Startseite Naturwissenschaften Synthesis, MTT assay, 99m-Technetium radiolabeling, biodistribution evaluation of radiotracer and in vitro magnetic resonance imaging study of P,N-doped graphene quantum dots as a new multipurpose imaging nano-agent
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis, MTT assay, 99m-Technetium radiolabeling, biodistribution evaluation of radiotracer and in vitro magnetic resonance imaging study of P,N-doped graphene quantum dots as a new multipurpose imaging nano-agent

  • Morteza Mollazadeh , Ashraf Fakhari ORCID logo EMAIL logo , Tohid Mortezazadeh , Farshid Babapour Mofrad und Ali Jamali Nazarie
Veröffentlicht/Copyright: 24. Mai 2024

Abstract

In this study, a new nano-structure, N,P-doped graphene quantum dots (N,P-GQDs), were synthesized as multipurpose imaging agent for performing scintigraphy and magnetic resonance imaging (MRI). Some standard characterization methods were used to identify the nano-structure. In vitro cytotoxicity evaluation using MTT assay revealed that N,P-GQDs nanoparticles had no significant cytotoxicity after 24 and 48 h against normal (MCF-10A) and cancerous (MCF 7) human breast cell line in concentration up to 200 μg/mL. The N,P-GQDs were radiolabeled with Technetium-99m as 99mTc-(N,P-GQDs) and the radiochemical purity was assayed by ITLC concluding RCP ≥ 95 %. The passing of 99mTc-(N,P-GQDs) through 0.1 µm filter demonstrated that 70.8 % of particles were <0.1 µm. In order to perform scintigraphy, the 99mTc-(N,P-GQDs) were injected to female healthy Wistar rats. The results showed that the radio-complex was captured and eliminated just by kidneys. Moreover, in vitro T1-weighted phantom MRI imaging showed that the N,P-GQDs have proper relaxivity in comparison to Dotarem® as a clinically available contrast agent. The results showed that the N,P-GQDs have potential to be considered as a novel and encouraging agent for both molecular MRI and nuclear medicine imagings.


Corresponding author: Ashraf Fakhari, Medical Radiation Sciences Research Team, Tabriz University of Medical Sciences, Tabriz, Iran, E-mail:

Acknowledgments

We thank the Tabriz University of Medical Sciences, Medical Radiation Sciences Research Team and Islamic Azad University, Science and Research Branch for officially supporting us. We also thank Dr. Ashkan Shomali and Azadeh Ostadchinigar, and Shimi Sanat Nano Tech. Co. for expert consultation on the synthesis of N,P-GQDs and interpretation of the analysis, Dr. Shahram Dabiri for his contribution to performing scintigraphy and Habib Rahnema for his assistance with reviewing and editing this article. We would like to appreciate of the cooperation of Clinical Research Development Unit, Imam Reza General Hospital, Tabriz, Iran in conducting of this research.

  1. Research ethics: The study was approved by the Medical Radiation Sciences Research Team and Research Ethics Committee (REC) of Tabriz University of Medical Sciences, Iran. (Code:IR.TBZMED.AEC.1402.049).

  2. Author contributions: MM, AF and TM designed the reseach and collected the data. MM, AF, TM and FBM processed and interpreted the data and drafted the manuscript. AJN reviewed the manuscript. All authors read and approved the final manuscript.

  3. Competing interests: The authors declare that they have no competing interests.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Chenthamara, D., Subramaniam, S., Ramakrishnan, S. G., Krishnaswamy, S., Mohamed Essa, M., Lin, F. H., Qoronfleh, M. W. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 2019, 23(20), https://doi.org/10.1186/s40824-019-0166-x.Suche in Google Scholar PubMed PubMed Central

2. Yan, Y., Gong, J., Chen, J., Zeng, Z., Huang, W., Pu, K., Liu, J., Chen, P. Recent advances on graphene quantum dots: from chemistry and physics to applications. Adv. Mater. 2019, 31(21), https://doi.org/10.1002/adma.201808283.Suche in Google Scholar PubMed

3. Chung, S., Revia, R. A., Zhang, M. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv. Mater. 2021, 33(22), https://doi.org/10.1002/adma.201904362.Suche in Google Scholar PubMed PubMed Central

4. Mansuriya, B. D., Altintas, Z. Applications of graphene quantum dots in biomedical sensors. Sensors 2020, 20(4), https://doi.org/10.3390/s20041072.Suche in Google Scholar PubMed PubMed Central

