Startseite Investigating the relationship between tack and degree of conversion in DGEBA-based epoxy resin cured with dicyandiamide and diuron
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigating the relationship between tack and degree of conversion in DGEBA-based epoxy resin cured with dicyandiamide and diuron

  • Ali Kuliaei , Iraj Amiri Amraei und Seyed Rasoul Mousavi
Veröffentlicht/Copyright: 18. Juni 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The purpose behind this research was to determine the optimum formulation and investigate the cure kinetics of a diglycidyl ether of bisphenol-A (DGEBA)-based epoxy resin cured by dicyandiamide and diuron for use in prepregs. First, all formulations were examined by the tensile test, and then, the specimens with higher mechanical properties were further investigated by viscometry and tack tests. The cure kinetics of the best formulation (based on tack test) in nonisothermal mode was investigated using differential scanning calorimetry at different heating rates. Kissinger and Ozawa method was used for determining the kinetic parameters of the curing process. The activation energy obtained by this method was 71.43 kJ/mol. The heating rate had no significant effect on the reaction order and the total reaction order was approximately constant (m+n2.1). By comparing the experimental data and the theoretical data obtained by Kissinger and Ozawa method, a good agreement was seen between them. By increasing the degree of conversion, the viscosity decreased; as the degree of conversion increased, so did the slope of viscosity. The results of the tack test also indicated that the highest tack could be obtained with 25% progress of curing.


Corresponding author: Iraj Amiri Amraei, Department of Materials Science and Manufacturing Technology, Malek Ashtar University of Technology, Tehran158751774, Iran, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The author(s) received no financial support for the research, authorship, and/or publication of this article.

  3. Conflict of interest statement: The author(s) declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

1. Dubois, O., Cam, J. B. L., Beakou, A. Experimental analysis of prepreg tack. Exp. Mech. 2010, 50, 599–606. https://doi.org/10.1007/s11340-009-9236-7.Suche in Google Scholar

2. Gilbert, E. N., Hayes, B. S., Seferis, J. C. Variable density composite systems constructed by metal particle modified prepregs. J. Compos. Mater. 2002, 36, 2045–2060. https://doi.org/10.1177/0021998302036017249.Suche in Google Scholar

3. Shin, E., Pae, K. Effects of hydrostatic pressure on the torsional shear behavior of graphite/epoxy composites. J. Compos. Mater. 1992, 26, 462–485. https://doi.org/10.1177/002199839202600401.Suche in Google Scholar

4. Ahn, K., Peterson, L., Seferis, J., Nowacki, D., Zachmann, H. Prepreg aging in relation to tack. J. Appl. Polym. Sci. 1992, 45, 399–406. https://doi.org/10.1002/app.1992.070450304.Suche in Google Scholar

5. Leng, X., Xiao, C., Chen, L., Su, Z., Zheng, K., Zhang, X., Tian, X. An efficient approach for constructing 3-D boron nitride networks with epoxy composites to form materials with enhanced thermal, dielectric, and mechanical properties. High Perform. Polym. 2019, 31, 350–358. https://doi.org/10.1177/0954008318772331.Suche in Google Scholar

6. Altuna, F. I., Riccardi, C. C., Marín Quintero, D. C., Ruseckaite, R. A., Stefani, P. M. Effect of an anhydride excess on the curing kinetics and dynamic mechanical properties of synthetic and biogenic epoxy resins. Int. J. Polym. Sci. 2019, 2019. https://doi.org/10.1155/2019/5029153, 5029153.Suche in Google Scholar

7. Bal, S., Saha, S. Mechanical performances of hygrothermally conditioned CNT/epoxy composites using seawater. J. Polym. Eng. 2017, 37, 633–645. https://doi.org/10.1515/polyeng-2016-0121.Suche in Google Scholar

8. Saha, S., Bal, S. Long term hydrothermal effect on the mechanical and thermo-mechanical properties of carbon nanofiber doped epoxy composites. J. Polym. Eng. 2018, 38, 251–261. https://doi.org/10.1515/polyeng-2017-0037.Suche in Google Scholar

9. He, Y., Yu, Z. Thermal stability and dynamic mechanical behavior of functional multiphase boride ceramics/epoxy composites. J. Polym. Eng. 2019, 39, 508–514. https://doi.org/10.1515/polyeng-2018-0375.Suche in Google Scholar

