Home Investigations of the characteristics and performance of modified polyethersulfones (PES) as membrane oxygenator
Article
Licensed
Unlicensed Requires Authentication

Investigations of the characteristics and performance of modified polyethersulfones (PES) as membrane oxygenator

  • Amir Hossein Mostafavi and Seyed Saeid Hosseini EMAIL logo
Published/Copyright: June 3, 2021
Become an author with De Gruyter Brill

Abstract

The modification of membrane oxygenators to minimize protein adsorption onto the surface is often accompanied by the loss of membrane performance. This study aims to explore polyethersulfone (PES) as a new material for membrane oxygenator applications and to assess its potentials. Accordingly, different modification techniques are applied to improve surface properties of PES membranes. To achieve this goal, two separate modification methods including incorporation of TiO2 into the membrane matrix as well as grafting polyethylene glycol (PEG) through oxygen plasma treatment are developed and the effects are examined. The results reveal that protein adsorption to the nanocomposite membrane containing 0.50 wt. % TiO2 and the grafted membrane decreased by 47 and 31%, respectively. In terms of performance, permeability and oxygen transfer rate of all modified membranes exceeded 808 GPU and 2.7 × 10−4 mol·m−2·s−1, respectively. Contact angle analysis revealed signs of hydrophilicity enhancement of membranes after modifications. The findings suggest that upon proper modifications, membranes based on PES could be considered as promising candidates for membrane oxygenator applications and deserves further investigations.


Corresponding author: Seyed Saeid Hosseini, Membrane Science and Technology Research Group, Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran; and Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Lim, M. W. The history of extracorporeal oxygenators. Anaesthesia 2006, 61, 984–995; https://doi.org/10.1111/j.1365-2044.2006.04781.x.Search in Google Scholar

2. Baker, R. W. Medical applications of membranes. In Membrane Technology and Applications; Baker, R. W., Ed. John Wiley & Sons: California, 2004, pp. 465–490.10.1002/0470020393.ch12Search in Google Scholar

3. Federspiel, W. J., Henchir, K. A. Lung, artificial: basic principles and current applications. In Encyclopedia of Biomaterials and Biomedical Engineering; Wnek, G., Bowlin, G. L., Eds. Marcel Dekker: New York, 2004, pp. 910–921.10.1201/b18990-161Search in Google Scholar

4. Zheng, Z., Wang, W., Huang, X., Lv, Q., Fan, W., Yu, W., Li, L., Zhang, Z. Fabrication, characterization, and hemocompatibility investigation of polysulfone grafted with polyethylene glycol and heparin used in membrane oxygenators. Artif. Organs 2016, 40, 219–229; https://doi.org/10.1111/aor.12803.Search in Google Scholar

5. Iwahashi, H., Yuri, K., Nose, Y. Development of the oxygenator: past, present, and future. J. Artif. Organs 2004, 7, 111–120; https://doi.org/10.1007/s10047-004-0268-6.Search in Google Scholar

6. Khachab, A., Tabesh, H., Kashefi, A., Mottaghy, K. Novel concept for pure diffusive capillary membrane oxygenators: silicone hollow sphere (SiHSp) fibers. Am. Soc. Artif. Intern. Organs J. 2013, 59, 162–168; https://doi.org/10.1097/mat.0b013e3182816b51.Search in Google Scholar

7. Kolff, W., Balzer, R. The artificial coil lung. Am. Soc. Artif. Intern. Organs J. 1955, 1, 39–42.Search in Google Scholar

8. Wang, Y.-B., Gong, M., Yang, S., Nakashima, K., Gong, Y.-K. Hemocompatibility and film stability improvement of crosslinkable MPC copolymer coated polypropylene hollow fiber membrane. J. Membr. Sci. 2014, 452, 29–36; https://doi.org/10.1016/j.memsci.2013.10.032.Search in Google Scholar

