Assessment of radioactivity and radiological risk indices in the sediments of the Tam Giang-Cau Hai, Thi Nai, and Nai lagoons in the Center of Vietnam
-
Dang Hoai Nhon
, Nguyen Van Quan
Abstract
Using gamma and alpha spectrometers, the radioactive isotopes 226Ra, 210Pb, 232Th, and 40K were determined in three sediment cores from the Tam Giang-Cau Hai (TG), Thi Nai (TN), and Nai (DN) lagoons, and radiation risk indices were computed. The radioactivity concentrations of 210Pb, 40K, 232Th, and 226Ra were 55.46 Bq/kg, 675.78 Bq/kg, 67.22 Bq/kg, and 34.15 Bq/kg, respectively. The Raeq, ADR, AEDE, Iγr, AUI, Hex, and AGDE indices were 182.31 Bq/kg, 84.46 nGy/h, 0.10 mSV/y, 1.35, 1, 18, 0.49, and 598.71 µSV/y, respectively; the values of 40K, 232Th, AEDE, ADR, Iγr, and AGDE were greater than the global average and UNSCEAR values. The radioactivity and radiation risk indices decreased in the order DN > TN > TG.
Acknowledgment
The authors would like to sincerely thank the Ministry of Science and Technology and the Vietnam Academy of Science and Technology for supporting the project completed this project.
-
Research ethics: Not applicable.
-
Informed consent: Informed consent was obtained from all individuals included in this study, or their legal guardians or wards.
-
Author contributions: The author(s) have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors states no conflict of interest.
-
Research funding: This work was supported by Ministry of Science and Technology (KC.08.25.11/15) and the Vietnam Academy of Science and Technology (VAST05.03/24-25).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Garcés-Ordóñez, O.; Saldarriaga-Vélez, J. F.; Espinosa-Díaz, L. F.; Canals, M.; Sánchez-Vidal, A.; Thiel, M. A Systematic Review on Microplastic Pollution in Water, Sediments, and Organisms from 50 Coastal Lagoons across the Globe. Environ. Pollut. 2022, 315, 120366; https://doi.org/10.1016/j.envpol.2022.120366.Search in Google Scholar PubMed
2. Shetaia, S. A.; Abu Khatita, A. M.; Abdelhafez, N. A.; Shaker, I. M.; El Kafrawy, S. B. Human-induced Sediment Degradation of Burullus Lagoon, Nile Delta, Egypt: Heavy Metals Pollution Status and Potential Ecological Risk. Mar. Pollut. Bull. 2022, 178, 113566; https://doi.org/10.1016/j.marpolbul.2022.113566.Search in Google Scholar PubMed
3. Hartwell, S. I.; Lomax, T.; Dasher, D. Characterization of Sediment Contaminants in Arctic Lagoons and Estuaries. Mar. Pollut. Bull. 2020, 152, 110873; https://doi.org/10.1016/j.marpolbul.2019.110873.Search in Google Scholar PubMed
4. Lujanienė, G.; Šilobritienė, B.; Tracevičienė, D.; Šemčuk, S.; Romanenko, V.; Garnaga-Budrė, G.; Kaizer, J.; Povinec, P. P. Distribution of 241Am and Pu Isotopes in the Curonian Lagoon and the South-Eastern Baltic Sea Seawater, Suspended Particles, Sediments and Biota. J. Environ. Radioact. 2022, 249, 106892; https://doi.org/10.1016/j.jenvrad.2022.106892.Search in Google Scholar PubMed
5. Giuliani, S.; Sprovieri, M.; Frignani, M.; Cu, N. H.; Mugnai, C.; Bellucci, L. G.; Albertazzi, S.; Romano, S.; Feo, M. L.; Marsella, E.; Nhon, D. H. Presence and Origin of Polycyclic Aromatic Hydrocarbon in Sediments of Nine Coastal Lagoons in Central Vietnam. Mar. Pollut. Bull. 2008, 56, 1504–1512; https://doi.org/10.1016/j.marpolbul.2008.04.013.Search in Google Scholar PubMed
6. Nhon, D. H.; Anh, N. N.; Khang, N. D.; Vuong, B. V.; Quan, N. V.; Hai, P. S. Sedimentation in Coastal Lagoons: Tam Giang-Cau Hai, Thi Nai and Nai in the Centre of Viet Nam. VNU J. Sci. Earth Environ. 2015, 31, 15–25. (Vietnamese language with English abstract).Search in Google Scholar
7. Tran, T. A. M.; Leermakers, M.; Hoang, T. L.; Nguyen, V. H.; Elskens, M. Metals and Arsenic in Sediment and Fish from Cau Hai Lagoon in Vietnam: Ecological and Human Health Risks. Chemosphere 2018, 210, 175–182; https://doi.org/10.1016/j.chemosphere.2018.07.002.Search in Google Scholar PubMed
