Home Study of gamma, neutron, and proton interaction parameters of some immunotherapy drugs using EpiXs, NGCal, and PSTAR software
Article
Licensed
Unlicensed Requires Authentication

Study of gamma, neutron, and proton interaction parameters of some immunotherapy drugs using EpiXs, NGCal, and PSTAR software

  • Gangadharayya Hiremath ORCID logo , Vishwanath Singh , Narasimha Ayachit and Nagappa Badiger ORCID logo EMAIL logo
Published/Copyright: May 9, 2024

Abstract

In proton therapy, the protons are used to destroy the cancer cells efficiently at the Bragg peak without much damage to normal cells. The protons can also produce neutrons, protons, and high-energy gamma rays through nuclear reactions with cancerous and healthy tissues as well as with beamline components. The effective observed dose in the therapy is enhanced due to the interaction of nuclear particles with cancerous tissues. Such nuclear particles can have several effects on drugs used in immunotherapy, such as immunotherapy in combination with proton therapy, which has been used to treat cancer. In the present investigations, the gamma, neutron, and protons interaction parameters of some immunotherapy drugs, such as dostarlimab, atezolizumab, ipilimumab, nivolumab, and pembrolizumab, are determined by using EpiXs, NGCal, and PSTAR software. It is found that the EBF and EABF for all selected immunotherapy drugs increase with increasing penetration depth, peaking at 100 keV. The peaking is more symmetric at a higher penetration depth of 40 mfp than at a lower one of 1 mfp. At lower energies of gamma photons, the EBF values increase exponentially, and at higher energies, they increase linearly with increasing penetration depth for all selected drugs. Mass attenuation factors are slightly higher for thermal neutrons than for fast neutrons for selected immunotherapeutic drugs, indicating that thermal neutrons more actively participate in these drugs than fast neutrons. The mass attenuation factor for both fast and thermal neutrons increases with increasing weight percentages of hydrogen and is found to be higher for thermal neutrons. This is the first study in the literature to investigate the radiation interaction parameters for immunotherapy drugs, and it is helpful in radiation therapy and dosimetry.


Corresponding author: Nagappa Badiger, School of Advanced Sciences, KLE Technological University, Hubbali 580031, India, E-mail:

Award Identifier / Grant number: Unassigned

Acknowledgment

NMB (one of the authors) would like to thank KLE Technological University, Hubballi for funding the capacity building projects and also appointing GBH (one of the authors) as a research associate in the project.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Gangadharayya Hiremath: methodology, formal analysis, investigation, writing-original draft; Vishwanath Singh: validation; Narasimha Ayachit: visualization; Nagappa Badiger: conceptualization, methodology, writing-review & editing, supervision, project administration.

  3. Competing interests: The authors states no conflict of interest.

  4. Research funding: Capacity building project, KLE Technological University, Hubballi.

  5. Data availability: Not applicable.

References

1. Singh, V.; Sheikh, A.; Abourehab, M. A. S.; Kesharwani, P. Dostarlimab as a Miracle Drug: Rising Hope Against Cancer Treatment. Biosensors 2022, 12, 617; https://doi.org/10.3390/bios12080617.Search in Google Scholar PubMed PubMed Central

2. Costa, B.; Vale, N. Dostarlimab: A Review. Biomolecules 2022, 12, 1031; https://doi.org/10.3390/biom12081031.Search in Google Scholar PubMed PubMed Central

3. Manzar, G. S.; De, B. S.; Abana, C. O.; Lee, S. S.; Javle, M.; Kaseb, A. O.; Vauthey, J.-N.; Tran Cao, H. S.; Koong, A. C.; Smith, G. L.; Taniguchi, C. M.; Holliday, E. B.; Das, P.; Koay, E. J.; Ludmir, E. B. Outcomes and Toxicities of Modern Combined Modality Therapy with Atezolizumab Plus Bevacizumab and Radiation Therapy for Hepatocellular Carcinoma. Cancers 2022, 14, 1901; https://doi.org/10.3390/cancers14081901.Search in Google Scholar PubMed PubMed Central

