Abstract
The application of Phalaris seed peel (PSP) for the production of biochar involves the pyrolysis process in an N2 environment, resulting in the creation of a cost-effective sorbent. Two distinct modifications were conducted on the existing biochar (BC), employing just silicate (BC/SiO2) and in combination with iron-silicate (BC/SiO2/Fe). Several analytical methods were used to look at the modified biochar’s physical and chemical properties. These included scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis-differential thermal analysis (TGA-DTA), and surface area analysis. Based on the initial investigations, it has been revealed that the use of silica and iron as the second modification is a more suitable approach for effectively retaining 133Ba from liquid radioactive waste streams. The investigation of sorption kinetics and isotherms was conducted to enhance our understanding of the process. The Langmuir isotherm model demonstrates the most optimal correlation for sorption, yielding a maximum sorption capacity (Qmax) of 31 mg/g. Furthermore, an evaluation was performed on the BC/SiO2/Fe sorbent material by subjecting it to a mixture of simulated radioactive liquid waste, which included 133Ba, 60Co, and 137Cs.The experimental results indicate that BC/SiO2/Fe exhibits a comparatively higher sorption capacity for 133Ba when compared to 60Co and 137Cs as competing ions.
-
Research ethics: Not applicable.
-
Author contributions: Contributions to the research described herein and to the preparation of the manuscript are as follows: Sara S. Marous: Conceptualization; data curation; formal analysis; investigation; methodology; writing – original draft. Muhammad S. Mansy: Conceptualization; data curation; formal analysis; investigation; methodology; writing – original draft; review and editing. Maha A. Youssef: Conceptualization; data curation; formal analysis; investigation; methodology; writing – original draft.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: There is no funding for the present work.
-
Data availability: Not applicable.
References
1. Moloukhia, H.; Hegazy, W. S.; Abdel-Galil, E. A.; Mahrous, S. S. Removal of Eu3+, Ce3+, Sr2+, and Cs+ Ions from Radioactive Waste Solutions by Modified Activated Carbon Prepared from Coconut Shells. Chem. Ecol. 2016, 32, 324; https://doi.org/10.1080/02757540.2016.1139089.Search in Google Scholar
2. Abdel-Galil, E. A.; Moloukhia, H.; Abdel-Khalik, M.; Mahrous, S. S. Synthesis and Physico-Chemical Characterization of cellulose/HO7Sb3 Nanocomposite as Adsorbent for the Removal of Some Radionuclides from Aqueous Solutions. Appl. Radiat. Isot. 2018, 140, 363; https://doi.org/10.1016/j.apradiso.2018.07.022.Search in Google Scholar PubMed
3. Hassan, R. S.; Eid, M. A.; El-Sadek, A. A.; Mansy, M. S. Preparation, Characterization and Application of Mg/Fe Hydrotalcite as Gamma Sealed Source for Spectroscopic Measurements. Appl. Radiat. Isot. 2019, 151, 74; https://doi.org/10.1016/j.apradiso.2019.04.040.Search in Google Scholar PubMed
4. Mansy, M. S.; Hassan, R. S.; Selim, Y. T.; Kenawy, S. H. Evaluation of Synthetic Aluminum Silicate Modified by Magnesia for the Removal of 137Cs, 60Co and 152+154Eu from Low-Level Radioactive Waste. Appl. Radiat. Isot. 2017, 130, 198; https://doi.org/10.1016/j.apradiso.2017.09.042.Search in Google Scholar PubMed