9. Huang, X., Wang, W., Zheng, Z., Fan, W., Mao, C., Shi, J., Li, L. Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators. Appl. Surf. Sci. 2016, 362, 355–363; https://doi.org/10.1016/j.apsusc.2015.11.236.Search in Google Scholar

10. Niwa, M., Kawakami, H., Nagaoka, S., Kanamori, T., Morisaku, K., Shinbo, T., Matsuda, T., Sakai, K., Kubota, S. Development of a novel polyimide hollow‐fiber oxygenator. Artif. Organs 2004, 28, 487–495; https://doi.org/10.1111/j.1525-1594.2004.07257.x.Search in Google Scholar

11. Mao, C., Qiu, Y., Sang, H., Mei, H., Zhu, A., Shen, J., Lin, S. Various approaches to modify biomaterial surfaces for improving hemocompatibility. Adv. Colloid Interface Sci. 2004, 110, 5–17; https://doi.org/10.1016/j.cis.2004.02.001.Search in Google Scholar

12. Alibakhshi, S., Youssefi, M., Hosseini, S. S., Zadhoush, A. Tuning morphology and transport in ultrafiltration membranes derived from polyethersulfone through exploration of dope formulation and characteristics. Mater. Res. Express 2019, 6, 125326; https://doi.org/10.1088/2053-1591/ab56c3.Search in Google Scholar

13. Hosseini, S. S., Fakharian Torbati, S., Alaei Shahmirzadi, M. A., Tavangar, T. Fabrication, characterization, and performance evaluation of polyethersulfone/TiO2 nanocomposite ultrafiltration membranes for produced water treatment. Polym. Adv. Technol. 2018, 29, 2619–2631; https://doi.org/10.1002/pat.4376.Search in Google Scholar

14. Alaei Shahmirzadi, M. A., Hosseini, S. S., Ruan, G., Tan, N. R. Tailoring PES nanofiltration membranes through systematic investigations of prominent design, fabrication and operational parameters. RSC Adv 2015, 5, 49080–49097; https://doi.org/10.1039/c5ra05985b.Search in Google Scholar

15. Su, B., Sun, S., Zhao, C. Polyethersulfone hollow fiber membranes for hemodialysis. In Progress in Hemodialysis-From Emergent Biotechnology to Clinical Practice; Carpi, A., Donadio, C., Tramonti, G., Eds. IntechOpen: Rijeka, 2011, pp. 65–92.10.5772/22857Search in Google Scholar

16. Obstals, F., Vorobii, M., Riedel, T., de Los Santos Pereira, A., Bruns, M., Singh, S., Rodriguez-Emmenegger, C. Improving hemocompatibility of membranes for extracorporeal membrane oxygenators by grafting nonthrombogenic polymer brushes. Macromol. Biosci. 2018, 18, 1700359; https://doi.org/10.1002/mabi.201700359.Search in Google Scholar

17. Irfan, M., Idris, A., Yusof, N. M., Khairuddin, N. F. M., Akhmal, H. Surface modification and performance enhancement of nano-hybrid f-MWCNT/PVP90/PES hemodialysis membranes. J. Membr. Sci. 2014, 467, 73–84; https://doi.org/10.1016/j.memsci.2014.05.001.Search in Google Scholar

18. Bidsorkhi, H. C., Riazi, H., Emadzadeh, D., Ghanbari, M., Matsuura, T., Lau, W. J., Ismail, A. F. Preparation and characterization of a novel highly hydrophilic and antifouling polysulfone/nanoporous TiO2 nanocomposite membrane. Nanotechnology 2016, 27, 415706; https://doi.org/10.1088/0957-4484/27/41/415706.Search in Google Scholar

19. Menzies, K. L., Jones, L. The impact of contact angle on the biocompatibility of biomaterials. Optom. Vis. Sci. 2010, 87, 387–399; https://doi.org/10.1097/opx.0b013e3181da863e.Search in Google Scholar

