Abstract
The rapid development of nanotechnology paved the way for further expansion of polymer chemistry and the fabrication of advanced polymeric membranes. Such modifications allowed enhancing or adding some unique properties, including mechanical strength, excellent biocompatibility, easily controlled degradability, and biological activity. This chapter discusses various applications of polymeric membranes in three significant areas of biomedicine, including tissue engineering, drug delivery systems, and diagnostics. It is intended to highlight here possible ways of improvement the properties of polymeric membranes, by modifying with other polymers, functional groups, compounds, drugs, bioactive components, and nanomaterials.
Funding source: Narodowe Centrum Nauki
Award Identifier / Grant number: DEC-2017/01/X/ST5/00108
Acknowledgments
Having an idea is one, turning it into a book is tough, however much satisfying. I wish to acknowledge Dr. Katarzyna Staszak, Dr. Bartosz Tylkowski, and Prof. Stefan Jurga for helping me and making this happen.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The study was supported by Narodowe Centrum Nauk (No. DEC-2017/01/X/ST5/00108).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Nejad, AR, Hamidieh, AA, Amirkhani, MA, Sisakht, MM. Update review on five top clinical applications of human amniotic membrane in regenerative medicine. Placenta 2021;103:104–19. https://doi.org/10.1016/j.placenta.2020.10.026.Suche in Google Scholar PubMed
2. Arrizabalaga, JH, Nollert, MU. Human amniotic membrane: a versatile scaffold for tissue engineering. ACS Biomater Sci Eng 2018;4:2226–36. https://doi.org/10.1021/acsbiomaterials.8b00015.Suche in Google Scholar PubMed
3. Chen, X, Li, J. Bioinspired by cell membranes: functional polymeric materials for biomedical applications. Mater Chem Front 2020;4:750–74. https://doi.org/10.1039/c9qm00717b.Suche in Google Scholar
4. Stamatialis, D. Biomedical membranes and (bio) artificial organs. The Netherlands: World Scientific; 2017. https://doi.org/10.1142/10549.Suche in Google Scholar
5. Allen, JW, Hassanein, T, Bhatia, SN. Advances in bioartificial liver devices. Hepatology 2001;34:447–55. https://doi.org/10.1053/jhep.2001.26753.Suche in Google Scholar PubMed
6. Strain, AJ, Neuberger, JM. A bioartificial liver – state of the art. Science 2002;80:295. https://doi.org/10.1126/science.1068660.Suche in Google Scholar PubMed
7. Adiga, SP, Jin, C, Curtiss, LA, Monteiro-Riviere, NA, Narayan, RJ. Nanoporous membranes for medical and biological applications. WIRES Nanomed Nanobiotechnol 2009;1:568–81. https://doi.org/10.1002/wnan.50.Suche in Google Scholar PubMed PubMed Central
8. Jansen, J, Fedecostante, M, Wilmer, MJ, van den Heuvel, LP, Hoenderop, JG, Masereeuw, R. Biotechnological challenges of bioartificial kidney engineering. Biotechnol Adv 2014;32:1317–27. https://doi.org/10.1016/j.biotechadv.2014.08.001.Suche in Google Scholar PubMed
9. Mansfield, MA. The use of nitrocellulose membranes in lateral-flow assays. In: Drugs abuse. Humana Press; 2007:71–85 pp. https://doi.org/10.1007/978-1-59259-951-6_4.Suche in Google Scholar
10. Savina, IN, Galaev, IY, Mikhalovsky, SV. Smart polymers for bioseparation and other biotechnological applications. In: Smart polym. their appl.; 2019. https://doi.org/10.1016/b978-0-08-102416-4.00015-6.Suche in Google Scholar
11. Peng, Y, Chen, L, Ye, S, Kang, Y, Liu, J, Zeng, S, et al.. Research and development of drug delivery systems based on drug transporter and nano-formulation. Asian J Pharm Sci 2020;15:220–36. https://doi.org/10.1016/j.ajps.2020.02.004.Suche in Google Scholar PubMed PubMed Central
12. Mabrouk, M, Rajendran, R, Soliman, IE, Ashour, MM, Beherei, HH, Tohamy, KM, et al.. Nanoparticle- and nanoporous-membrane-mediated delivery of therapeutics. Pharmaceutics 2019;11. https://doi.org/10.3390/pharmaceutics11060294.Suche in Google Scholar PubMed PubMed Central
13. Rodella, LF, Favero, G, Labanca, M. Biomaterials in maxillofacial surgery: membranes and grafts. Int J Biomed Sci 2011;7:81–8.10.59566/IJBS.2011.7081Suche in Google Scholar
14. Rodriguez, IA, Selders, GS, Fetz, AE, Gehrmann, CJ, Stein, SH, Evensky, JA, et al.. Barrier membranes for dental applications: a review and sweet advancement in membrane developments. Mouth Teeth 2018;2. https://doi.org/10.15761/mtj.1000108.Suche in Google Scholar
15. Sbricoli, L, Guazzo, R, Annunziata, M, Gobbato, L, Bressan, E, Nastri, L. Selection of collagen membranes for bone regeneration: a literature review. Materials 2020;13. https://doi.org/10.3390/ma13030786.Suche in Google Scholar PubMed PubMed Central
16. Khulbe, KC, Matsuura, T. Membrane modification BT – nanotechnology in membrane processes. Cham: Springer International Publishing; 2021:135–70 pp.10.1007/978-3-030-64183-2_4Suche in Google Scholar
17. Chen, S, Zhang, Q, Hou, Y, Zhang, J, Liang, XJ. Nanomaterials in medicine and pharmaceuticals: nanoscale materials developed with less toxicity and more efficacy. Eur J Nanomed 2013. https://doi.org/10.1515/ejnm-2013-0003.Suche in Google Scholar
18. Wong, IY, Bhatia, SN, Toner, M. Nanotechnology: emerging tools for biology and medicine. Genes Dev 2013. https://doi.org/10.1101/gad.226837.113.Suche in Google Scholar PubMed PubMed Central
19. Ronco, C, Clark, WR. Haemodialysis membranes. Nat Rev Nephrol 2018;14:394–410. https://doi.org/10.1038/s41581-018-0002-x.Suche in Google Scholar PubMed
20. Benedum, J. Die Frühgeschichte der Künstlichen Niere. Anasthesiol Intensivmed Notfallmedizin Schmerztherapie 2003;38:681–8. https://doi.org/10.1055/s-2003-43386.Suche in Google Scholar PubMed
21. Apjohn, J, William Brayley, E, Alexander Bryson, E, Bennet Lawes, J, Charles May, E, Captain Richard Strachey, E, et al.. I. The Bakerian lecture.—On osmotic force. Proc Roy Soc Lond 1856;7:83–9. https://doi.org/10.1098/rspl.1854.0020.Suche in Google Scholar