5. Mahrous, S.; Abdel-Galil, E.; Belacy, N.; Saad, E. Adsorption Behavior and Practical Separation of Some Radionuclides Using cellulose/HO7Sb3. Desalin. Water Treat. 2019, 152, 124; https://doi.org/10.5004/dwt.2019.23981.Search in Google Scholar
6. El-Sadek, A. A.; El-Naggar, M. R.; Mansy, M. S. Purification of Rad-Waste Arising from Irradiated Natural Tin Target towards Tellurium-125m/Antimony-125 Radioisotope Generator Elaboration. Appl. Radiat. Isot. 2021, 172, 109690; https://doi.org/10.1016/j.apradiso.2021.109690.Search in Google Scholar PubMed
7. Mahrous, S. S.; Galil, E. A. A.; Mansy, M. S. Investigation of Modified Orange Peel in the Removal of Cd2+, Co2+ and Zn2+ from Wastewater. J. Radioanal. Nucl. Chem. 2022, 331, 985; https://doi.org/10.1007/s10967-021-08166-0.Search in Google Scholar
8. Mahrous, S. S.; Abass, M. R.; Mansy, M. S. Bentonite Phosphate Modified with Nickel: Preparation, Characterization, and Application in the Removal of 137Cs and 152+154Eu. Appl. Radiat. Isot. 2022, 190, 110445; https://doi.org/10.1016/j.apradiso.2022.110445.Search in Google Scholar PubMed
9. Mahrous, S. S.; Mansy, M. S.; Abdel Galil, E. A. Decontamination of 137Cs,95Zr, 154Eu and 144Ce from Aqueous Solutions Using Polyacrylamide Titanium Tungstosilicate. J. Radioanal. Nucl. Chem. 2022, 331, 4731; https://doi.org/10.1007/s10967-022-08583-9.Search in Google Scholar
10. Mansy, M. S.; Eid, M. A.; Breky, M. M. E.; Abass, M. R. Sorption Behavior of 137Cs, 152+154Eu and 131Ba from Aqueous Solutions Using Inorganic Sorbent Loaded on Talc. J. Radioanal. Nucl. Chem. 2023, 332, 2971; https://doi.org/10.1007/s10967-023-08977-3.Search in Google Scholar
11. Qiu, M.; Liu, L.; Ling, Q.; Cai, Y.; Yu, S.; Wang, S.; Fu, D.; Hu, B.; Wang, X. Biochar for the Removal of Contaminants from Soil and Water: a Review. Biochar 2022, 4, 1; https://doi.org/10.1007/s42773-022-00146-1.Search in Google Scholar
12. Viglašová, E.; Galamboš, M.; Diviš, D.; Danková, Z.; Dano, M.; Krivosudský, L.; Lengauer, C.; Matik, M.; Briančin, J.; Soja, G. Engineered Biochar as a Tool for Nitrogen Pollutants Removal: Preparation, Characterization and Sorption Study. Desalin. Water Treat. 2020, 191, 318; https://doi.org/10.5004/dwt.2020.25750.Search in Google Scholar
13. Inyang, M. I.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.; Mosa, A.; Pullammanappallil, P.; Ok, Y. S.; Cao, X. A Review of Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal. Crit. Rev. Environ. Sci. Technol. 2016, 46, 406; https://doi.org/10.1080/10643389.2015.1096880.Search in Google Scholar
14. Ahmad, M.; Rajapaksha, A. U.; Lim, J. E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S. S.; Ok, Y. S. Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere 2014, 99, 19; https://doi.org/10.1016/j.chemosphere.2013.10.071.Search in Google Scholar PubMed
15. Li, H.; Dong, X.; da Silva, E. B.; de Oliveira, L. M.; Chen, Y.; Ma, L. Q. Mechanisms of Metal Sorption by Biochars: Biochar Characteristics and Modifications. Chemosphere 2017, 178, 466; https://doi.org/10.1016/j.chemosphere.2017.03.072.Search in Google Scholar PubMed
16. Kusumkar, V. V.; İnan, S.; Galamboš, M.; Viglašová, E.; Daňo, M. Sorptive Removal of 133Ba from Aqueous Solution Using a Novel Cellulose Hydroxyapatite Composite Derived from Cigarette Waste. Water, Air, Soil Pollut. 2024, 235, 212; https://doi.org/10.1007/s11270-024-07026-3.Search in Google Scholar