8. Tran, T. A. M.; Malarvannan, G.; Hoang, T. L.; Nguyen, V. H.; Covaci, A.; Elskens, M. Occurrence of Organochlorine Pesticides and Polychlorinated Biphenyls in Sediment and Fish in Cau Hai Lagoon of Central Vietnam: Human Health Risk Assessment. Mar. Pollut. Bull. 2019, 141, 521–528; https://doi.org/10.1016/j.marpolbul.2019.03.006.Search in Google Scholar PubMed
9. Trang, C. T. T.; Thanh, T.; Thanh, T. D.; Vinh, V. D.; Tu, T. A. Assessment of the Environmental Carrying Capacity of Pollutants in Tam Giang-Cau Hai Lagoon (Viet Nam) and Solutions for the Environment Protection of the Lagoon. Sci. Total Environ. 2021, 762, 143130; https://doi.org/10.1016/j.scitotenv.2020.143130.Search in Google Scholar PubMed
10. Romano, S.; Piazza, R.; Mugnai, C.; Giuliani, S.; Bellucci, L. G.; Nguyen, H. C.; Vecchiato, M.; Zambon, S.; Dang, H. N.; Frignani, M. PBDEs and PCBs in Sediments of the Thi Nai Lagoon (Central Vietnam) and Soils from its Mainland. Chemosphere 2013, 90, 2396–2402; https://doi.org/10.1016/j.chemosphere.2012.10.067.Search in Google Scholar PubMed
11. Martin, P.; Hancock, G.; Dozier, C.; Quatannens, B.; Mirabel, M. A.; Vandenbunder, B.; Stehelin, D.; Saule, S. Routine Analysis of Naturally Occurring Radionuclides in Environmental Samples by Alpha-Particle spectrometry. Research Report, Vol. 7; Supervising Scientist for the Alligator Rivers Region, Canberra, 1992.Search in Google Scholar
12. Murray, A. S.; Marten, R.; Johnston, A.; Martin, P. Analysis for Naturally Occurring Radionuclides at Environmental Concentrations by Gamma Spectrometry. J. Radioanal. Nucl. Chem. 1987, 115, 263–288; https://doi.org/10.1007/bf02037443.Search in Google Scholar
13. Chanton, J. P.; Martens, C. S.; Kipphut, G. W. Lead-210 Sediment Geochronology in a Changing Coastal Environment. Geochim. Cosmochim. Acta 1983, 47, 1791–1804; https://doi.org/10.1016/0016-7037(83)90027-3.Search in Google Scholar
14. Appleby, P. G.; Oldfield, F. The Caculation of 210Pb Dates Assuming a Constant Rate of Supply of Unsupported 210Pb to Sediment. Catena 1978, 5, 1–8; https://doi.org/10.1016/s0341-8162(78)80002-2.Search in Google Scholar
15. NEA-OECD. Exposure to Radiation from Natural Radioactivity in Building Materials; NEA Group of Experts OECD, 1979.Search in Google Scholar
16. UNSCEAR. United Nations Scientific Committee on the Effects of Atomic Radiation Report of UNSCEAR to the General Assembly; United Nations: New York, USA, 2000.Search in Google Scholar
17. Beretka, J.; Mathew, P. J. Natural Radioactivity of Australian Building Materials, Industrial Wastes and by Products. Health Phys. 1985, 48, 87–95; https://doi.org/10.1097/00004032-198501000-00007.Search in Google Scholar PubMed
18. UNSCEAR Sources, Effects and Risks of Ionizing Radiation; United Nations: New York, 1988.Search in Google Scholar
19. European Commission. Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials; Office for Official Publications of the European Communities, 1999.Search in Google Scholar
20. Alam, M. N.; Chowdhury, M. I.; Kamal, M.; Ghose, S.; Islam, M. N.; Mustafa, M. N.; Miah, M. M. H.; Ansary, M. M. The 226Ra, 232Th and 40K Activities in Beach Sand Minerals and Beach Soils of Cox’s Bazar, Bangladesh. J. Environ. Radioact. 1999, 46, 243–250; https://doi.org/10.1016/s0265-931x(98)00143-x.Search in Google Scholar
21. El-Gamal, A.; Nasr, S.; El-Taher, A. Study of the Spatial Distribution of Natural Radioactivity in the Upper Egypt Nile River Sediments. Radiat. Meas. 2007, 42, 457–465; https://doi.org/10.1016/j.radmeas.2007.02.054.Search in Google Scholar
22. Ravisankar, R.; Sivakumar, S.; Chandrasekaran, A.; Prince Prakash Jebakumar, J.; Vijayalakshmi, I.; Vijayagopal, P.; Venkatraman, B. Spatial Distribution of Gamma Radioactivity Levels and Radiological Hazard Indices in the East Coastal Sediments of Tamilnadu, India with Statistical Approach. Radiat. Phys. Chem. 2014, 103, 89–98; https://doi.org/10.1016/j.radphyschem.2014.05.037.Search in Google Scholar