10. Wang, Y., Huang, J. T. Mechanical performance and electromagnetic shielding effectiveness of composites based on Ag-plating cellulose micro-nano fibers and epoxy. J. Polym. Eng. 2017, 37, 805–813. https://doi.org/10.1515/polyeng-2016-0132.Suche in Google Scholar

11. Krishnaswamy, S., Bhattacharyya, D., Abhyankar, H., Marchante, V., Huang, Z., Brighton, J. Morphological, optical and thermal characterisation of aerogel-epoxy composites for enhanced thermal insulation. J. Compos. Mater. 2019, 53, 909–923. https://doi.org/10.1177/0021998318793194.Suche in Google Scholar

12. Zhang, M., Zhai, Z., Li, M., Cheng, T., Wang, C., Jiang, D., Chen, L., Wu, Z., Guo, Z. Epoxy nanocomposites with carbon nanotubes and montmorillonite: mechanical properties and electrical insulation. J. Compos. Mater. 2016, 50, 3363–3372. https://doi.org/10.1177/0021998315620000.Suche in Google Scholar

13. Wang, Y., Feng, C., Fei, R., Luo, Y. Thermal-ageing characteristics of dry-type transformer epoxy composite insulation. High Perform. Polym. 2020, 0954008320906439. https://doi.org/10.1109/itaic49862.2020.9338960.Suche in Google Scholar

14. Khattak, A., Amin, M., Iqbal, M. Long term accelerated aging investigation of an epoxy/silica nanocomposite for high voltage insulation. J. Polym. Eng. 2018, 38, 263–269. https://doi.org/10.1515/polyeng-2016-0233.Suche in Google Scholar

15. Hu, G., Zhang, X., Liu, L., Weng, L. Improvement of graphene oxide/epoxy resin adhesive properties through interface modification. High Perform. Polym. 2019, 31, 341–349. https://doi.org/10.1177/0954008318772328.Suche in Google Scholar

16. Ma, A., Zhang, Q., Zhang, H., Shi, Y., Liu, Y. A novel single component epoxy resin adhesive with microcapsule latent curing agent of 2-phenylimidazole/polymethyl acrylic glycidyl ester. J. Elastomers Plast. 2015, 47, 439–448. https://doi.org/10.1177/0095244313516888.Suche in Google Scholar

17. Szymańska, J., Bakar, M., Białkowska, A., Kostrzewa, M. Study on the adhesive properties of reactive liquid rubber toughened epoxy-clay hybrid nanocomposites. J. Polym. Eng. 2018, 38, 231–238.10.1515/polyeng-2017-0099Suche in Google Scholar

18. Aziz, T., Fan, H., Zhang, X., Khan, F. U., Fahad, S., Ullah, A. Adhesive properties of bio-based epoxy resin reinforced by cellulose nanocrystal additives. J. Polym. Eng. 2020, 1.10.1515/polyeng-2019-0255Suche in Google Scholar

19. Shahabudin, N., Yahya, R., Gan, S. N., Sonsudin, F. Curing of epoxy/alkyd blends in self-healing coating. High Perform. Polym. 2018, 30, 1009–1015. https://doi.org/10.1177/0954008318784635.Suche in Google Scholar

20. Sun, J., Fang, H., Wang, H., Yang, S., Xiao, S., Ding, Y. Waterborne epoxy-modified polyurethane-acrylate dispersions with nano-sized core-shell structure particles: synthesis, characterization, and their coating film properties. J. Polym. Eng. 2017, 37, 113–123. https://doi.org/10.1515/polyeng-2016-0003.Suche in Google Scholar

21. Zhai, Z., Feng, L., Zhou, S., Li, G., Lou, H., Liu, Z. Influence of micron size aluminum particles on the aging properties and wear resistance of epoxy resin coatings. J. Polym. Eng. 2017, 37, 365–371. https://doi.org/10.1515/polyeng-2016-0032.Suche in Google Scholar

22. Nowruzi Varzeghani, H., Amiri Amraei, I., Mousavi, S. R. Dynamic cure kinetics and physical-mechanical properties of PEG/Nanosilica/Epoxy composites. Int. J. Polym. Sci. 2020, 2020, 7908343.10.1155/2020/7908343Suche in Google Scholar