17. Nartey, O. D.; Zhao, B. Biochar Preparation, Characterization, and Adsorptive Capacity and its Effect on Bioavailability of Contaminants: An Overview. Adv. Mater. Sci. Eng. 2014, 2014, 1–12; https://doi.org/10.1155/2014/715398.Search in Google Scholar
18. Qian, K.; Kumar, A.; Zhang, H.; Bellmer, D.; Huhnke, R. Recent Advances in Utilization of Biochar. Renewable Sustainable Energy Rev. 2015, 42, 1055; https://doi.org/10.1016/j.rser.2014.10.074.Search in Google Scholar
19. Xie, T.; Reddy, K. R.; Wang, C.; Yargicoglu, E.; Spokas, K. Characteristics and Applications of Biochar for Environmental Remediation: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 939; https://doi.org/10.1080/10643389.2014.924180.Search in Google Scholar
20. Wang, H.; Wang, X.; Ma, J.; Xia, P.; Zhao, J. Removal of Cadmium (II) from Aqueous Solution: A Comparative Study of Raw Attapulgite Clay and a Reusable Waste–Struvite/attapulgite Obtained from Nutrient-Rich Wastewater. J. Hazard. Mater. 2017, 329, 66; https://doi.org/10.1016/j.jhazmat.2017.01.025.Search in Google Scholar PubMed
21. Zhang, M.; Gao, B.; Varnoosfaderani, S.; Hebard, A.; Yao, Y.; Inyang, M. Preparation and Characterization of a Novel Magnetic Biochar for Arsenic Removal. Bioresour. Technol. 2013, 130, 457; https://doi.org/10.1016/j.biortech.2012.11.132.Search in Google Scholar PubMed
22. Chen, G.; Zhou, M.; Catanach, J.; Liaw, T.; Fei, L.; Deng, S.; Luo, H. Solvothermal Route Based In Situ Carbonization to Fe3O4@C as Anode Material for Lithium Ion Battery. Nano Energy 2014, 8, 126; https://doi.org/10.1016/j.nanoen.2014.06.005.Search in Google Scholar
23. Ahmad, M.; Islam, I. U.; Ahmad, M.; Rukh, S.; Ullah, I. Preparation of Iron-Modified Biochar from Rice Straw and its Application for the Removal of Lead (Pb+2) from Lead-Contaminated Water by Adsorption. Chem. Pap. 2022, 76, 3789; https://doi.org/10.1007/s11696-022-02118-y.Search in Google Scholar
24. El-khalafawy, A.; Imam, D. M.; Youssef, M. A. Enhanced Biosorption of Europium and Cesium Ions from Aqueous Solution onto Phalaris Seed Peel as Environmental Friendly Biosorbent: Equilibrium and Kinetic Studies. Appl. Radiat. Isot. 2022, 190, 110498; https://doi.org/10.1016/j.apradiso.2022.110498.Search in Google Scholar PubMed
25. Cai, T.; Liu, X.; Zhang, J.; Tie, B.; Lei, M.; Wei, X.; Peng, O.; Du, H. Silicate-modified Oiltea Camellia Shell-Derived Biochar: A Novel and Cost-Effective Sorbent for Cadmium Removal. J. Cleaner Prod. 2021, 281, 125390; https://doi.org/10.1016/j.jclepro.2020.125390.Search in Google Scholar
26. Downie, A.; Crosky, A. M.P.: Biochar for Environmental Management: Science and Technology; Earthscan: London, 2009; pp. 1–416.Search in Google Scholar
27. Thies, J. E.; Rillig, M. C. Characteristics of Biochar: Biological Properties. In Biochar for Environmental Management: Science and Technology, 2012.Search in Google Scholar
28. Abass, M. R.; Youssef, M. A.; Eid, M. A. Inorganic Composites Based on Carboxymethyl Cellulose: Preparation, Characterization, Sorption, and Selectivity Behavior for Some Radionuclides from Radioactive Solutions. Radiochim. Acta 2023, 1, 23–35; https://doi.org/10.1515/ract-2023-0214.Search in Google Scholar