22. Hoenich, N. Cellulose for medical applications: past, present, and future. BioResources 2006;1:270–80. https://doi.org/10.15376/biores.1.2.270-280.Suche in Google Scholar
23. Drummond, AD, Bellamy, MC. Renal replacement therapy in the intensive care unit. Curr Anaesth Crit Care 2010;21:69–74. https://doi.org/10.1016/j.cacc.2009.11.005.Suche in Google Scholar
24. Ebersohn, A, Brits, R. Continuous renal replacement therapy. In: Handb. ICU ther., 3rd ed. 208: 197; 2015. https://doi.org/10.1017/CBO9781107323919.019.Suche in Google Scholar
25. Margetts, PJ, Brimble, KS. Peritoneal dialysis, membranes and beyond. Curr Opin Nephrol Hypertens 2006;15:571–6. https://doi.org/10.1097/01.mnh.0000247500.41420.94.Suche in Google Scholar PubMed
26. Liu, L, Zhang, L, Liu, GJ, Fu, P. Peritoneal dialysis for acute kidney injury. Cochrane Database Syst Rev 2017;2017. https://doi.org/10.1002/14651858.CD011457.pub2.Suche in Google Scholar PubMed PubMed Central
27. Kotanko, P, Kuhlmann, MK, Levin, NW. Hemodialysis: principles and techniques. In: Compr. clin. nephrol. Elsevier Inc.; 2010:1053–9 pp. https://doi.org/10.1016/B978-0-323-05876-6.00089-7.Suche in Google Scholar
28. Negi, S, Koreeda, D, Shigematsu, T. Continuous renal replacement therapy in acute kidney injury, Japanese. J Nephrol 2013;55:529–33. https://doi.org/10.1056/nejmct1206045.Suche in Google Scholar
29. Zweigart, C, Neubauer, M, Storr, M, Böhler, T, Krause, B. Progress in the development of membranes for kidney-replacement therapy. In: Compr. membr. sci. eng. Elsevier Inc.; 2010:351–90 pp. https://doi.org/10.1016/B978-0-08-093250-7.00030-X.Suche in Google Scholar
30. Heinze, T, Liebert, T. Celluloses and polyoses/hemicelluloses. In: Polym. sci. A compr. ref. 10 vol. set. Elsevier; 2012, vol 10:83–152 pp. https://doi.org/10.1016/B978-0-444-53349-4.00255-7.Suche in Google Scholar
31. Yerram, P, Misra, M. Technical and clinical complications of intermittent hemodialysis in the intensive care unit. In: Crit. care nephrol., 3rd ed. Elsevier Inc.; 2019:933–41.e3 p. https://doi.org/10.1016/B978-0-323-44942-7.00154-0.Suche in Google Scholar
32. Mollahosseini, A, Abdelrasoul, A, Shoker, A. Challenges and advances in hemodialysis membranes. In: Adv. membr. technol. IntechOpen; 2020. https://doi.org/10.5772/intechopen.90643.Suche in Google Scholar
33. Kerr, PG, Huang, L. Review: membranes for haemodialysis. Nephrology 2010;15:381–5. https://doi.org/10.1111/j.1440-1797.2010.01331.x.Suche in Google Scholar PubMed
34. MacLeod, A, Daly, C, Khan, I, Vale, L, Campbell, M, Wallace, S, et al.. Cellulose, modified cellulose and synthetic membranes in the haemodialysis of patients with end-stage renal disease. In: Cochrane database syst. rev. John Wiley & Sons, Ltd; 2001. https://doi.org/10.1002/14651858.cd003234.Suche in Google Scholar PubMed
35. Post, JB. Thrombocytopenia associated with use of a biocompatible hemodialysis membrane: a case report. Am J Kidney Dis 2010;55. https://doi.org/10.1053/j.ajkd.2009.10.059.Suche in Google Scholar PubMed
36. Chen, DP, Flythe, JE. Dialysis-associated allergic reactions during continuous renal replacement therapy and hemodialysis: a case report. Hemodial Int 2020;24:E5-9. https://doi.org/10.1111/hdi.12801.Suche in Google Scholar PubMed PubMed Central
37. Togo, K, Yamamoto, M, Imai, M, Akiyama, K, Yamashita, AC. Comparison of biocompatibility in cellulose triacetate dialysis membranes with homogeneous and asymmetric structures. Ren Replace Ther 2018;4:29. https://doi.org/10.1186/s41100-018-0171-x.Suche in Google Scholar
38. Takouli, L, Hadjiyannakos, D, Metaxaki, P, Sideris, V, Filiopoulos, V, Anogiati, A, et al.. Vitamin E-coated cellulose acetate dialysis membrane: long-term effect on inflammation and oxidative stress. Ren Fail 2010;32:287–93. https://doi.org/10.3109/08860221003615795.Suche in Google Scholar PubMed
39. Kim, JH, Lee, KH. Effect of PEG additive on membrane formation by phase inversion. J Membr Sci 1998;138:153–63. https://doi.org/10.1016/S0376-7388(97)00224-X.Suche in Google Scholar
40. Idris, A, Yet, LK. The effect of different molecular weight PEG additives on cellulose acetate asymmetric dialysis membrane performance. J Membr Sci 2006;280:920–7. https://doi.org/10.1016/j.memsci.2006.03.010.Suche in Google Scholar
41. Das, C, Gebru, KA. Cellulose acetate modified titanium dioxide (TiO2) nanoparticles electrospun composite membranes: fabrication and characterization. J Inst Eng Ser E 2017;98:91–101. https://doi.org/10.1007/s40034-017-0104-1.Suche in Google Scholar
42. de Faria, AF, de Moraes, ACM, Andrade, PF, da Silva, DS, do Carmo Gonçalves, M, Alves, OL. Cellulose acetate membrane embedded with graphene oxide-silver nanocomposites and its ability to suppress microbial proliferation. Cellulose 2017;24:781–6. https://doi.org/10.1007/s10570-016-1140-6.Suche in Google Scholar
43. Tolkoff-Rubin, N. Treatment of irreversible renal failure. In: Goldman’s cecil med., 24th ed. Elsevier Inc.; 2011:818–26 pp. https://doi.org/10.1016/B978-1-4377-1604-7.00133-0.Suche in Google Scholar
44. Singh, R. Introduction to membrane technology. In: Hybrid membr. syst. water purif. Elsevier; 2005:1–56 pp. https://doi.org/10.1016/b978-185617442-8/50002-6.Suche in Google Scholar
45. Bouré, T, Vanholder, R. Which dialyser membrane to choose? Nephrol Dial Transplant 2004;19:293–6. https://doi.org/10.1093/ndt/gfg508.Suche in Google Scholar PubMed
46. Kreusser, W, Reiermann, S, Vogelbusch, G, Bartual, J, Schulze-Lohoff, E. Effect of different synthetic membranes on laboratory parameters and survival in chronic haemodialysis patients. NDT Plus 2010. https://doi.org/10.1093/ndtplus/sfq032.Suche in Google Scholar PubMed PubMed Central
47. Klein, G-M, Meier, J, Kottke, V. Fouling in membrane apparatus. Food Bioprod Process 1999;77:119–26. https://doi.org/10.1205/096030899532411.Suche in Google Scholar