5. Zhang, P., Huang, Y., Lu, X., Zhang, S., Li, J., Wei, G., Su, Z. One-step synthesis of large-scale graphene film doped with gold nanoparticles at liquid–air interface for electrochemistry and Raman detection applications. Langmuir 2014, 30(29), https://doi.org/10.1021/la5024086.Suche in Google Scholar PubMed

6. Jiang, D., Chen, Y., Li, N., Li, W., Wang, Z., Zhu, J., Zhang, H., Liu, B., Xu, S. Synthesis of luminescent graphene quantum dots with high quantum yield and their toxicity study. PLoS One 2015, 10(12), https://doi.org/10.1371/journal.pone.0144906.Suche in Google Scholar PubMed PubMed Central

7. Biswas, M. C., Islam, M. T., Kumar Nandy, P., Milon Hossain, M. Graphene quantum dots (GQDs) for bioimaging and drug delivery applications: a review. ACS Mater. Lett. 2021, 3, 889–911; https://doi.org/10.1021/acsmaterialslett.0c00550.Suche in Google Scholar

8. Xue, Z., Sun, Q., Zhang, L., Kang, Z., Liang, L., Wang, Q., Shen, J. W. Graphene quantum dot assisted translocation of drugs into a cell membrane. Nanoscale 2019, 11, 4503–4514; https://doi.org/10.1039/C8NR10091H.Suche in Google Scholar PubMed

9. Iannazzo, D., Pistone, A., Salamò, M., Galvagno, S., Romeo, R., Giofré, S. V., Branca, C., Visalli, G., Di Pietro, A. Graphene quantum dots for cancer targeted drug delivery. Int. J. Pharm. 2017, 25, 185–192; https://doi.org/10.1016/j.ijpharm.2016.12.060.Suche in Google Scholar PubMed

10. Wang, C., Wu, C., Zhou, X., Han, T., Xin, X, Wu, J., Zhang, J., Guo, S. Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots. Sci. Rep. 2013, 3, 2852; https://doi.org/10.1038/srep02852.Suche in Google Scholar PubMed PubMed Central

11. Yang, H. W., Huang, C. Y., Lin, C. W., Liu, H. L., Huang, C. W., Liao, S. S., Chen, P. Y., Lu, Y. J., Wei, K. C., M Ma, C. C. Gadolinium-functionalized nanographene oxide for combined drug and microRNA delivery and magnetic resonance imaging. Biomaterials 2014, 35, 6534–6542; https://doi.org/10.1016/j.biomaterials.2014.04.057.Suche in Google Scholar PubMed

12. Cheong, W. F., Prahl, S. A., Welch, A. J. A review of the optical properties of biological tissues. IEEE J. Quantum Electron. 1990, 26, 2166–2185; https://doi.org/10.1109/3.64354.Suche in Google Scholar

13. Ballou, B., Ernst, L. A., Waggoner, A. S. Fluorescence imaging of tumors in vivo. Curr. Med. Chem. 2005, 12, 795–805; https://doi.org/10.2174/0929867053507324.Suche in Google Scholar PubMed

14. Gharepapagh, E., Fakhari, A., Firuzyar, T., Shomali, A., Azimi, F. Preparation, biodistribution and dosimetry study of Tc-99m labeled N-doped graphene quantum dot nanoparticles as a multimodular radiolabeling agent. New J. Chem. 2021, 45, 3909–3919; https://doi.org/10.1039/D0NJ04762G.Suche in Google Scholar

15. Ruth, T. J. The shortage of technetium-99m and possible solutions, the annual review of nuclear and particle science. Annu. Rev. Nucl. Part. Sci. 2020, 70, 77–94; https://doi.org/10.1146/annurev-nucl-032020-021829.Suche in Google Scholar

16. Mortezazadeh, T., Gholibegloo, E., Alam, N. R., Dehghani, S., Haghgoo, S., Ghanaati, H., Khoobi, M. Gadolinium (III) oxide nanoparticles coated with folic acid-functionalized poly (β-cyclodextrin-co-pentetic acid) as a biocompatible targeted nano-contrast agent for cancer diagnostic: in vitro and in vivo studies. MAGMA 2019, 32, 487–500; https://doi.org/10.1007/s10334-019-00738-2.Suche in Google Scholar PubMed

17. Chen, H., Wang, G. D., Tang, W., Todd, T., Zhen, Z., Tsang, C., Hekmatyar, K., Cowger, T., Hubbard, R. B., Zhang, W., Stickney, J., Shen, B., Xie, J. Gd‐encapsulated carbonaceous dots with efficient renal clearance for magnetic resonance imaging. Adv. Mater. 2014, 26, 6761–6766; https://doi.org/10.1002/adma.201402964.Suche in Google Scholar PubMed PubMed Central