29. El-Naggar, M. R.; Dong, Y.; Hamed, M. M.; Abd, A. E.; Ibrahiem, H. H.; Gouda, M. M.; Mansy, M. S.; Hassan, A. M. A.; Abdel Rahman, R. O. Microstructural Insights of Magnetic γ-Fe2O3/geopolymer Nanocomposite for Prospective Green Removal of Heavy Metals from Aqueous Solutions. Sep. Purif. Technol. 2024, 333, 125941; https://doi.org/10.1016/j.seppur.2023.125941.Search in Google Scholar
30. Abdel-Galil, E. A.; Abeer, G.; Sara, E. K. Elaboration and Characterization of Molybdenum Titanium Tungsto – Phosphate towards the Decontamination of Radioactive Liquid Waste from 137 Cs and 85 Sr. Environ. Sci. Pollut. Res. 2024, 31, 2732–2744; https://doi.org/10.1007/s11356-023-31104-4.Search in Google Scholar PubMed PubMed Central
31. Abass, M. R.; Mahrous, S. S.; Mansy, M. S. Sorption Behaviour of 137Cs and 152+154Eu onto Bentonite Phosphate Modified with Nickel: Kinetics, Isotherms, and Chromatographic Column Application. Radiochim. Acta 2023, 1, 1–10. https://doi.org/10.1515/ract-2023-0168.Search in Google Scholar
32. Zhang, Y.; Fan, B.; Jia, L.; Qiao, X.; Li, Z. Study on Adsorption Mechanism of Mercury on Ce-Cu Modified Iron-Based Biochar. Chem. Eng. J. Adv. 2022, 10, 100259; https://doi.org/10.1016/j.ceja.2022.100259.Search in Google Scholar
33. Zhou, X.; Liu, Y.; Zhou, J.; Guo, J.; Ren, J.; Zhou, F. Efficient Removal of Lead from Aqueous Solution by Urea-Functionalized Magnetic Biochar: Preparation, Characterization and Mechanism Study. J. Taiwan Inst. Chem. Eng. 2018, 91, 457; https://doi.org/10.1016/j.jtice.2018.04.018.Search in Google Scholar
34. He, R.; Peng, Z.; Lyu, H.; Huang, H.; Nan, Q.; Tang, J. Synthesis and Characterization of an Iron-Impregnated Biochar for Aqueous Arsenic Removal. Sci. Total Environ. 2018, 612, 1177; https://doi.org/10.1016/j.scitotenv.2017.09.016.Search in Google Scholar PubMed
35. Astuti, F.; Sari, N.; Maghfirohtuzzoimah, V. L.; Asihr, r.; Baqiya, M. A.; Darminto, D. Study of the Formation of Amorphous Carbon and rGO-like Phases from Palmyra Sugar by Variation of Calcination Temperature. J. Fis. dan. Apl. 2020, 16, 91–94.10.12962/j24604682.v16i2.6706Search in Google Scholar
36. Tang, J.; Lv, H.; Gong, Y.; Huang, Y. Preparation and Characterization of a Novel Graphene/biochar Composite for Aqueous Phenanthrene and Mercury Removal. Bioresour. Technol. 2015, 196, 355; https://doi.org/10.1016/j.biortech.2015.07.047.Search in Google Scholar PubMed
37. Severo, F. F.; da Silva, L. S.; Moscôso, J. S. C.; Sarfaraz, Q.; Rodrigues, L. F.; Lopes, A. F.; Marzari, L. B.; Molin, G. D.; da Silva, L. S.; Mosc so, J. S. C. Chemical and Physical Characterization of Rice Husk Biochar and Ashes and Their Iron Adsorption Capacity. SN Appl. Sci. 2020, 2, 1–9; https://doi.org/10.1007/s42452-020-3088-2.Search in Google Scholar
38. Deng, Y.; Li, X.; Ni, F.; Liu, Q.; Yang, Y.; Wang, M.; Ao, T.; Chen, W. Synthesis of Magnesium Modified Biochar for Removing Copper, Lead and Cadmium in Single and Binary Systems from Aqueous Solutions: Adsorption Mechanism. Water 2021, 13, 599; https://doi.org/10.3390/w13050599.Search in Google Scholar
39. Akalin, H. A.; Hiçsönmez, Ü.; Yilmaz, H. Removal of Cesium from Aqueous Solution by Adsorption Onto Sivas-Yildizeli (Turkiye) Vermiculite: Equilibrium, Kinetic and Thermodynamic Studies. J. Turk. Chem. Soc., Sect. A 2017, 5, 85; https://doi.org/10.18596/jotcsa.317771.Search in Google Scholar