48. Hiwatari, M, Yamamoto, K, Hayama, M, Kohori, F, Sakai, K. Evaluation of local membrane fouling in hemodialyzer. Am Soc Artif Intern Organs J 2004;50:177. https://doi.org/10.1097/00002480-200403000-00260.Suche in Google Scholar
49. Hayama, M, Yamamoto, KI, Kohori, F, Sakai, K. How polysulfone dialysis membranes containing polyvinylpyrrolidone achieve excellent biocompatibility? J Membr Sci 2004;234:41–9. https://doi.org/10.1016/j.memsci.2004.01.020.Suche in Google Scholar
50. Kim, YW, Shick Ahn, W, Kim, JJ, Ha Kim, Y. In situ fabrication of self-transformable and hydrophilic poly(ethylene glycol) derivative-modified polysulfone membranes. Biomaterials 2005;26:2867–75. https://doi.org/10.1016/j.biomaterials.2004.08.026.Suche in Google Scholar PubMed
51. Wang, H, Yu, T, Zhao, C, Du, Q. Improvement of hydrophilicity and blood compatibility on polyethersulfone membrane by adding polyvinylpyrrolidone. Fibers Polym 2009;10:1–5. https://doi.org/10.1007/s12221-009-0001-4.Suche in Google Scholar
52. Ren, X, Xu, L, Xu, J, Zhu, P, Zuo, L, Wei, S. Immobilized heparin and its anti-coagulation effect on polysulfone membrane surface. J Biomater Sci Polym Ed 2013;24:1707–20. https://doi.org/10.1080/09205063.2013.792643.Suche in Google Scholar PubMed
53. Zhao, C, Liu, X, Rikimaru, S, Nomizu, M, Nishi, N. Surface characterization of polysulfone membranes modified by DNA immobilization. J Membr Sci 2003;214:179–89. https://doi.org/10.1016/S0376-7388(02)00524-0.Suche in Google Scholar
54. Said, N, Hasbullah, H, Ismail, AF, Othman, MHD, Goh, PS, Zainol Abidin, MN, et al.. Enhanced hydrophilic polysulfone hollow fiber membranes with addition of iron oxide nanoparticles. Polym Int 2017;66:1424–9. https://doi.org/10.1002/pi.5401.Suche in Google Scholar
55. Garcia-Ivars, J, Iborra-Clar, MI, Alcaina-Miranda, MI, Mendoza-Roca, JA, Pastor-Alcañiz, L. Development of fouling-resistant polyethersulfone ultrafiltration membranes via surface UV photografting with polyethylene glycol/aluminum oxide nanoparticles. Separ Purif Technol 2014;135:88–99. https://doi.org/10.1016/j.seppur.2014.07.056.Suche in Google Scholar
56. Haider, MS, Shao, GN, Imran, SM, Park, SS, Abbas, N, Tahir, MS, et al.. Aminated polyethersulfone-silver nanoparticles (AgNPs-APES) composite membranes with controlled silver ion release for antibacterial and water treatment applications. Mater Sci Eng C 2016;62:732–45. https://doi.org/10.1016/j.msec.2016.02.025.Suche in Google Scholar PubMed
57. Yeager, T, Roy, S. Evolution of gas permeable membranes for extracorporeal membrane oxygenation. Artif. Organs 2017;41:700–9. https://doi.org/10.1111/aor.12835.Suche in Google Scholar PubMed
58. Lim, MW. The history of extracorporeal oxygenators. Anaesthesia 2006;61:984–95. https://doi.org/10.1111/j.1365-2044.2006.04781.x.Suche in Google Scholar PubMed
59. Wu, WI, Rochow, N, Chan, E, Fusch, G, Manan, A, Nagpal, D, et al.. Lung assist device: development of microfluidic oxygenators for preterm infants with respiratory failure. Lab Chip 2013;13:2641–50. https://doi.org/10.1039/c3lc41417e.Suche in Google Scholar PubMed
60. Bartlett, RH, Gazzaniga, AB, Jefferies, MR. Extracorporeal membrane oxygenation (ECMO) cardiopulmonary support in infancy. J Extra Corpor Technol 1979;11:26–41.10.1051/ject/197911126Suche in Google Scholar
61. Fried, DW, Bell-Thomson, J. Oxygen transfer efficiency of three microporous polypropylene membrane oxygenators. Perfusion 1991;6:105–14. https://doi.org/10.1177/026765919100600205.Suche in Google Scholar PubMed
62. Yamane, S, Ohashi, Y, Sueoka, A, Sato, K, Kuwana, J, Nosé, Y. Development of a silicone hollow fiber membrane oxygenator for ECMO application. Am Soc Artif Intern Organs J 1998;44. https://doi.org/10.1097/00002480-199809000-00011.Suche in Google Scholar PubMed
63. Kent, PJ. Antithrombotic surface treating agent and medical apparatus. Patent US 2002, Pub. No.: 0055240 A1, 2002.Suche in Google Scholar
64. Karichev, ZR, Muler, AL. Composite hollow-fiber membranes in blood oxygenation. Theor Found Chem Eng 2001;35:383–9. https://doi.org/10.1023/A:1010431204956.10.1023/A:1010431204956Suche in Google Scholar
65. Mueller, XM, Marty, B, Tevaearai, HT, Tozzi, P, Jegger, D, Von Segesser, LK. A siliconized hollow fiber membrane oxygenator. Am Soc Artif Intern Organs J 2000;46:38–41. https://doi.org/10.1097/00002480-200001000-00012.Suche in Google Scholar PubMed
66. Daniel, J, Bernard, P, Skinner, S, Bhandary, P, Ruzic, A, Bacon, M, et al.. Hollow fiber oxygenator composition has a significant impact on failure rates in neonates on extracorporeal membrane oxygenation: a retrospective analysis. J Pediatr Intensive Care 2018;7:7–13. https://doi.org/10.1055/s-0037-1599150.Suche in Google Scholar PubMed PubMed Central
67. Toomasian, JM, Schreiner, RJ, Meyer, DE, Schmidt, ME, Hagan, SE, Griffith, GW, et al.. A polymethylpentene fiber gas exchanger for long-term extracorporeal life support. Am Soc Artif Intern Organs J 2005;51:390–7. https://doi.org/10.1097/01.mat.0000169111.66328.a8.Suche in Google Scholar PubMed
68. Ambravaneswaran, V, Uttamaraj, S, Çelik-Butler, Z, Eberhart, RC, Chuong, CJ, Billo, RE, et al.. Micromachined nanoporous membranes for blood oxygenation systems. In: 2008 8th IEEE conf. nanotechnology. IEEE-NANO; 2008. https://doi.org/10.1109/NANO.2008.66.Suche in Google Scholar
69. Park, A, Song, Y, Yi, E, Duy Nguyen, BT, Han, D, Sohn, EH, et al.. Blood oxygenation using fluoropolymer-based artificial lung membranes. ACS Biomater Sci Eng 2020. https://doi.org/10.1021/acsbiomaterials.0c01251.Suche in Google Scholar PubMed
70. Pless, G. Artificial and bioartificial liver support. Organogenesis 2007;3. https://doi.org/10.4161/org.3.1.3635.Suche in Google Scholar PubMed PubMed Central
71. Carpentier, B, Gautier, A, Legallais, C. Artificial and bioartificial liver devices: present and future. Gut 2009;58:1690–702. https://doi.org/10.1136/gut.2008.175380.Suche in Google Scholar PubMed