4. Miyamoto, S.; Nomura, R.; Sato, K.; Awano, N.; Kuse, N.; Inomata, M.; Izumo, T.; Terada, Y.; Furuhata, Y.; Bae, Y.; Kunitoh, H. Nivolumab and Stereotactic Radiation Therapy for the Treatment of Patients with Stage IV Non-small-cell Lung Cancer. Jpn. J. Clin. Oncol. 2019, 49, 160; https://doi.org/10.1093/jjco/hyy171.Search in Google Scholar PubMed

5. Silk, A. W.; Bassetti, M. F.; West, B. T.; Tsien, C. I.; Lao, C. D. Ipilimumab and Radiation Therapy for Melanoma Brain Metastases. Cancer Med. 2013, 2, 899; https://doi.org/10.1002/cam4.140.Search in Google Scholar PubMed PubMed Central

6. Welsh, J.; Menon, H.; Chen, D.; Verma, V.; Tang, C.; Altan, M.; Hess, K.; de Groot, P.; Nguyen, Q. N.; Varghese, R.; Comeaux, N. I.; Simon, G.; Skoulidis, F.; Chang, J. Y.; Papdimitrakopoulou, V.; Lin, S. H.; Heymach, J. V. Pembrolizumab with or without Radiation Therapy for Metastatic Non-small Cell Lung Cancer: A Randomized Phase I/II Trial. J. Immunother. Cancer 2020, 8, e001001; https://doi.org/10.1136/jitc-2020-001001.Search in Google Scholar PubMed PubMed Central

7. Anahid, S. M.; Afra, O. The Combination of Radiotherapy with Pembrolizumab in the Treatment of Metastatic Melanoma Patients: A Systematic Review. SN Compr. Clin. Med. 2020, 2, 432; https://doi.org/10.1007/s42399-020-00253-9.Search in Google Scholar

8. Jagodinsky, J. C.; Harari, P. M.; Morris, Z. S. The Promise of Combining Radiation Therapy with Immunotherapy. Int. J. Radiat. Oncol. 2020, 108, 6; https://doi.org/10.1016/j.ijrobp.2020.04.023.Search in Google Scholar PubMed PubMed Central

9. Asna, N.; Livoff, A.; Batash, R.; Debbi, R.; Schaffer, P.; Rivkind, T.; Schaffer, M. Radiation Therapy and Immunotherapy—A Potential Combination in Cancer Treatment. Curr. Oncol. 2018, 25, 454; https://doi.org/10.3747/co.25.4002.Search in Google Scholar PubMed PubMed Central

10. Chicas-Sett, R.; Zafra-Martin, J.; Morales-Orue, I.; Castilla-Martinez, J.; Berenguer-Frances, M. A.; Gonzalez-Rodriguez, E.; Rodriguez-Abreu, D.; Couñago, F. Immunoradiotherapy as an Effective Therapeutic Strategy in Lung Cancer: from Palliative Care to Curative Intent. Cancers 2020, 12, 2178; https://doi.org/10.3390/cancers12082178.Search in Google Scholar PubMed PubMed Central

11. Zhang, Z.; Liu, X.; Chen, D.; Yu, J. Radiotherapy Combined With Immunotherapy: The Dawn of Cancer Treatment. Signal Transduct. Target. Ther. 2022, 7, 258; https://doi.org/10.1038/s41392-022-01102-y.Search in Google Scholar PubMed PubMed Central

12. Chadwick, M. B. Nuclear Reactions in Proton, Neutron, and Photon Radiotherapy. Radiochim. Acta 2001, 89, 325; https://doi.org/10.1524/ract.2001.89.4-5.325.Search in Google Scholar

13. Azarkin, M.; Kirakosyan, M.; Ryabov, V. Study of Nuclear Reactions in Therapy of Tumors with Proton Beams. Int. J. Mol. Sci. 2023, 24, 13400; https://doi.org/10.3390/ijms241713400.Search in Google Scholar PubMed PubMed Central

14. Sękowski, P.; Lisicka, A.; Saworska, G.; Szcześniak, W.; Matulewicz, T.; Skwira-Chalot, I.; Spyra, A.; Chorwacik, T.; Swakoń, J.; Mietelski, J. W. Nuclear Reactions that Occur in Human Body During Proton Therapy. Acta Phys. Pol. A 2021, 139, 454; https://doi.org/10.12693/aphyspola.139.454.Search in Google Scholar