40. Sun, W.; Zhang, W.; Li, H.; Su, Q.; Zhang, P.; Chen, L. Insight into the Synergistic Effect on Adsorption for Cr(VI) by a Polypyrrole-based Composite. RSC Adv. 2020, 10, 8790.10.1039/C9RA08756GSearch in Google Scholar PubMed PubMed Central
41. Guo, J.; Chen, B. Insights on the Molecular Mechanism for the Recalcitrance of Biochars: Interactive Effects of Carbon and Silicon Components. Environ. Sci. Technol. 2014, 48, 9103; https://doi.org/10.1021/es405647e.Search in Google Scholar PubMed
42. Pan, M.; Gan, X.; Mei, C.; Liang, Y. Structural Analysis and Transformation of Biosilica during Lignocellulose Fractionation of Rice Straw. J. Mol. Struct. 2017, 1127, 575; https://doi.org/10.1016/j.molstruc.2016.08.002.Search in Google Scholar
43. Fuks, L.; Oszczak, A.; Dudek, J.; Majdan, M.; Trytek, M. Removal of the Radionuclides from Aqueous Solutions by Biosorption on the Roots of the Dandelion (Taraxacum officinale). Int. J. Environ. Sci. Technol. 2016, 13, 2339; https://doi.org/10.1007/s13762-016-1067-3.Search in Google Scholar
44. Yang, H.; Yan, R.; Chen, H.; Lee, D. H.; Zheng, C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel 2007, 86, 1781.10.1016/j.fuel.2006.12.013Search in Google Scholar
45. Emran, M.; El-Naggar, I. M.; Abdel-Galil, E. Inorganic Ion Exchange Materials based on Titanate: Synthesis, Characterization and Sorption Behaviour of Zirconium Titanate for Some Hazardous Metal Ions from Aqueous Waste Solution. Isot. Radiat. Res. 2012, 44 (4), 851.Search in Google Scholar
46. Park, C. M.; Han, J.; Chu, K. H.; Al-Hamadani, Y. A. J.; Her, N.; Heo, J.; Yoon, Y. Influence of Solution pH, Ionic Strength, and Humic Acid on Cadmium Adsorption onto Activated Biochar: Experiment and Modeling. J. Ind. Eng. Chem. 2017, 48, 186; https://doi.org/10.1016/j.jiec.2016.12.038.Search in Google Scholar
47. Metwally, S. S.; Hassan, R. S.; El-Masry, E. H.; Borai, E. H. Gamma-induced Radiation Polymerization of Kaolin Composite for Sorption of Lanthanum, Europium and Uranium Ions from Lowgrade Monazite Leachate. J. Radioanal. Nucl. Chem. 2018, 315, 39; https://doi.org/10.1007/s10967-017-5638-7.Search in Google Scholar
48. Ho, Y. S.; McKay, G. The Kinetics of Sorption of Divalent Metal Ions onto Sphagnum Moss Peat. Water Res. 2000, 34, 735; https://doi.org/10.1016/s0043-1354(99)00232-8.Search in Google Scholar
49. Agrafioti, E.; Kalderis, D.; Diamadopoulos, E. Arsenic and Chromium Removal from Water Using Biochars Derived from Rice Husk, Organic Solid Wastes and Sewage Sludge. J. Environ. Manage. 2014, 133, 309; https://doi.org/10.1016/j.jenvman.2013.12.007.Search in Google Scholar PubMed
50. Jin, H.; Capareda, S.; Chang, Z.; Gao, J.; Xu, Y.; Zhang, J. Biochar Pyrolytically Produced from Municipal Solid Wastes for Aqueous As(V) Removal: Adsorption Property and its Improvement with KOH Activation. Bioresour. Technol. 2014, 169, 622; https://doi.org/10.1016/j.biortech.2014.06.103.Search in Google Scholar PubMed
51. Hu, X.; Ding, Z.; Zimmerman, A. R.; Wang, S.; Gao, B. Batch and Column Sorption of Arsenic onto Iron-Impregnated Biochar Synthesized through Hydrolysis. Water Res. 2015, 68, 206; https://doi.org/10.1016/j.watres.2014.10.009.Search in Google Scholar PubMed
52. An, B.; Liang, Q.; Zhao, D. Removal of Arsenic(V) from Spent Ion Exchange Brine Using a New Class of Starch-Bridged Magnetite Nanoparticles. Water Res. 2011, 45, 1961; https://doi.org/10.1016/j.watres.2011.01.004.Search in Google Scholar PubMed