72. Vladisavljević, GT. Biocatalytic membrane reactors (BMR). Phys Sci Rev 2019;1. https://doi.org/10.1515/psr-2015-0015.Suche in Google Scholar
73. Ranieri, G, Mazzei, R, Wu, Z, Li, K, Giorno, L. Use of a ceramic membrane to improve the performance of two-separate-phase biocatalytic membrane reactor. Molecules 2016;21. https://doi.org/10.3390/molecules21030345.Suche in Google Scholar PubMed PubMed Central
74. Toledo Pereyra, LH. Role of activated carbon hemoperfusion in the recovery of livers exposed to ischemic damage. Arch Surg 1985;120:462–5. https://doi.org/10.1001/archsurg.1985.01390280056012.Suche in Google Scholar PubMed
75. Bakhsh, S, Teoh, CW, Harvey, EA, Noone, DG. Single pass albumin dialysis and plasma exchange for copper toxicity in acute Wilson disease. Case Rep Nephrol Dial 2019;9:55–63. https://doi.org/10.1159/000500104.Suche in Google Scholar
76. García Martínez, JJ, Bendjelid, K. Artificial liver support systems: what is new over the last decade? Ann Intensive Care 2018;8:109. https://doi.org/10.1186/s13613-018-0453-z.Suche in Google Scholar PubMed PubMed Central
77. Saliba, F. The molecular adsorbent recirculating system (MARS®) in the intensive care unit: a rescue therapy for patients with hepatic failure. Crit Care 2006;10:118. https://doi.org/10.1186/cc4825.Suche in Google Scholar PubMed PubMed Central
78. Tsipotis, E, Shuja, A, Jaber, BL. Albumin dialysis for liver failure: a systematic review. Adv Chron Kidney Dis 2015;22:382–90. https://doi.org/10.1053/j.ackd.2015.05.004.Suche in Google Scholar PubMed
79. Laleman, W, Wilmer, A, Evenepoel, P, Vander Elst, I, Zeegers, M, Zaman, Z, et al.. Effect of the molecular adsorbent recirculating system and Prometheus devices on systemic haemodynamics and vasoactive agents in patients with acute-on-chronic alcoholic liver failure. Crit Care 2006;10:R108. https://doi.org/10.1186/cc4985.Suche in Google Scholar PubMed PubMed Central
80. Evenepoel, P, Laleman, W, Wilmer, A, Claes, K, Kuypers, D, Bammens, B, et al.. Prometheus versus molecular adsorbents recirculating system: comparison of efficiency in two different liver detoxification devices. Artif Organs 2006;30:276–84. https://doi.org/10.1111/j.1525-1594.2006.00215.x.Suche in Google Scholar PubMed
81. Rifai, K. Fractionated plasma separation and adsorption: current practice and future options. Liver Int 2011;31:13–5. https://doi.org/10.1111/j.1478-3231.2011.02595.x.Suche in Google Scholar PubMed
82. Dhandayuthapani, B, Yoshida, Y, Maekawa, T, Kumar, DS. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011;2011:290602. https://doi.org/10.1155/2011/290602.Suche in Google Scholar
83. Weigel, T, Schinkel, G, Lendlein, A. Design and preparation of polymeric scaffolds for tissue engineering. Expet Rev Med Dev 2006;3:835–51. https://doi.org/10.1586/17434440.3.6.835.Suche in Google Scholar PubMed
84. Shiohara, A, Prieto-Simon, B, Voelcker, NH. Porous polymeric membranes: fabrication techniques and biomedical applications. J Mater Chem B 2021;9:2129–54. https://doi.org/10.1039/d0tb01727b.Suche in Google Scholar PubMed
85. Kawakami, H. Polymeric membrane materials for artificial organs. J Artif Organs 2008;11:177–81. https://doi.org/10.1007/s10047-008-0427-2.Suche in Google Scholar PubMed
86. Tan, EYS, Agarwala, S, Yap, YL, Tan, CSH, Laude, A, Yeong, WY. Novel method for the fabrication of ultrathin, free-standing and porous polymer membranes for retinal tissue engineering. J Mater Chem B 2017;5:5616–22. https://doi.org/10.1039/c7tb00376e.Suche in Google Scholar
87. Curcio, CA, Johnson, M. Structure, function, and pathology of Bruch’s membrane. In: Retin, 5th ed. Elsevier Inc.; 2012:465–81 pp. https://doi.org/10.1016/B978-1-4557-0737-9.00020-5.Suche in Google Scholar
88. Yan, D, Yao, Q, Yu, F, Chen, L, Zhang, S, Sun, H, et al.. Surface modified electrospun poly(lactic acid) fibrous scaffold with cellulose nanofibrils and Ag nanoparticles for ocular cell proliferation and antimicrobial application. Mater Sci Eng C 2020;111:110767. https://doi.org/10.1016/j.msec.2020.110767.Suche in Google Scholar PubMed
89. Quirós-Solano, WF, Gaio, N, Stassen, OMJA, Arik, YB, Silvestri, C, Van Engeland, NCA, et al.. Microfabricated tuneable and transferable porous PDMS membranes for organs-on-chips. Sci Rep 2018;8. https://doi.org/10.1038/s41598-018-31912-6.Suche in Google Scholar PubMed PubMed Central
90. Park, JY, Lee, JH, Kim, CH, Kim, YJ. Fabrication of polytetrafluoroethylene nanofibrous membranes for guided bone regeneration. RSC Adv 2018;8:34359–69. https://doi.org/10.1039/C8RA05637D.Suche in Google Scholar PubMed PubMed Central
91. Rashid, R, Sofi, HS, Macossay, J, Sheikh, FA. Polycaprolactone-based nanofibers and their in-vitro and in-vivo applications in bone tissue engineering. In: Appl. nanotechnol. biomed. sci. Singapore: Springer; 2020:17–38 pp. https://doi.org/10.1007/978-981-15-5622-7_2.Suche in Google Scholar
92. Baylan, N, Bhat, S, Ditto, M, Lawrence, JG, Lecka-Czernik, B, Yildirim-Ayan, E. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold. Biomed Mater 2013;8:045011. https://doi.org/10.1088/1748-6041/8/4/045011.Suche in Google Scholar PubMed
93. Stastna, E, Castkova, K, Rahel, J. Influence of hydroxyapatite nanoparticles and surface plasma treatment on bioactivity of polycaprolactone nanofibers. Polymers 2020;12:1877. https://doi.org/10.3390/POLYM12091877.Suche in Google Scholar PubMed PubMed Central
94. Diban, N, Stamatialis, D. Polymeric hollow fiber membranes for bioartificial organs and tissue engineering applications. J Chem Technol Biotechnol 2014;89:633–43. https://doi.org/10.1002/jctb.4300.Suche in Google Scholar
95. Bettahalli, NMS, Steg, H, Wessling, M, Stamatialis, D. Development of poly(l-lactic acid) hollow fiber membranes for artificial vasculature in tissue engineering scaffolds. J Membr Sci 2011;371:117–26. https://doi.org/10.1016/j.memsci.2011.01.026.Suche in Google Scholar
