcined and Flux Calcined Diatomite from Turkey: Evaluation of Equilibrium, Kinetic and Thermodynamic Data. Appl. Clay Sci. 2012, 67–68, 106–116; https://doi.org/10.1016/j.clay.2012.05.012.Search in Google Scholar
26. Smith, A. T.; La Chance, A. M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, Properties, and Applications of Graphene Oxide/Reduced Graphene Oxide and Their Nanocomposites. Nano Mater. Sci. 2019, 1, 31–47; https://doi.org/10.1016/j.nanoms.2019.02.004.Search in Google Scholar
27. Can, M. Y.; Yıldız, E. Phosphate Removal from Water by Fly Ash: Factorial Experimental Design. J. Hazard. Mater. 2006, B135, 165–170; https://doi.org/10.1016/j.jhazmat.2005.11.036.Search in Google Scholar PubMed
28. El Kaim, B. R.; El Bachraoui, F.; El, I. B.; Oualid, H. A.; Kassab, Z.; Giácoman-Vallejos, G.; Sillanpää, M.; Agunaou, M.; Soufiane, A.; Abdellaoui, Y. Mechanistic Understanding of Nickel(II) Adsorption onto Fluorapatite-Based Natural Phosphate via Rietveld Refinement Combined with Monte Carlo Simulations. J. Solid State Chem. 2022, 310, 123023; https://doi.org/10.1016/j.jssc.2022.123023.Search in Google Scholar
29. Li, Z.; Chen, F.; Yuan, L.; Liu, Y.; Zhao, Y.; Chai, Z.; Shi, W. Uranium(VI) Adsorption on Graphene Oxide Nanosheets from Aqueous Solutions. Chem. Eng. J. 2012, 210, 539–546; https://doi.org/10.1016/j.cej.2012.09.030.Search in Google Scholar
30. Zhao, G.; Wen, T.; Yang, X.; Yang, S.; Liao, J.; Hu, J.; Shao, D.; Wang, X. Preconcentration of U(VI) Ions on Few-Layered Graphene Oxide Nanosheets from Aqueous Solutions. Dalt. Trans. 2012, 41, 6182–6188; https://doi.org/10.1039/c2dt00054g.Search in Google Scholar PubMed
31. Tan, L.; Wang, J.; Liu, Q.; Sun, Y.; Jing, X.; Liu, L.; Liu, J.; Song, D. The Synthesis of a Manganese Dioxide–Iron Oxide–Graphene Magnetic Nanocomposite for Enhanced Uranium (VI) Removal. New J. Chem. 2015, 39, 868–876; https://doi.org/10.1039/c4nj01256a.Search in Google Scholar
32. Zhang, Q.; Zhao, D.; Ding, Y.; Chen, Y.; Li, F.; Alsaedi, A.; Hayat, T.; Chen, C. Synthesis of Fe–Ni/graphene Oxide Composite and its Highly Efcient Removal of Uranium (VI) from Aqueous Solution. J. Clean Prod. 2019, 230, 1305–1315; https://doi.org/10.1016/j.jclepro.2019.05.193.Search in Google Scholar
33. Chen, S.; Hong, J.; Yang, H.; Yang, J. Adsorption of Uranium (VI) from Aqueous Solution Using a Novel Graphene Oxide-Activated Carbon Felt Composite. J. Environ. Radioact. 2013, 126, 253–258; https://doi.org/10.1016/j.jenvrad.2013.09.002.Search in Google Scholar PubMed
34. Zong, P.; Wang, S.; Zhao, Y.; Wang, H.; Pan, H.; He, C. Synthesis and Application of Magnetic Graphene/Iron Oxides Composite for the Removal of U(VI) from Aqueous Solutions. Chem. Eng. J. 2013, 220, 45–52; https://doi.org/10.1016/j.cej.2013.01.038.Search in Google Scholar
35. Tan, L.; Liu, Q.; Jing, X.; Liu, J.; Song, D.; Hu, S.; Liu, L.; Wang, J. Removal of Uranium (VI) Ions from Aqueous Solution by Magnetic Cobalt Ferrite/Multiwalled Carbon Nanotubes Composites. Chem. Eng. J. 2015, 273, 307–315; https://doi.org/10.1016/j.cej.2015.01.110.Search in Google Scholar
36. Hu, X.; Wang, Y.; Yang, J. O.; Li, Y.; Wu, P.; Zhang, H.; Yuan, D.; Liu, Y.; Wu, Z.; Liu, Z. Synthesis of Graphene Oxide Nanoribbons/chitosan Composite Membranes for the Removal of Uranium from Aqueous Solutions. Front. Chem. Sci. Eng. 2020, 14, 1029–1038; https://doi.org/10.1007/s11705-019-1898-9.Search in Google Scholar
37. Xia, H.; Ren, Q.; Lv, J.; Wang, Y.; Feng, Z.; Li, Y.; Wang, C.; Liu, Y.; Wang, Y. Hydrothermal Fabrication of Phytic Acid Decorated Chitosan-Graphene Oxide Composites for Efficient and Selective Adsorption of Uranium (VI). J. Environ. Chem. Eng. 2023, 11 (5), 110760; https://doi.org/10.1016/j.jece.2023.110760.Search in Google Scholar