53. Dada, A. O.; Olalekan, A.; Olatunya, A.; DADA, O.; Langmuir, F. Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn 2+ unto Phosphoric Acid Modified Rice Husk. IOSR J. Appl. Chem. 2012, 3, 38.10.9790/5736-0313845Search in Google Scholar
54. Hilal, M. A.; Attallah, M. F.; Mansy, M. S.; El Afifi, E. M. Examination of the Parameters Affecting of 222Rn Emanation for Some Industrial and Environmental Samples Using Gamma-Spectroscopy. Appl. Radiat. Isot. 2022, 186, 110272; https://doi.org/10.1016/j.apradiso.2022.110272.Search in Google Scholar PubMed
55. El Afifi, E. M.; Mansy, M. S.; Hilal, M. A. Radiochemical Signature of Radium-Isotopes and Some Radiological Hazard Parameters in TENORM Waste Associated with Petroleum Production: A Review Study. J. Environ. Radioact. 2023, 256, 107042; https://doi.org/10.1016/j.jenvrad.2022.107042.Search in Google Scholar PubMed
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Phytoremediation of radium contaminated soils: recent advances and prospects
- Original Papers
- Kinetic evaluation of the uranyl peroxide synthetic route on morphology
- Fabrication and characterization of graphene oxide and reduced graphene oxide decorated diatomite composite materials and their adsorption performance for uranium ions
- The performance of iron-silicate-based biochar as a sorbent material towards 133Ba retention from radioactive liquid waste
- Challenges in the solution phase synthesis of PSMA-11 and PSMA-617: organic ligands for radiopharmaceutical preparations in prostate cancer medication
- Synthesis, MTT assay, 99m-Technetium radiolabeling, biodistribution evaluation of radiotracer and in vitro magnetic resonance imaging study of P,N-doped graphene quantum dots as a new multipurpose imaging nano-agent
- Assessment of radioactivity and radiological risk indices in the sediments of the Tam Giang-Cau Hai, Thi Nai, and Nai lagoons in the Center of Vietnam
- Study of gamma, neutron, and proton interaction parameters of some immunotherapy drugs using EpiXs, NGCal, and PSTAR software
- Gamma and neutron attenuation of SiO2–B2O3–BaO–Li2O glasses doped with CeO2
Articles in the same Issue
- Frontmatter
- Review
- Phytoremediation of radium contaminated soils: recent advances and prospects
- Original Papers
- Kinetic evaluation of the uranyl peroxide synthetic route on morphology
- Fabrication and characterization of graphene oxide and reduced graphene oxide decorated diatomite composite materials and their adsorption performance for uranium ions
- The performance of iron-silicate-based biochar as a sorbent material towards 133Ba retention from radioactive liquid waste
- Challenges in the solution phase synthesis of PSMA-11 and PSMA-617: organic ligands for radiopharmaceutical preparations in prostate cancer medication
- Synthesis, MTT assay, 99m-Technetium radiolabeling, biodistribution evaluation of radiotracer and in vitro magnetic resonance imaging study of P,N-doped graphene quantum dots as a new multipurpose imaging nano-agent
- Assessment of radioactivity and radiological risk indices in the sediments of the Tam Giang-Cau Hai, Thi Nai, and Nai lagoons in the Center of Vietnam
- Study of gamma, neutron, and proton interaction parameters of some immunotherapy drugs using EpiXs, NGCal, and PSTAR software
- Gamma and neutron attenuation of SiO2–B2O3–BaO–Li2O glasses doped with CeO2