96. Mohammadzadeh, L, Rahbarghazi, R, Salehi, R, Mahkam, M. A novel egg-shell membrane based hybrid nanofibrous scaffold for cutaneous tissue engineering. J Biol Eng 2019;13:79. https://doi.org/10.1186/s13036-019-0208-x.Suche in Google Scholar PubMed PubMed Central
97. Wei, P, Xu, Y, Gu, Y, Yao, Q, Li, J, Wang, L. IGF-1-releasing PLGA nanoparticles modified 3D printed PCL scaffolds for cartilage tissue engineering. Drug Deliv 2020;27:1106–14. https://doi.org/10.1080/10717544.2020.1797239.Suche in Google Scholar PubMed PubMed Central
98. Ficek, K, Rajca, J, Stolarz, M, Stodolak-Zych, E, Wieczorek, J, Muzalewska, M, et al.. Bioresorbable stent in anterior cruciate ligament reconstruction. Polymers 2019;11. https://doi.org/10.3390/polym11121961.Suche in Google Scholar PubMed PubMed Central
99. Song, S, Blaha, C, Moses, W, Park, J, Wright, N, Groszek, J, et al.. An intravascular bioartificial pancreas device (iBAP) with silicon nanopore membranes (SNM) for islet encapsulation under convective mass transport. Lab Chip 2017;17:1778–92. https://doi.org/10.1039/c7lc00096k.Suche in Google Scholar PubMed PubMed Central
100. Stevens, KR, Schwartz, RE, Ng, S, Shan, J, Bhatia, SN. Hepatic tissue engineering. In: Princ. tissue eng., 4th ed.; 2013:951–86 pp. https://doi.org/10.1016/B978-0-12-398358-9.00046-X.Suche in Google Scholar
101. Kasuya, J, Tanishita, K. Microporous membrane-based liver tissue engineering for the reconstruction of three-dimensional functional liver tissues in vitro. Biomatter 2012;2:90–5. https://doi.org/10.4161/biom.22481.Suche in Google Scholar PubMed PubMed Central
102. Savignat, M, De-Doncker, L, Vodouhe, C, Garza, JM, Lavalle, P, Libersa, P. Rat nerve regeneration with the use of a polymeric membrane loaded with NGF. J Dent Res 2007;86:1051–6. https://doi.org/10.1177/154405910708601106.Suche in Google Scholar PubMed
103. Liu, Y, Zhou, G, Liu, Z, Guo, M, Jiang, X, Taskin, MB, et al.. Mussel inspired polynorepinephrine functionalized electrospun polycaprolactone microfibers for muscle regeneration. Sci Rep 2017;7. https://doi.org/10.1038/s41598-017-08572-z.Suche in Google Scholar PubMed PubMed Central
104. Lee, S-W, Kim, S-G. Membranes for the guided bone regeneration. Maxillofac Plast Reconstr Surg 2014;36:239–46. https://doi.org/10.14402/jkamprs.2014.36.6.239.Suche in Google Scholar PubMed PubMed Central
105. Gonçalves, F, de Moraes, MS, Ferreira, LB, Carreira, ACO, Kossugue, PM, Boaro, LCC, et al.. Combination of bioactive polymeric membranes and stem cells for periodontal regeneration: in vitro and in vivo analyses. PloS One 2016;11:e0152412. https://doi.org/10.1371/journal.pone.0152412.Suche in Google Scholar PubMed PubMed Central
106. Da Cunha, MR, Alves, MC, Calegari, ARA, Iatecola, A, Galdeano, EA, Galdeano, TL, et al.. In vivo study of the osteoregenerative potential of polymer membranes consisting of chitosan and carbon nanotubes. Mater Res 2017;20:3. https://doi.org/10.1590/1980-5373-MR-2016-1112.Suche in Google Scholar
107. McHugh, AJ. The role of polymer membrane formation in sustained release drug delivery systems. J Control Release 2005;109:211–21. https://doi.org/10.1016/j.jconrel.2005.09.038.Suche in Google Scholar PubMed
108. Liechty, WB, Kryscio, DR, Slaughter, BV, Peppas, NA. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 2010;1:149–73. https://doi.org/10.1146/annurev-chembioeng-073009-100847.Suche in Google Scholar PubMed PubMed Central
109. Homayun, B, Lin, X, Choi, HJ. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 2019;11. https://doi.org/10.3390/pharmaceutics11030129.Suche in Google Scholar PubMed PubMed Central
110. Gupta, H, Bhandari, D, Sharma, A. Recent trends in oral drug delivery: a review, recent pat. Drug Deliv Formul 2009;3:162–73. https://doi.org/10.2174/187221109788452267.Suche in Google Scholar PubMed
111. Miladi, K, Ibraheem, D, Iqbal, M, Sfar, S, Fessi, H, Elaissari, A. Particles from preformed polymers as carriers for drug delivery. EXCLI J 2014;13:28–57. https://doi.org/10.17877/DE290R-15560.Suche in Google Scholar
112. George, A, Shah, PA, Shrivastav, PS. Natural biodegradable polymers based nano-formulations for drug delivery: a review. Int J Pharm 2019;561:244–64. https://doi.org/10.1016/j.ijpharm.2019.03.011.Suche in Google Scholar PubMed
113. Han, S, Li, M, Liu, X, Gao, H, Wu, Y. Construction of amphiphilic copolymer nanoparticles based on gelatin as drug carriers for doxorubicin delivery. Colloids Surf B Biointerfaces 2013;102:833–41. https://doi.org/10.1016/j.colsurfb.2012.09.010.Suche in Google Scholar PubMed
114. Wang, G, Yu, B, Wu, Y, Huang, B, Yuan, Y, Liu, CS. Controlled preparation and antitumor efficacy of vitamin e TPGS-functionalized PLGA nanoparticles for delivery of paclitaxel. Int J Pharm 2013;446:24–33. https://doi.org/10.1016/j.ijpharm.2013.02.004.Suche in Google Scholar PubMed
115. Almouazen, E, Bourgeois, S, Boussaïd, A, Valot, P, Malleval, C, Fessi, H, et al.. Development of a nanoparticle-based system for the delivery of retinoic acid into macrophages. Int J Pharm 2012;430:207–15. https://doi.org/10.1016/j.ijpharm.2012.03.025.Suche in Google Scholar PubMed
116. Khayata, N, Abdelwahed, W, Chehna, MF, Charcosset, C, Fessi, H. Preparation of vitamin e loaded nanocapsules by the nanoprecipitation method: from laboratory scale to large scale using a membrane contactor. Int J Pharm 2012;423:419–27. https://doi.org/10.1016/j.ijpharm.2011.12.016.Suche in Google Scholar PubMed
117. Seju, U, Kumar, A, Sawant, KK. Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. Acta Biomater 2011;7:4169–76. https://doi.org/10.1016/j.actbio.2011.07.025.Suche in Google Scholar PubMed
118. Campos, EVR, de Melo, NFS, de Paula, E, Rosa, AH, Fraceto, LF. Screening of conditions for the preparation of poly(-caprolactone) nanocapsules containing the local anesthetic articaine. J Colloid Sci Biotechnol 2013;2:106–11. https://doi.org/10.1166/jcsb.2013.1040.Suche in Google Scholar