38. You, Z.; Zhang, N.; Guan, Q.; Xing, Y.; Bai, F.; Sun, L. High Sorption Capacity of U(VI) by COF-Based Material Doping Hydroxyapatite Microspheres: Kinetic, Equilibrium and Mechanism Investigation. J. Inorg. Organomet. Polym. Mater. 2020, 30, 1966–1979; https://doi.org/10.1007/s10904-019-01420-9.Search in Google Scholar
39. Rashidashmagh, F.; Doekhi-Bennani, Y.; Tizghadam-Ghazani, M.; Hoek, J. P. V. D.; Mashayekh-Salehi, A.; Heijman, B. S. G. J.; Yaghmaeian, K. Synthesis and Characterization of SnO2 Crystalline Nanoparticles: A New Approach for Enhancing the Catalytic Ozonation of Acetaminophen. J. Hazard. Mater. 2021, 404, 124154; https://doi.org/10.1016/j.jhazmat.2020.124154.Search in Google Scholar PubMed
40. Ai, Y.; Liu, Y.; Lan, W.; Jin, J.; Xing, J.; Zou, Y.; Zhao, C.; Wang, X. The Effect of pH on the U(VI) Sorption on Graphene Oxide (GO): A Theoretical Study. Chem. Eng. J. 2018, 343, 460–466; https://doi.org/10.1016/j.cej.2018.03.027.Search in Google Scholar
41. Materials Studio, Accelrys Software Inc., San Diego, 2016.Search in Google Scholar
42. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar
43. Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592; https://doi.org/10.1002/jcc.22885.Search in Google Scholar PubMed
44. Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506; https://doi.org/10.1021/ja100936w.Search in Google Scholar PubMed PubMed Central
45. Humphrey, W.; Dalke, A.; Schulten, K. MD: Visual Molecular Dynamics. J. Mol. Grap. 1996, 14, 33–38; https://doi.org/10.1016/0263-7855(96)00018-5.Search in Google Scholar PubMed
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Phytoremediation of radium contaminated soils: recent advances and prospects
- Original Papers
- Kinetic evaluation of the uranyl peroxide synthetic route on morphology
- Fabrication and characterization of graphene oxide and reduced graphene oxide decorated diatomite composite materials and their adsorption performance for uranium ions
- The performance of iron-silicate-based biochar as a sorbent material towards 133Ba retention from radioactive liquid waste
- Challenges in the solution phase synthesis of PSMA-11 and PSMA-617: organic ligands for radiopharmaceutical preparations in prostate cancer medication
- Synthesis, MTT assay, 99m-Technetium radiolabeling, biodistribution evaluation of radiotracer and in vitro magnetic resonance imaging study of P,N-doped graphene quantum dots as a new multipurpose imaging nano-agent
- Assessment of radioactivity and radiological risk indices in the sediments of the Tam Giang-Cau Hai, Thi Nai, and Nai lagoons in the Center of Vietnam
- Study of gamma, neutron, and proton interaction parameters of some immunotherapy drugs using EpiXs, NGCal, and PSTAR software
- Gamma and neutron attenuation of SiO2–B2O3–BaO–Li2O glasses doped with CeO2
Articles in the same Issue
- Frontmatter
- Review
- Phytoremediation of radium contaminated soils: recent advances and prospects
- Original Papers
- Kinetic evaluation of the uranyl peroxide synthetic route on morphology
- Fabrication and characterization of graphene oxide and reduced graphene oxide decorated diatomite composite materials and their adsorption performance for uranium ions
- The performance of iron-silicate-based biochar as a sorbent material towards 133Ba retention from radioactive liquid waste
- Challenges in the solution phase synthesis of PSMA-11 and PSMA-617: organic ligands for radiopharmaceutical preparations in prostate cancer medication
- Synthesis, MTT assay, 99m-Technetium radiolabeling, biodistribution evaluation of radiotracer and in vitro magnetic resonance imaging study of P,N-doped graphene quantum dots as a new multipurpose imaging nano-agent
- Assessment of radioactivity and radiological risk indices in the sediments of the Tam Giang-Cau Hai, Thi Nai, and Nai lagoons in the Center of Vietnam
- Study of gamma, neutron, and proton interaction parameters of some immunotherapy drugs using EpiXs, NGCal, and PSTAR software
- Gamma and neutron attenuation of SiO2–B2O3–BaO–Li2O glasses doped with CeO2