20. Vedadghavami, A., Minoei, F., Hosseini, S. S. Practical techniques for improving the performance of polymeric membranes and processes for protein separation and purification. Ir. J. Chem. & Chem. Eng. (IJCCE) 2018, 37, 1–23; https://doi.org/10.30492/IJCCE.2018.30129.Search in Google Scholar

21. Shahriari, H. R., Hosseini, S. S. Experimental and statistical investigation on fabrication and performance evaluation of structurally tailored PAN nanofiltration membranes for produced water treatment. Chem. Eng. Process. 2020, 147, 107766; https://doi.org/10.1016/j.cep.2019.107766.Search in Google Scholar

22. Wang, W., Huang, X., Yin, H., Fan, W., Zhang, T., Li, L., Mao, C. Polyethylene glycol acrylate-grafted polysulphone membrane for artificial lungs: plasma modification and haemocompatibility improvement. Biomed. Mater. 2015, 10, 065022; https://doi.org/10.1088/1748-6041/10/6/065022.Search in Google Scholar

23. Mansourizadeh, A., Ismail, A. F. Effect of additives on the structure and performance of polysulfone hollow fiber membranes for CO2 absorption. J. Membr. Sci. 2010, 348, 260–267; https://doi.org/10.1016/j.memsci.2009.11.010.Search in Google Scholar

24. Khosravifard, S., Hosseini, S. S., Boddohi, S. Development and tuning of Matrimid membrane oxygenators with improved biocompatibility and gas permeance by plasma treatment. J. Appl. Polym. Sci. 2020, 137, 48824; https://doi.org/10.1002/app.48824.Search in Google Scholar

25. Moradihamedani, P., Ibrahim, N. A., Yunus, W. M. Z. W., Yusof, N. A. Study of morphology and gas separation properties of polysulfone/titanium dioxide mixed matrix membranes. Polym. Eng. Sci. 2015, 55, 367–374; https://doi.org/10.1002/pen.23887.Search in Google Scholar

26. Faria, M., Moreira, C., Mendonça Eusébio, T., de Pinho, M. N., Brogueira, P., Semião, V. Oxygen mass transfer in a gas/membrane/liquid system surrogate of membrane blood oxygenators. AlChE J. 2018, 64, 3756–3763; https://doi.org/10.1002/aic.16328.Search in Google Scholar

27. Abidin, M. N. Z., Goh, P. S., Ismail, A. F., Othman, M. H. D., Hasbullah, H., Said, N., Kadir, S., Kamal, F., Abdullah, M. S., Ng, B. C. Antifouling polyethersulfone hemodialysis membranes incorporated with poly (citric acid) polymerized multi-walled carbon nanotubes. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 68, 540–550; https://doi.org/10.1016/j.msec.2016.06.039.Search in Google Scholar

28. Teimoori, M., Hashemifard, S. A., Ismail, A. F., Abbasi, M. The impact of nonpolar coagulation bath-immiscible liquid additives on the polyethersulfone membranes structure and performance. J. Appl. Polym. Sci. 2017, 134, 44509; https://doi.org/10.1002/app.44509.Search in Google Scholar

29. Tang, C. Y., Kwon, Y. N., Leckie, J. O. Probing the nano-and micro-scales of reverse osmosis membranes—a comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements. J. Membr. Sci. 2007, 287, 146–156; https://doi.org/10.1016/j.memsci.2006.10.038.Search in Google Scholar

30. Amirabedi, P., Yegani, R., Aghjeh, M. K. R. Experimental design applied to fabrication of PSf membranes via NIPS method, Part1: influential parameters on membrane porosity and mechanical strength. J. Text. Polym. 2013, 1, 24–30.Search in Google Scholar

31. Nabian, N., Ghoreyshi, A., Rahimpour, A., Shakeri, M. Effect of polymer concentration on the structure and performance of polysulfone flat membrane for CO2 absorption in membrane contactor. Int. J. Chemoinf. Chem. Eng. (IJCCE) 2014, 11, 79.Search in Google Scholar