23. Shams, A.; Issa, M.; Alaseri, S. M. Determination of Natural Radioactivity and Associated Radiological Risk in Building Materials Used in Tabuk Area, Saudi Arabia. Int. J. Adv. Sci. Technol. 2015, 82, 45–62; https://doi.org/10.14257/ijast.2015.82.05.Search in Google Scholar
24. ICRP 60. Recommendations of the International Commission on Radiological Protection; ICRP Publication 60, Pergamon Press Annals of the ICRP: Oxford, 1990.Search in Google Scholar
25. Mamont-Ciesla, K.; Gwiazdowski, B.; Biernacka, M.; Zak, A. Radioactivity of Building Materials in Poland; John Wiley and Sons: United States, 1982.Search in Google Scholar
26. Vuong, B. V., Hai, P. S., Thanh, T. D., Chien, N. V., Ve, N. D., Nghi, D. T., Sieu, L. N., Luu, N. T. M., Chien, H. T., Hue, N. T., Nhon, D. H. Radioactivity Concentration and Risk Indices in Intertidal Sediments of the Red River Delta, Vietnam. Environ. Earth Sci. 2024, 83, 74; https://doi.org/10.1007/s12665-023-11394-0.Search in Google Scholar
27. Duong, V. H.; Duong, D. T.; Bui, L. V.; Kim, T. T.; Bui, H. M.; Tran, T. D.; Phan, T. T.; Nguyen, T. D. Radiological Hazard Assessment of High-Level Natural Radionuclides in Surface Sediments along Red River, Vietnam. Arch. Environ. Contam. Toxicol. 2023, 85, 302–313; https://doi.org/10.1007/s00244-023-01003-3.Search in Google Scholar PubMed
28. Carvalho, F. P.; Nhan, D. D.; Oliveira, J. M.; Long, N. Q.; Thuan, D. D.; Malta, M.; Santos, M. Environmental Radioactivity in the Marine Environment of Ha Long Bay, North Vietnam, and Biomagnification of Polonium. Environ. Process. 2021, 8, 1359–1378; https://doi.org/10.1007/s40710-021-00545-9.Search in Google Scholar
29. Tsabaris, C.; Eleftheriou, G.; Kapsimalis, V.; Anagnostou, C.; Vlastou, R.; Durmishi, C.; Kedhi, M.; Kalfas, C. A. Radioactivity Levels of Recent Sediments in the Butrint Lagoon and the Adjacent Coast of Albania. Appl. Radiat. Isot. 2007, 65, 445–453; https://doi.org/10.1016/j.apradiso.2006.11.006.Search in Google Scholar PubMed
30. Mortazavi, S. S. M.; Pourimani, R. Pollution Distribution Caused by Natural and Artificial Radionuclide in Water and Sediments of the International Miankaleh Lagoon in North of Iran. Environ. Adv. 2023, 13, 100413; https://doi.org/10.1016/j.envadv.2023.100413.Search in Google Scholar
31. Bramha, S.; Sahoo, S. K.; Joel, E. S.; Venkatraman, B.; Mohanty, P. K.; Rath, P. Influence of Geochemical Properties on Natural Radionuclides in the Sediment of Asia’s Largest Brackish Water Lagoon, Chilika-East Coast of India: Evaluation through Geo-Statistical Applications. Environ. Earth Sci. 2019, 78, 652; https://doi.org/10.1007/s12665-019-8672-7.Search in Google Scholar
32. Handagiripathira, H. M. N. L. Radioactivity Assessment of Sediments in Negombo Lagoon Sri Lanka. Int. J. Environ. Ecol. Eng. 2021, 15, 151–158.Search in Google Scholar
33. Shuaibu, H. K.; Khandaker, M. U.; Alrefae, T.; Bradley, D. A. Assessment of Natural Radioactivity and Gamma-Ray Dose in Monazite Rich Black Sand Beach of Penang Island, Malaysia. Mar. Pollut. Bull. 2017, 119, 423–428; https://doi.org/10.1016/j.marpolbul.2017.03.026.Search in Google Scholar PubMed
34. Islam, A. A. M. S.; Khandaker, M. U.; Miah, M. H.; Hossain, S. Radioactivity in Coral Skeletons and Marine Sediments Collected from the St. Martin’s Island of Bangladesh. J. Radioanal. Nucl. Chem. 2019, 322, 157–163; https://doi.org/10.1007/s10967-019-06582-x.Search in Google Scholar
35. Otansev, P.; Taşkın, H.; Başsarı, A.; Varinlioğlu, A. Distribution and Environmental Impacts of Heavy Metals and Radioactivity in Sediment and Seawater Samples of the Marmara Sea. Chemosphere 2016, 154, 266–275; https://doi.org/10.1016/j.chemosphere.2016.03.122.Search in Google Scholar PubMed