15. Enferadi, M.; Sarbazvatan, S.; Sadeghi, M.; Hong, J.-H.; Tung, C.-J.; Chao, T.-C.; Lee, C.-C.; Wey, S.-P. Nuclear Reaction Cross Sections for Proton Therapy Applications. J. Radioanal. Nucl. Chem. 2017, 314, 1207; https://doi.org/10.1007/s10967-017-5503-8.Search in Google Scholar

16. Newhauser, W. D.; Zhang, R. The Physics of Proton Therapy. Phys. Med. Biol. 2015, 60, R155; https://doi.org/10.1088/0031-9155/60/8/r155.Search in Google Scholar PubMed PubMed Central

17. Paganetti, H. Nuclear Interactions in Proton Therapy: Dose and Relative Biological Effect Distributions Originating from Primary and Secondary Particles. Phys. Med. Biol. 2002, 47, 747; https://doi.org/10.1088/0031-9155/47/5/305.Search in Google Scholar PubMed

18. Singh, V. P.; Shirmardi, S. P.; Medhat, M. E.; Badiger, N. M. Determination of Mass Attenuation Coefficient for Some Polymers Using Monte Carlo Simulation. Vacuum 2015, 119, 284; https://doi.org/10.1016/j.vacuum.2015.06.006.Search in Google Scholar

19. Hila, F. C.; Sayyed, M. I.; Javier-Hila, A. M. V.; Jecong, J. F. M. Evaluation of the Radiation Shielding Characteristics of Several Glass Systems Using the EPICS2017 Library. Arab. J. Sci. Eng. 2022, 47, 1077; https://doi.org/10.1007/s13369-021-06062-z.Search in Google Scholar PubMed PubMed Central

20. Kumar, A.; Kaur, R.; Dong, M. G.; Sayyed, M. I.; Tekin, H. O. Radiation Interaction Parameters of Dosimetric Importance for Some Commonly Used Compensators in IMRT Using Monte Carlo Simulation Code. J. Radiol. Prot. 2018, 38, 1321; https://doi.org/10.1088/1361-6498/aadac6.Search in Google Scholar PubMed

21. Singh, V. P.; Badiger, N. M.; Vega-Carrillo, H. R. Neutron Kerma Factors and Water Equivalence of Some Tissue Substitutes. Appl. Radiat. Isot. 2015, 103, 115; https://doi.org/10.1016/j.apradiso.2015.05.014.Search in Google Scholar PubMed

22. Kavaz, E.; Ahmadishadbad, N.; Özdemir, Y. Photon Buildup Factors of Some Chemotherapy Drugs. Biomed. Pharmacother. 2015, 69, 34; https://doi.org/10.1016/j.biopha.2014.10.031.Search in Google Scholar PubMed

23. Ekinci, N.; Kavaz, E.; Özdemir, Y. A Study of the Energy Absorption and Exposure Buildup Factors of Some Anti-inflammatory Drugs. Appl. Radiat. Isot. 2014, 90, 265; https://doi.org/10.1016/j.apradiso.2014.05.003.Search in Google Scholar PubMed

24. Sayyed, M. I.; Issa, S. A. M.; Auda, S. H. Assessment of Radio-Protective Properties of Some Anti-inflammatory Drugs. Prog. Nucl. Energy. 2017, 100, 297; https://doi.org/10.1016/j.pnucene.2017.07.003.Search in Google Scholar

25. Bayram, S.; Aygün, B.; Karadayi, M.; Alaylar, B.; Güllüce, M.; Karabulut, A. Determination of Toxicity and Radioprotective Properties of Bacterial and Fungal Eumelanin Pigments. Int. J. Radiat. Biol. 2023, 99, 1785; https://doi.org/10.1080/09553002.2023.2204957.Search in Google Scholar PubMed

26. Alaylar, B.; Aygün, B.; Turhan, K.; Karadayı, M.; Cinan, E.; Turgut, Z.; Karadayı, G.; Al-Sayyed, M. I. A.; Güllüce, M.; Karabulut, A. Investigation of Radiation Protective Features of Azadispiro Derivatives and their Genotoxic Potential with Ames/Salmonella Test System. Int. J. Radiat. Biol. 2023, 99, 245; https://doi.org/10.1080/09553002.2022.2087930.Search in Google Scholar PubMed