119. Javadzadeh, Y, Ahadi, F, Davaran, S, Mohammadi, G, Sabzevari, A, Adibkia, K. Preparation and physicochemical characterization of naproxen-PLGA nanoparticles. Colloids Surf B Biointerfaces 2010;81:498–502. https://doi.org/10.1016/j.colsurfb.2010.07.047.Suche in Google Scholar PubMed
120. Valot, P, Baba, M, Nedelec, JM, Sintes-Zydowicz, N. Effects of process parameters on the properties of biocompatible Ibuprofen-loaded microcapsules. Int J Pharm 2009;369:53–63. https://doi.org/10.1016/j.ijpharm.2008.10.037.Suche in Google Scholar PubMed
121. Bajpai, AK, Bhanu, S. Dynamics of controlled release of heparin from swellable crosslinked starch microspheres. J Mater Sci Mater Med 2007;18:1613–21. https://doi.org/10.1007/s10856-007-3020-y.Suche in Google Scholar PubMed
122. Baek, JS, Tan, CH, Ng, NKJ, Yeo, YP, Rice, SA, Loo, SCJ. A programmable lipid-polymer hybrid nanoparticle system for localized, sustained antibiotic delivery to Gram-positive and Gram-negative bacterial biofilms. Nanoscale Horiz 2018;3:305–11. https://doi.org/10.1039/c7nh00167c.Suche in Google Scholar PubMed
123. Ritsema, JAS, Herschberg, EMA, Borgos, SE, Løvmo, C, Schmid, R, te Welscher, YM, et al.. Relationship between polarities of antibiotic and polymer matrix on nanoparticle formulations based on aliphatic polyesters. Int J Pharm 2018;548:730–9. https://doi.org/10.1016/j.ijpharm.2017.11.017.Suche in Google Scholar PubMed
124. Aggarwal, S. Targeted cancer therapies. Nat Rev Drug Discov 2010;9:427–8. https://doi.org/10.1038/nrd3186.Suche in Google Scholar PubMed
125. Senapati, S, Mahanta, AK, Kumar, S, Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 2018;3:1–19. https://doi.org/10.1038/s41392-017-0004-3.Suche in Google Scholar PubMed PubMed Central
126. Kumar, S, Singh, S, Senapati, S, Singh, AP, Ray, B, Maiti, P. Controlled drug release through regulated biodegradation of poly(lactic acid) using inorganic salts. Int J Biol Macromol 2017;104:487–97. https://doi.org/10.1016/j.ijbiomac.2017.06.033.Suche in Google Scholar PubMed
127. Berkland, C, King, M, Cox, A, Kim, K, Pack, DW. Precise control of PLG microsphere size provides enhanced control of drug release rate. J Contr Release 2002;82:137–47. https://doi.org/10.1016/S0168-3659(02)00136-0.Suche in Google Scholar
128. Singh, MN, Hemant, KSY, Ram, M, Shivakumar, HG. Microencapsulation: a promising technique for controlled drug delivery. Res Pharm Sci 2010;5:65–77.Suche in Google Scholar
129. Benskin, LL. Evidence for polymeric membrane dressings as a unique dressing subcategory, using pressure ulcers as an example. Adv Wound Care 2018;7:419–26. https://doi.org/10.1089/wound.2018.0822.Suche in Google Scholar PubMed PubMed Central
130. Lei, J, Sun, L, Li, P, Zhu, C, Lin, Z. The wound dressings and their applications in wound healing and management. Health Sci J 2019;13:662.Suche in Google Scholar
131. Kamoun, EA, Kenawy, ERS, Chen, X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 2017;8:217–33. https://doi.org/10.1016/j.jare.2017.01.005.Suche in Google Scholar PubMed PubMed Central
132. López-Calderón, HD, Avilés-Arnaut, H, Galán-Wong, LJ, Almaguer-Cantú, V, Laguna-Camacho, JR, Calderón-Ramón, C, et al.. Electrospun polyvinylpyrrolidone-gelatin and cellulose acetate bi-layer scaffold loaded with gentamicin as possible wound dressing. Polymers 2020;12:1–12. https://doi.org/10.3390/polym12102311.Suche in Google Scholar PubMed PubMed Central
133. Tong, WY, bin Abdullah, AYK, binti Rozman, NAS, bin Wahid, MIA, Hossain, MS, Ring, LC, et al.. Antimicrobial wound dressing film utilizing cellulose nanocrystal as drug delivery system for curcumin. Cellulose 2018;25:631–8. https://doi.org/10.1007/s10570-017-1562-9.Suche in Google Scholar
134. Vimala, K, Yallapu, MM, Varaprasad, K, Reddy, NN, Ravindra, S, Naidu, NS, et al.. Fabrication of curcumin encapsulated chitosan-PVA silver nanocomposite films for improved antimicrobial activity. J Biomaterials Nanobiotechnol 2011;2:55–64. https://doi.org/10.4236/jbnb.2011.21008.Suche in Google Scholar
135. Pannier, AK, Shea, LD. Controlled release systems for DNA delivery. Mol Ther 2004;10:19–26. https://doi.org/10.1016/j.ymthe.2004.03.020.Suche in Google Scholar PubMed
136. Yun, YH, Goetz, DJ, Yellen, P, Chen, W. Hyaluronan microspheres for sustained gene delivery and site-specific targeting. Biomaterials 2004;25:147–57. https://doi.org/10.1016/S0142-9612(03)00467-8.Suche in Google Scholar PubMed
137. Nof, M, Shea, LD. Drug-releasing scaffolds fabricated from drug-loaded microspheres. J Biomed Mater Res 2002;59:349–56. https://doi.org/10.1002/jbm.1251.Suche in Google Scholar PubMed
138. Denis-Mize, KS, Dupuis, M, MacKichan, ML, Singh, M, Doe, B, O’Hagan, D, et al.. Plasmid DNA adsorbed onto cationic microparticles mediates target gene expression and antigen presentation by dendritic cells. Gene Ther 2000;7:2105–12. https://doi.org/10.1038/sj.gt.3301347.Suche in Google Scholar PubMed
139. Palucka, AK, Ueno, H, Fay, J, Banchereau, J. Dendritic cells: a critical player in cancer therapy? J Immunother 2008;31:793–805. https://doi.org/10.1097/CJI.0b013e31818403bc.Suche in Google Scholar PubMed PubMed Central
140. Lee, CS, Bishop, ES, Zhang, R, Yu, X, Farina, EM, Yan, S, et al.. Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis 2017;4:43–63. https://doi.org/10.1016/j.gendis.2017.04.001.Suche in Google Scholar PubMed PubMed Central
141. Cavanagh, HMA, Dingwall, D, Steel, J, Benson, J, Burton, M. Cell contact dependent extended release of adenovirus by microparticles in vitro. J Virol Methods 2001;95:57–64. https://doi.org/10.1016/S0166-0934(01)00291-9.Suche in Google Scholar
142. Sailaja, G, HogenEsch, H, North, A, Hays, J, Mittal, SK. Encapsulation of recombinant adenovirus into alginate microspheres circumvents vector specific immune response. Gene Ther 2002;9:1722–9. https://doi.org/10.1038/sj.gt.3301858.Suche in Google Scholar PubMed PubMed Central