18. Rogosnitzky, M., Branch, S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. BioMetals 2016, 29, 365–376; https://doi.org/10.1007/s10534-016-9931-7.Suche in Google Scholar PubMed PubMed Central

19. Gupta, A., Caravan, P., Price, W. S., Platas-Iglesias, C., Gale, E. M. Applications for transition-metal chemistry in contrast-enhanced magnetic resonance imaging. Inorg. Chem. 2020, 59, 6648–6678; https://doi.org/10.1021/acs.inorgchem.0c00510.Suche in Google Scholar PubMed PubMed Central

20. Fu, C., Yu, Y., Xu, X., Wang, Q., Chang, Y., Zhang, C., Zhao, J., Peng, H., Whittaker, A. K. Functional polymers as metal-free magnetic resonance imaging contrast agents. Prog. Polym. Sci. 2020, 108, 101286; https://doi.org/10.1016/j.progpolymsci.2020.101286.Suche in Google Scholar

21. Hu, Y. H. The first magnetic‐nanoparticle‐free carbon‐based contrast agent of magnetic‐resonance imaging‐fluorinated graphene oxide. Small 2014, 10, 1451–1452; https://doi.org/10.1002/smll.201303644.Suche in Google Scholar PubMed

22. Wang, H., Revia, R., Wang, K., Kant, R. J., Mu, Q., Gai, Z., Hong, K., Zhang, M. Paramagnetic properties of metal‐free boron‐doped graphene quantum dots and their application for safe magnetic resonance imaging. Adv. Mater. 2017, 29, 1605416; https://doi.org/10.1002/adma.201605416.Suche in Google Scholar PubMed PubMed Central

23. Wang, H., Revia, R., Mu, Q., Lin, G., Yena, C., Zhang, M. Single-layer boron-doped graphene quantum dots for contrast-enhanced in vivo T1-weighted MRI. Nanoscales Horiz. 2020, 5, 573–579; https://doi.org/10.1039/C9NH00608G.Suche in Google Scholar PubMed PubMed Central

24. Nair, R. R., Sepioni, M., Tsai, I. L., Lehtinen, O., Keinonen, J., Krasheninnikov, A. V., Thomson, T., Geim, A. K., Grigorieva, I. V. Spin-half paramagnetism in graphene induced by point defects. Nat. Phys. 2012, 8, 199–202; https://doi.org/10.1038/nphys2183.Suche in Google Scholar

25. Hu, Y. H. The first magnetic‐nanoparticle‐free carbon‐based contrast agent of magnetic‐resonance imaging‐fluorinated graphene oxide. Small 2014, 10, 1451–1452; https://doi.org/10.1002/smll.201303644.Suche in Google Scholar

26. Fakhari, A., Jalilian, A. R., Yousefnia, H., Johari-Daha, F., Mazidi, M., Khalaj, A. Development of 166Ho-pamidronate for bone pain palliation therapy. J. Radioanal. Nucl. Chem. 2015, 303, 743–750; https://doi.org/10.1007/s10967-014-3515-1.Suche in Google Scholar

27. Kwon, Y. Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists; Kluwer Academic/Plenum Publishers: New York, 2004. eBook.Suche in Google Scholar

28. Cai, H., An, X., Cui, J., Li, J., Wen, S., Li, K., Shen, M., Zheng, L., Zhang, G., Shi, X. Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl. Mater. Interfaces 2013, 5, 1722–1731; https://doi.org/10.1021/am302883m.Suche in Google Scholar PubMed

29. Marks, D. C., Belov, L., Davey, M. W., Davey, R. A., Kidman, A. D. The MTT cell viability assay for cytotoxicity testing in multidrug-resistant human leukemic cells. Leukemia Res. 1992, 16, 1165–1173; https://doi.org/10.1016/0145-2126(92)90114-M.Suche in Google Scholar PubMed

30. Dehghani, S., Hosseini, M., Haghgoo, S., Changizi, V., Akbari Javar, H., Khoobi, M., Riahi Alam, N. Multifunctional MIL-Cur@FC as a theranostic agent for magnetic resonance imaging and targeting drug delivery: in vitro and in vivo study. J. Drug Target. 2020, 28, 1–13. Epub 2020 Jan 10; https://doi.org/10.1080/1061186X.2019.1710839.Suche in Google Scholar PubMed

31. Gholibegloo, E., Mortezazadeh, T., Salehian, F., Forootanfar, H., Firoozpour, L., Foroumadi, A., Ramazani, A., Khoobi, M. Folic acid decorated magnetic nanosponge: an efficient nanosystem for targeted curcumin delivery and magnetic resonance imaging. J. Colloid Interface Sci. 2019, 556, 128–139; https://doi.org/10.1016/j.jcis.2019.08.046.Suche in Google Scholar PubMed