23. Jain, J., Jain, S., Sinha, S. Characterization and thermal kinetic analysis of pineapple leaf fibers and their reinforcement in epoxy. J. Elastomers Plast. 2019, 51, 224–243. https://doi.org/10.1177/0095244318783024.Suche in Google Scholar

24. Mousavi, S. R., Amraei, I. A. Toughening of dicyandiamide-cured DGEBA-based epoxy resin using MBS core-shell rubber particles. J. Compos. Mater. 2015, 49, 2357–2363.https://doi.org/10.1177/0021998314545338.Suche in Google Scholar

25. Wang, J., Guo, X., Wu, D. Flexible epoxy composite coatings modified by reactive rubber with improvements in water and corrosive resistances. J. Polym. Eng. 2019, 40, 57–66.https://doi.org/10.1515/polyeng-2019-0276.Suche in Google Scholar

26. Erkliğ, A., Bulut, M. Experimental investigation on tensile and Charpy impact behavior of Kevlar/S-glass/epoxy hybrid composite laminates. J. Polym. Eng. 2017, 37, 177–184.10.1515/polyeng-2015-0538Suche in Google Scholar

27. Mousavi, S. R., Amiri Amraei, I. Influence of nanosilica and methyl methacrylate–butadiene–styrene core–shell rubber particles on the physical-mechanical properties and cure kinetics of diglycidyl ether of bisphenol-A-based epoxy resin. High Perform. Polym. 2016, 28, 809–819.https://doi.org/10.1177/0954008315600228.Suche in Google Scholar

28. Wang, Z., Zhou, W., Sui, X., Dong, L., Cai, H., Zuo, J., Liu, X., Chen, Q. Dielectric studies of al nanoparticle reinforced epoxy resin composites. Polym. Compos. 2018, 39, 887–894. https://doi.org/10.1002/pc.24012.Suche in Google Scholar

29. Liu, Y., Yang, X., Yue, L., Li, W., Gan, W., Chen, K. Selective dispersion of silver nanowires in epoxy/polyetherimide binary composites with enhanced electrical conductivity: a study of curing kinetics and morphology. Polym. Compos. 2019, 40, 4390–4401. https://doi.org/10.1002/pc.25301.Suche in Google Scholar

30. Zeng, B., Yang, L., Chen, J., Liu, X., Wu, H., Zheng, W., Chen, G., Xu, Y., Dai, L. Improving the flame retardancy and thermal property of organotitanate-modified epoxy resin for electronic application via a simple method. High Perform. Polym. 2019, 31, 12–23. https://doi.org/10.1177/0954008317749019.Suche in Google Scholar

31. Orozco, R. Effects of Toughened Matrix Resins on Composite Materials for Wind Turbine Blades; Montana State University-Bozeman: Bozeman, 1999.Suche in Google Scholar

32. Liu, X. D., Zhao, C. H., Sudo, A., Endo, T. Storage stability and curing behavior of epoxy‐dicyandiamide systems with carbonyldiimidazole‐Cu (II) complexes as the accelerator. J. Polym. Sci. Polym. Chem. 2013, 51, 3470–3476. https://doi.org/10.1002/pola.26744.Suche in Google Scholar

33. Wang, J., Xu, Y. Z., Fu, Y. F., Liu, X. D. Latent curing systems stabilized by reaction equilibrium in homogeneous mixtures of benzoxazine and amine. Sci. Rep. 2016, 6, 1–7. https://doi.org/10.1038/srep38584.Suche in Google Scholar

34. Wu, F., Zhou, X., Yu, X. Reaction mechanism, cure behavior and properties of a multifunctional epoxy resin, TGDDM, with latent curing agent dicyandiamide. RSC Adv. 2018, 8, 8248–8258. https://doi.org/10.1039/c7ra13233f.Suche in Google Scholar

35. Choi, S. W., Li, M., Lee, W. I., Kim, H. S. Analysis of buckling load of glass fiber/epoxy-reinforced plywood and its temperature dependence. J. Compos. Mater. 2014, 48, 2191–2206. https://doi.org/10.1177/0021998313495071.Suche in Google Scholar

36. King, R. J., Werner, M. J., Mayorga, G. D. Microwave dynamic dielectric analysis of curing neat resins. J. Reinforc. Plast. Compos. 1993, 12, 173–185. https://doi.org/10.1177/073168449301200204.Suche in Google Scholar