143. Fisher, KD, Stallwood, Y, Green, NK, Ulbrich, K, Mautner, V, Seymour, LW. Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther 2001;8:341–8. https://doi.org/10.1038/sj.gt.3301389.Suche in Google Scholar PubMed
144. El Idrissi, M, Meyer, CE, Zartner, L, Meier, W. Nanosensors based on polymer vesicles and planar membranes: a short review. J Nanobiotechnol 2018;16:63. https://doi.org/10.1186/S12951-018-0393-7.Suche in Google Scholar
145. Lomora, M, Itel, F, Dinu, IA, Palivan, CG. Selective ion-permeable membranes by insertion of biopores into polymersomes. Phys Chem Chem Phys 2015;17:15538–46. https://doi.org/10.1039/c4cp05879h.Suche in Google Scholar PubMed
146. Kowal, J, Zhang, X, Dinu, IA, Palivan, CG, Meier, W. Planar biomimetic membranes based on amphiphilic block copolymers. ACS Macro Lett 2014;3:59–63. https://doi.org/10.1021/mz400590c.Suche in Google Scholar
147. Li, YJ, Tseng, YT, Unnikrishnan, B, Huang, CC. Gold-nanoparticles-modified cellulose membrane coupled with laser desorption/ionization mass spectrometry for detection of iodide in urine. ACS Appl Mater Interfaces 2013;5:9161–6. https://doi.org/10.1021/am4025824.Suche in Google Scholar PubMed
148. Anajafi, T, Mallik, S. Polymersome-based drug-delivery strategies for cancer therapeutics. Ther Deliv 2015;6:521–34. https://doi.org/10.4155/tde.14.125.Suche in Google Scholar PubMed PubMed Central
149. Robeson, LM. Polymer membranes. In: Polym. sci. A compr. ref. 10 vol. set. Elsevier; 2012, vol 8:325–47 pp. https://doi.org/10.1016/B978-0-444-53349-4.00211-9.Suche in Google Scholar
150. Moschou, EA, Chaniotakis, NA. Chapter 19 Ion-partitioning membranes as electroactive elements for the development of a novel cation-selective CHEMFET sensor system. In: Membr. sci. technol. Elsevier; 2003, vol 8:393–413 pp. https://doi.org/10.1016/S0927-5193(03)80022-0.Suche in Google Scholar
151. Guimard, NK, Gomez, N, Schmidt, CE. Conducting polymers in biomedical engineering. Prog Polym Sci 2007;32:876–921. https://doi.org/10.1016/j.progpolymsci.2007.05.012.Suche in Google Scholar
152. Peng, H, Zhang, L, Soeller, C, Travas-Sejdic, J. Conducting polymers for electrochemical DNA sensing. Biomaterials 2009;30:2132–48. https://doi.org/10.1016/j.biomaterials.2008.12.065.Suche in Google Scholar PubMed
153. Xu, T. Ion exchange membranes: state of their development and perspective. J Membr Sci 2005;263:1–29. https://doi.org/10.1016/j.memsci.2005.05.002.Suche in Google Scholar
154. Senapati, S, Slouka, Z, Shah, SS, Behura, SK, Shi, Z, Stack, MS, et al.. An ion-exchange nanomembrane sensor for detection of nucleic acids using a surface charge inversion phenomenon. Biosens Bioelectron 2014;60:92–100. https://doi.org/10.1016/j.bios.2014.04.008.Suche in Google Scholar PubMed PubMed Central
155. Jiang, X, Wang, P, Liang, R, Qin, W. Improving the biocompatibility of polymeric membrane potentiometric ion sensors by using a mussel-inspired polydopamine coating. Anal Chem 2019;91:6424–9. https://doi.org/10.1021/acs.analchem.9b00039.Suche in Google Scholar PubMed
156. Kwong Hong Tsang, D, Lieberthal, TJ, Watts, C, Dunlop, IE, Ramadan, S, del Rio Hernandez, AE, et al.. Chemically functionalised graphene FET biosensor for the label-free sensing of exosomes. Sci Rep 2019;9:1–10. https://doi.org/10.1038/s41598-019-50412-9.Suche in Google Scholar PubMed PubMed Central
157. Zhang, Y, Clausmeyer, J, Babakinejad, B, López Córdoba, A, Ali, T, Shevchuk, A, et al.. Spearhead nanometric field-effect transistor sensors for single-cell analysis. ACS Nano 2016;10:3214–21. https://doi.org/10.1021/acsnano.5b05211.Suche in Google Scholar PubMed PubMed Central
158. Rivas, L, Medina-Sánchez, M, De La Escosura-Muñiz, A, Merkoçi, A. Improving sensitivity of gold nanoparticle-based lateral flow assays by using wax-printed pillars as delay barriers of microfluidics. Lab Chip 2014;14:4406–14. https://doi.org/10.1039/c4lc00972j.Suche in Google Scholar PubMed
159. Ahmad, AL, Low, SC, Shukor, SRA, Ismail, A. Investigating membrane morphology and quantity of immobilized protein for the development of lateral flow immunoassay. J Immunoassay Immunochem 2012;33:48–58. https://doi.org/10.1080/15321819.2011.591479.Suche in Google Scholar PubMed
160. Tominaga, T. Rapid detection of coliform bacteria using a lateral flow test strip assay. J Microbiol Methods 2019;160:29–35. https://doi.org/10.1016/j.mimet.2019.03.013.Suche in Google Scholar PubMed
161. Yu, S, Nimse, SB, Kim, J, Song, KS, Kim, T. Development of a lateral flow strip membrane assay for rapid and sensitive detection of the SARS-CoV-2. Anal Chem 2020;92:14139–44. https://doi.org/10.1021/acs.analchem.0c03202.Suche in Google Scholar PubMed PubMed Central
162. Chen, Z, Zhang, Z, Zhai, X, Li, Y, Lin, L, Zhao, H, et al.. Rapid and sensitive detection of anti-SARS-CoV-2 IgG, using lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal Chem 2020;92:7226–31. https://doi.org/10.1021/acs.analchem.0c00784.Suche in Google Scholar PubMed PubMed Central
163. Wen, T, Huang, C, Shi, FJ, Zeng, XY, Lu, T, Ding, SN, et al.. Development of a lateral flow immunoassay strip for rapid detection of IgG antibody against SARS-CoV-2 virus. Analyst 2020;145:5345–52. https://doi.org/10.1039/d0an00629g.Suche in Google Scholar PubMed
164. Koczula, KM, Gallotta, A. Lateral flow assays. Essays Biochem 2016;60:111–20. https://doi.org/10.1042/EBC20150012.Suche in Google Scholar PubMed PubMed Central
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Influence of lime (CaO) on low temperature leaching of some types of bauxite from Guinea
- Ethnobotanical survey, phytoconstituents and antibacterial investigation of Rapanea melanophloeos (L.) Mez. bark, fruit and leaf extracts
- Catalytic properties of supramolecular polymetallated porphyrins
- Lignin-based polymers
- Bio-based polyhydroxyalkanoates blends and composites
- Biodegradable poly(butylene adipate-co-terephthalate) (PBAT)
- Repurposing tires – alternate energy source?