36. Charkin, A. N.; Yaroshchuk, E. I.; Dudarev, O. V.; Leusov, A. E.; Goriachev, V. A.; Sobolev, I. S.; Gulenko, T. A.; Pipko, I. I.; Startsev, A. M.; Semiletov, I. P. The Influence of Sedimentation Regime on Natural Radionuclide Activity Concentration in Marine Sediments of the East Siberian Arctic Shelf. J. Environ. Radioact. 2022, 253–254, 106988; https://doi.org/10.1016/j.jenvrad.2022.106988.Search in Google Scholar PubMed
37. Botwe, B. O.; Schirone, A.; Delbono, I.; Barsanti, M.; Delfanti, R.; Kelderman, P.; Nyarko, E.; Lens, P. N. L. Radioactivity Concentrations and Their Radiological Significance in Sediments of the Tema Harbour (Greater Accra, Ghana). J. Radiat. Res. Appl. Sci. 2017, 10, 63–71; https://doi.org/10.1016/j.jrras.2016.12.002.Search in Google Scholar
38. Al-Ghamdi, H.; Al-Muqrin, A.; El-Sharkawy, A. Assessment of Natural Radioactivity and 137Cs in Some Coastal Areas of the Saudi Arabian Gulf. Mar. Pollut. Bull. 2016, 104, 29–33; https://doi.org/10.1016/j.marpolbul.2016.01.058.Search in Google Scholar PubMed
39. Wang, J.; Du, J.; Bi, Q. Natural Radioactivity Assessment of Surface Sediments in the Yangtze Estuary. Mar. Pollut. Bull. 2017, 114, 602–608; https://doi.org/10.1016/j.marpolbul.2016.09.040.Search in Google Scholar PubMed
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Phytoremediation of radium contaminated soils: recent advances and prospects
- Original Papers
- Kinetic evaluation of the uranyl peroxide synthetic route on morphology
- Fabrication and characterization of graphene oxide and reduced graphene oxide decorated diatomite composite materials and their adsorption performance for uranium ions
- The performance of iron-silicate-based biochar as a sorbent material towards 133Ba retention from radioactive liquid waste
- Challenges in the solution phase synthesis of PSMA-11 and PSMA-617: organic ligands for radiopharmaceutical preparations in prostate cancer medication
- Synthesis, MTT assay, 99m-Technetium radiolabeling, biodistribution evaluation of radiotracer and in vitro magnetic resonance imaging study of P,N-doped graphene quantum dots as a new multipurpose imaging nano-agent
- Assessment of radioactivity and radiological risk indices in the sediments of the Tam Giang-Cau Hai, Thi Nai, and Nai lagoons in the Center of Vietnam
- Study of gamma, neutron, and proton interaction parameters of some immunotherapy drugs using EpiXs, NGCal, and PSTAR software
- Gamma and neutron attenuation of SiO2–B2O3–BaO–Li2O glasses doped with CeO2
Articles in the same Issue
- Frontmatter
- Review
- Phytoremediation of radium contaminated soils: recent advances and prospects
- Original Papers
- Kinetic evaluation of the uranyl peroxide synthetic route on morphology
- Fabrication and characterization of graphene oxide and reduced graphene oxide decorated diatomite composite materials and their adsorption performance for uranium ions
- The performance of iron-silicate-based biochar as a sorbent material towards 133Ba retention from radioactive liquid waste
- Challenges in the solution phase synthesis of PSMA-11 and PSMA-617: organic ligands for radiopharmaceutical preparations in prostate cancer medication
- Synthesis, MTT assay, 99m-Technetium radiolabeling, biodistribution evaluation of radiotracer and in vitro magnetic resonance imaging study of P,N-doped graphene quantum dots as a new multipurpose imaging nano-agent
- Assessment of radioactivity and radiological risk indices in the sediments of the Tam Giang-Cau Hai, Thi Nai, and Nai lagoons in the Center of Vietnam
- Study of gamma, neutron, and proton interaction parameters of some immunotherapy drugs using EpiXs, NGCal, and PSTAR software
- Gamma and neutron attenuation of SiO2–B2O3–BaO–Li2O glasses doped with CeO2