27. Akbaba, U.; Şakar, E.; Sayyed, M. I.; Alim, B.; Özpolat, Ö. F. Evaluation of Photon Interaction Parameters of Anti-HIV Drugs. Radiat. Phys. Chem. 2022, 201, 110441; https://doi.org/10.1016/j.radphyschem.2022.110441.Search in Google Scholar

28. Turhan, M. F. Photon Interaction Performance of Various Contrast Agents: Theoretical and Simulation Results. Appl. Radiat. Isot. 2021, 177, 109920; https://doi.org/10.1016/j.apradiso.2021.109920.Search in Google Scholar PubMed

29. Oto, B.; Oto, G.; Madak, Z.; Kavaz, E. The Interaction of Gamma Radiation with Drugs Used in Cholinergic Medications. Int. J. Radiat. Biol. 2020, 96, 236; https://doi.org/10.1080/09553002.2020.1683640.Search in Google Scholar PubMed

30. Hosamani, M. M.; Vinayak, A.; Hiremath, G. B.; Patil, P. N.; Badiger, N. M. Determination of Neutron Moderation Parameters Through Neutron Captured Gamma Ray Emission – A Novel Method. Ann. Nucl. Energy. 2022, 171, 109045; https://doi.org/10.1016/j.anucene.2022.109045.Search in Google Scholar

31. Isikli, Z.; Oto, B. Gamma or X-Rays Attenuation Properties of Some Biochemical Compounds. Radiat. Eff. Defects Solids 2017, 172, 296; https://doi.org/10.1080/10420150.2017.1307194.Search in Google Scholar

32. Kara, U.; Kilicoglu, O.; Ersoy, S. Structural and Gamma-Ray Attenuation Coefficients of Different OAD Films for Nuclear Medicine Applications. Radiat. Phys. Chem. 2020, 172, 108785; https://doi.org/10.1016/j.radphyschem.2020.108785.Search in Google Scholar

33. Al-Buriahi, M. S.; Singh, V. P.; Arslan, H.; Awasarmol, V. V.; Tonguc, B. T. Gamma-ray Attenuation Properties of Some NLO Materials: Potential Use in Dosimetry. Radiat. Environ. Biophys. 2020, 59, 145; https://doi.org/10.1007/s00411-019-00824-y.Search in Google Scholar PubMed

34. Kurudirek, M.; Özdemir, Y. Energy Absorption and Exposure Buildup Factors for Some Polymers and Tissue Substitute Materials: Photon Energy, Penetration Depth and Chemical Composition Dependence. J. Radiol. Prot. 2011, 31, 117; https://doi.org/10.1088/0952-4746/31/1/008.Search in Google Scholar PubMed

35. Hila, F. C.; Asuncion-Astronomo, A.; Dingle, C. A. M.; Jecong, J. F. M.; Javier-Hila, A. M. V.; Gili, M. B. Z.; Balderas, C. V.; Lopez, G. E. P.; Guillermo, N. R. D.; EpiXS, A. A. V. A Windows-Based Program for Photon Attenuation, Dosimetry and Shielding Based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI.8). Radiat. Phys. Chem. 2021, 182, 109331; https://doi.org/10.1016/j.radphyschem.2020.109331.Search in Google Scholar

36. Gökçe, H. S.; Güngör, O.; Yılmaz, H. An Online Software to Simulate the Shielding Properties of Materials for Neutrons and Photons: NGCal. Radiat. Phys. Chem. 2021, 185, 109519; https://doi.org/10.1016/j.radphyschem.2021.109519.Search in Google Scholar

37. Berger, M. J.; Coursey, J. S.; Zucker, M. A. ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions. version 1.2.3. National Institute Standards and Technology; 2005. http://physics.nist.gov/Star (accessed March 21, 2024).Search in Google Scholar

38. Berger, M.; Hubbell, J. XCOM Photon Cross Sections on a Personal Computer. National Bureau of Standards: Washington, DC (USA). Cent. Radiat. Res.;1987.10.2172/6016002Search in Google Scholar