32. Babić-Stojić, B., Jokanović, V., Milivojević, D., Požek, M., Jagličić, Z., Makovec, D., Arsikin, K., Paunović, V. Gd2O3 nanoparticles stabilized by hydrothermally modified dextrose for positive contrast magnetic resonance imaging. J. Magn. Magn. Mater. 2016, 403, 118–126; https://doi.org/10.1016/j.jmmm.2015.11.075.Suche in Google Scholar

33. Pierre, V. C., Allen, M. J., Caravan, P. Contrast agents for MRI: 30+ years and where are we going? J. Biol. Inorg. Chem. 2014, 19, 127–131; https://doi.org/10.1007/s00775-013-1074-5.Suche in Google Scholar PubMed PubMed Central

34. Mortezazadeh, T., Gholibegloo, E., Riyahi Alam, N., Dehghani, S., Haghgoo, S., Ghanaati, H., Khoobi, M. Gadolinium (III) oxide nanoparticles coated with folic acid-functionalized poly(β-cyclodextrin-co-pentetic acid) as a biocompatible targeted nano-contrast agent for cancer diagnostic: in vitro and in vivo studies. Magn. Reson. Mater. Phys. 2019, 32, 487–500; https://doi.org/10.1007/s10334-019-00738-2.Suche in Google Scholar PubMed

35. Mansouri, H., Gholibegloo, E., Mortezazadeh, T., Yazdi, M. H., Ashouri, F., Malekzadeh, R., Najafi, A., Foroumadi, A., Khoobi, M. A biocompatible theranostic nanoplatform based on magnetic gadolinium-chelated polycyclodextrin: in vitro and in vivo studies. Carbohydr. Polym. 2021, 254, 117262. Epub 2020 Oct 23; https://doi.org/10.1016/j.carbpol.2020.117262.Suche in Google Scholar PubMed

36. Wang, X., Sun, G., Routh, P., Kim, D. H., Huang, W., Chen, P. Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev. 2014, 43, 7067–7098; https://doi.org/10.1039/C4CS00141A.Suche in Google Scholar

37. Chen, L., Zhong, X., Yi, X., Huang, M., Ning, P., Liu, T., Ge, C., Chai, Z., Liu, Z., Yang, K. Radionuclide 131I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials 2015, 66, 21–28; https://doi.org/10.1016/j.biomaterials.2015.06.043.Suche in Google Scholar PubMed

38. Challan, S. B., Massoud, A. A. Radiolabeling of graphene oxide by Tchnetium-99m for infection imaging in rats. J. Radioanal. Nucl. Chem. 2017, 314, 2189–2199; https://doi.org/10.1007/s10967-017-5561-y.Suche in Google Scholar

39. Yang, Y., Magalhães Rebelo Alencar, L., Sahylí Ortega Pijeira, M., Silva Batista, B., Roger Silva França, A., Rafael Dias Rates, E., Cardoso Lima, R., Gemini-Piperni, S., Santos-Oliveirac, R. [223Ra] RaCl2 nanomicelles showed potent effect against osteosarcoma: targeted alpha therapy in the nanotechnology era. Drug Deliv. 2022, 29, 186–191; https://doi.org/10.1080/10717544.2021.2005719.Suche in Google Scholar PubMed PubMed Central

40. Wu, X., Dawsey, A. C., Siriwardena-Mahanama, B. N., Allen, M. J., Williams, T. J. A (Fluoroalkyl) guanidine modulates the relaxivity of a phosphonate-containing T1-shortening contrast agent. J. Fluor. Chem. 2014, 168, 177–183; https://doi.org/10.1016/j.jfluchem.2014.09.018.Suche in Google Scholar PubMed PubMed Central

41. Rohrer, M., Bauer, H., Mintorovitch, J., Requardt, M., Weinmann, H.-J. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Investig. Radiol. 2005, 40, 715–724; https://doi.org/10.1097/01.rli.0000184756.66360.d3.Suche in Google Scholar PubMed

42. Chen, F., Bu, W., Zhang, S., Liu, J., Fan, W., Zhou, L., Peng, W., Shi, J. Gd3+‐ion‐doped upconversion nanoprobes: relaxivity mechanism probing and sensitivity optimization. Adv. Funct. Mater. 2013, 223, 298–307; https://doi.org/10.1002/adfm.201201469.Suche in Google Scholar

Received: 2023-06-06
Accepted: 2024-03-14
Published Online: 2024-05-24
Published in Print: 2024-09-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 9.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0180/pdf
Button zum nach oben scrollen