37. Akbari, R., Beheshty, M. H., Shervin, M. Toughening of dicyandiamide-cured DGEBA-based epoxy resins by CTBN liquid rubber. Iran. Polym. J. (Engl. Ed.) 2013, 22, 313–324. https://doi.org/10.1007/s13726-013-0130-x.Suche in Google Scholar

38. Güthner, T., Hammer, B. Curing of epoxy resins with dicyandiamide and urones. J. Appl. Polym. Sci. 1993, 50, 1453–1459. https://doi.org/10.1002/app.1993.070500817.Suche in Google Scholar

39. Hagnauer, G. L., Dunn, D. A. Dicyandiamide analysis and solubility in epoxy resins. J. Appl. Polym. Sci. 1981, 26, 1837–1846. https://doi.org/10.1002/app.1981.070260609.Suche in Google Scholar

40. Opalički, M., Kenny, J. M., Nicolais, L. Cure kinetics of neat and carbon‐fiber‐reinforced TGDDM/DDS epoxy systems. J. Appl. Polym. Sci. 1996, 61, 1025–1037.10.1002/(SICI)1097-4628(19960808)61:6<1025::AID-APP17>3.0.CO;2-VSuche in Google Scholar

41. Costa, M. L., Botelho, E. C., Rezende, M. Monitoring of cure kinetic prepreg and cure cycle modeling. J. Mater. Sci. 2006, 41, 4349–4356. https://doi.org/10.1007/s10853-006-6082-1.Suche in Google Scholar

42. Gonis, J., Simon, G. P., Cook, W. D. Cure properties of epoxies with varying chain length as studied by DSC. J. Appl. Polym. Sci. 1999, 72, 1479–1488. https://doi.org/10.1002/(sici)1097-4628(19990613)72:11<1479::aid-app9>3.0.co;2-e.10.1002/(SICI)1097-4628(19990613)72:11<1479::AID-APP9>3.0.CO;2-ESuche in Google Scholar

43. Yang, L., Yao, K., Koh, W. Kinetics analysis of the curing reaction of fast cure epoxy prepregs. J. Appl. Polym. Sci. 1999, 73, 1501–1508. https://doi.org/10.1002/(sici)1097-4628(19990822)73:8<1501::aid-app19>3.0.co;2-r.10.1002/(SICI)1097-4628(19990822)73:8<1501::AID-APP19>3.0.CO;2-RSuche in Google Scholar

44. Sun, L., Pang, S. S., Sterling, A. M., Negulescu, I. I., Stubblefield, M. A. Dynamic modeling of curing process of epoxy prepreg. J. Appl. Polym. Sci. 2002, 86, 1911–1923. https://doi.org/10.1002/app.11146.Suche in Google Scholar

45. Banks, R., Mouritz, A., John, S., Coman, F., Paton, R. Development of a new structural prepreg: characterisation of handling, drape and tack properties. Compos. Struct. 2004, 66, 169–174. https://doi.org/10.1016/j.compstruct.2004.04.034.Suche in Google Scholar

46. Dupuy, J., Leroy, E., Maazouz, A. Determination of activation energy and preexponential factor of thermoset reaction kinetics using differential scanning calorimetry in scanning mode: influence of baseline shape on different calculation methods. J. Appl. Polym. Sci. 2000, 78, 2262–2271. https://doi.org/10.1002/1097-4628(20001220)78:13<2262::aid-app40>3.0.co;2-y.10.1002/1097-4628(20001220)78:13<2262::AID-APP40>3.0.CO;2-YSuche in Google Scholar

47. Sanctuary, R., Baller, J., Zielinski, B., Becker, N., Krüger, J., Philipp, M., Müller, U., Ziehmer, M. Influence of Al2O3 nanoparticles on the isothermal cure of an epoxy resin. J. Phys. Condens. Matter 2008, 21, 035118.https://doi.org/10.1088/0953-8984/21/3/035118.Suche in Google Scholar

48. Zhang, Y., Vyazovkin, S. Curing of diglycidyl ether of 4, 4′‐bisphenol P with nitro derivatives of amine compounds, 3. Macromol. Chem. Phys. 2005, 206, 1840–1846. https://doi.org/10.1002/macp.200500209.Suche in Google Scholar

Received: 2020-12-16
Accepted: 2021-04-29
Published Online: 2021-06-18
Published in Print: 2021-08-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0340/pdf?lang=de
Button zum nach oben scrollen