39. Hanamar, K.; Hiremath, G. B.; Hegde, B. G.; Ayachit, N. H.; Badiger, N. M. Effect of the Samarium on the Mechanical and Radiation Shielding Capabilities of Lead-Free Zinc-Borate-Lithium Glasses. Optik 2023, 273, 170397; https://doi.org/10.1016/j.ijleo.2022.170397.Search in Google Scholar

40. Hiremath, G. B.; Hosamani, M. M.; Vinayak, A.; Patil, P. N.; Singh, V. P.; Ayachit, N. H.; Badiger, N. M. Investigation of Gamma Ray, Electron, and Neutron Interaction Parameters of Some Topological Insulating Materials. Radiat. Eff. Defects Solids 2023, 178, 335; https://doi.org/10.1080/10420150.2022.2133714.Search in Google Scholar

41. Kolavekar, S. B.; Hiremath, G. B.; Patil, P. N.; Badiger, N. M.; Ayachit, N. H. Investigation of Gamma-Ray Shielding Parameters of Bismuth Phospho-Tellurite Glasses Doped with Varying Sm2O3. Heliyon 2022, 8, e11788; https://doi.org/10.1016/j.heliyon.2022.e11788.Search in Google Scholar PubMed PubMed Central

42. Hosamani, M. M.; Vinayak, A.; Mangeshkar, S.; Malode, S.; Bhajantri, S.; Hegde, V.; Hiremath, G. B.; Badiger, N. M. Determination of Effective Atomic Number of Multifunctional Materials Using Backscattered Beta Particles – a Novel Method. Spectrosc. Lett. 2020, 53, 132; https://doi.org/10.1080/00387010.2019.1707228.Search in Google Scholar

43. Kolavekar, S. B.; Hiremath, G. B.; Badiger, N. M.; Ayachit, N. H. Investigation of the Influence of TeO2 on the Elastic and Radiation Shielding Capabilities of Phospho-Tellurite Glasses Doped with Sm2O3. Nucl. Sci. Eng. 2023, 197, 1506; https://doi.org/10.1080/00295639.2022.2149232.Search in Google Scholar

44. Hiremath, G. B.; Singh, V. P.; Ayachit, N. H.; Badiger, N. M. Investigation of the Nuclear Radiation Interaction Parameters of Selected Polymers for Radiation Therapy and Dosimetry. Radiol. Phys. Technol. 2023, 16, 168; https://doi.org/10.1007/s12194-023-00704-7.Search in Google Scholar PubMed

45. Hiremath, G. B.; Hosamani, M. M.; Singh, V. P.; Ayachit, N. H.; Badiger, N. M. Theoretical Investigation of the Gamma and Neutron Interaction Parameters of Some Inorganic Scintillators Using Phy-X/PSD and NGCal Software. J. Nucl. Eng. Radiat. Sci. 2023, 9, 032004; https://doi.org/10.1115/1.4056835.Search in Google Scholar

46. Manjunatha; Hosamani, M. M.; Hiremath, G. B.; Vinayak, A.; Singh, V. P.; Bennal, A. S.; Badiger, N. M. An Experimental Approach to Determine the Gamma Radiation Interaction Mean Free Path and Exposure Buildup Factor for Biomolecules. Appl. Radiat. Isot. 2023, 201, 111012; https://doi.org/10.1016/j.apradiso.2023.111012.Search in Google Scholar PubMed

47. Hiremath, G. B.; Ayachit, N. H.; Badiger, N. M. Potentiality of High Z Doped PVA Polymer as a Gamma, Neutron and Charged Particles Shielding Material. Radiat. Eff. Defects Solids 2023, 178, 1038; https://doi.org/10.1080/10420150.2023.2207124.Search in Google Scholar

48. Hiremath, G. B.; Singh, V. P.; Patil, P. N.; Ayachit, N. H.; Badiger, N. M. Investigation of the Nuclear Radiation Parameters of Some Ti alloys for Biomedical Applications. Radiat. Eff. Defects Solids., in press.Search in Google Scholar

Received: 2023-11-16
Accepted: 2024-04-21
Published Online: 2024-05-09
Published in Print: 2024-09-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0255/html
Scroll to top button