- Theoretical investigation of the stability, reactivity, and the interaction of methyl-substituted peridinium-based ionic liquids
- Polymeric membranes for biomedical applications
- Design of locally sourced activated charcoal filter from maize cob for wastewater decontamination: an approach to fight waste with waste
- Synthesis of biologically active heterocyclic compounds from allenic and acetylenic nitriles and related compounds
- Magnetic measurement methods to probe nanoparticle–matrix interactions
- Health and exposure risk assessment of heavy metals in rainwater samples from selected locations in Rivers State, Nigeria
- Evaluation of raw, treated and effluent water quality from selected water treatment plants: a case study of Lagos Water Corporation
- A chemoinformatic analysis of atoms, scaffolds and functional groups in natural products
- Hemicyanine dyes
- Thermodynamics of the micellization of quaternary based cationic surfactants in triethanolamine-water media: a conductometry study
- Compounds isolated from hexane fraction of Alternanthera brasiliensis show synergistic activity against methicillin resistant Staphylococcus aureus
- Internal structures and mechanical properties of magnetic gels and suspensions
- SPIONs and magnetic hybrid materials: Synthesis, toxicology and biomedical applications
- Magnetic field controlled behavior of magnetic gels studied using particle-based simulations
- The microstructure of magnetorheological materials characterized by means of computed X-ray microtomography
- Core-modified porphyrins: novel building blocks in chemistry
- Anticancer potential of indole derivatives: an update
- Novel drug design and bioinformatics: an introduction
- Multi-objective optimization of CCUS supply chains for European countries with higher carbon dioxide emissions
- Exergy analysis of an atmospheric residue desulphurization hydrotreating process for a crude oil refinery
- Development in nanomembrane-based filtration of emerging contaminants
- Supply chain optimization framework for CO2 capture, utilization, and storage in Germany
- Naturally occurring heterocyclic anticancer compounds
- Part-II- in silico drug design: application and success
- Advances in biopolymer composites and biomaterials for the removal of emerging contaminants
- Nanobiocatalysts and photocatalyst in dye degradation
- 3D tumor model – a platform for anticancer drug development
- Hydrogen production via water splitting over graphitic carbon nitride (g-C3N4 )-based photocatalysis
Artikel in diesem Heft
- Frontmatter
- Reviews
- Influence of lime (CaO) on low temperature leaching of some types of bauxite from Guinea
- Ethnobotanical survey, phytoconstituents and antibacterial investigation of Rapanea melanophloeos (L.) Mez. bark, fruit and leaf extracts
- Catalytic properties of supramolecular polymetallated porphyrins
- Lignin-based polymers
- Bio-based polyhydroxyalkanoates blends and composites
- Biodegradable poly(butylene adipate-co-terephthalate) (PBAT)
- Repurposing tires – alternate energy source?
- Theoretical investigation of the stability, reactivity, and the interaction of methyl-substituted peridinium-based ionic liquids
- Polymeric membranes for biomedical applications
- Design of locally sourced activated charcoal filter from maize cob for wastewater decontamination: an approach to fight waste with waste
- Synthesis of biologically active heterocyclic compounds from allenic and acetylenic nitriles and related compounds
- Magnetic measurement methods to probe nanoparticle–matrix interactions
- Health and exposure risk assessment of heavy metals in rainwater samples from selected locations in Rivers State, Nigeria
- Evaluation of raw, treated and effluent water quality from selected water treatment plants: a case study of Lagos Water Corporation
- A chemoinformatic analysis of atoms, scaffolds and functional groups in natural products
- Hemicyanine dyes
- Thermodynamics of the micellization of quaternary based cationic surfactants in triethanolamine-water media: a conductometry study
- Compounds isolated from hexane fraction of Alternanthera brasiliensis show synergistic activity against methicillin resistant Staphylococcus aureus
- Internal structures and mechanical properties of magnetic gels and suspensions
- SPIONs and magnetic hybrid materials: Synthesis, toxicology and biomedical applications
- Magnetic field controlled behavior of magnetic gels studied using particle-based simulations
- The microstructure of magnetorheological materials characterized by means of computed X-ray microtomography
- Core-modified porphyrins: novel building blocks in chemistry
- Anticancer potential of indole derivatives: an update
- Novel drug design and bioinformatics: an introduction
- Multi-objective optimization of CCUS supply chains for European countries with higher carbon dioxide emissions
- Exergy analysis of an atmospheric residue desulphurization hydrotreating process for a crude oil refinery
- Development in nanomembrane-based filtration of emerging contaminants
- Supply chain optimization framework for CO2 capture, utilization, and storage in Germany
- Naturally occurring heterocyclic anticancer compounds
- Part-II- in silico drug design: application and success
- Advances in biopolymer composites and biomaterials for the removal of emerging contaminants
- Nanobiocatalysts and photocatalyst in dye degradation
- 3D tumor model – a platform for anticancer drug development
- Hydrogen production via water splitting over graphitic carbon nitride (g-C3N4 )-based photocatalysis