32. Soroko, I., Livingston, A. Impact of TiO 2 nanoparticles on morphology and performance of crosslinked polyimide organic solvent nanofiltration (OSN) membranes. J. Membr. Sci. 2009, 343, 189–198; https://doi.org/10.1016/j.memsci.2009.07.026.Search in Google Scholar

33. Zheng, Z., Wang, W., Huang, X., Fan, W., Li, L. Surface modification of polysulfone hollow fiber membrane for extracorporeal membrane oxygenator using low‐temperature plasma treatment. Plasma Process. Polym. 2018, 15, 1700122; https://doi.org/10.1002/ppap.201700122.Search in Google Scholar

34. Gong, M., Dang, Y., Wang, Y. B., Yang, S., Winnik, F. M., Gong, Y. K. Cell membrane mimetic films immobilized by synergistic grafting and crosslinking. Soft Matter 2013, 9, 4501; https://doi.org/10.1039/c3sm00086a.Search in Google Scholar

35. Sun, S., Yue, Y., Huang, X., Meng, D. Protein adsorption on blood-contact membranes. J. Membr. Sci. 2003, 222, 3–18; https://doi.org/10.1016/s0376-7388(03)00313-2.Search in Google Scholar

36. Wegner, J. A. Oxygenator anatomy and function. J. Cardiothorac. Vasc. Anesth. 1997, 11, 275–281; https://doi.org/10.1016/s1053-0770(97)90096-3.Search in Google Scholar

37. Li, L., Cheng, C., Xiang, T., Tang, M., Zhao, W., Sun, S., Zhao, C. Modification of polyethersulfone hemodialysis membrane by blending citric acid grafted polyurethane and its anticoagulant activity. J. Membr. Sci. 2012, 405-406, 261–274; https://doi.org/10.1016/j.memsci.2012.03.015.Search in Google Scholar

38. Zhao, C., Xue, J., Ran, F., Sun, S. Modification of polyethersulfone membranes – a review of methods. Prog. Mater. Sci. 2013, 58, 76–150; https://doi.org/10.1016/j.pmatsci.2012.07.002.Search in Google Scholar

39. Liang, C. Y., Uchytil, P., Petrychkovych, R., Lai, Y. C., Friess, K., Sipek, M., Mohan Reddy, M., Suen, S. Y. A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes. Separ. Purif. Technol. 2012, 92, 57–63; https://doi.org/10.1016/j.seppur.2012.03.016.Search in Google Scholar

40. Eash, H. J., Jones, H. M., Hattler, B. G., Federspiel, W. J. Evaluation of plasma resistant hollow fiber membranes for artificial lungs. Am. Soc. Artif. Intern. Organs J. 2004, 50, 491–497; https://doi.org/10.1097/01.mat.0000138078.04558.fe.Search in Google Scholar

41. Zhang, Y., Wang, R. Novel method for incorporating hydrophobic silica nanoparticles on polyetherimide hollow fiber membranes for CO2 absorption in a gas–liquid membrane contactor. J. Membr. Sci. 2014, 452, 379–389; https://doi.org/10.1016/j.memsci.2013.10.011.Search in Google Scholar

42. Zhang, H. Y., Wang, R., Liang, D. T., Tay, J. H. Modeling and experimental study of CO2 absorption in a hollow fiber membrane contactor. J. Membr. Sci. 2006, 279, 301–310; https://doi.org/10.1016/j.memsci.2005.12.017.Search in Google Scholar

43. Wang, W., Zheng, Z., Huang, X., Fan, W., Yu, W., Zhang, Z., Li, L., Mao, C. Hemocompatibility and oxygenation performance of polysulfone membranes grafted with polyethylene glycol and heparin by plasma-induced surface modification. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 105, 1737–1746; https://doi.org/10.1002/jbm.b.33709.Search in Google Scholar

44. Fosi-Kofal, M., Mustafa, A., Ismail, A. F., Rezaei-DashtArzhandi, M., Matsuura, T. PVDF/CaCO 3 composite hollow fiber membrane for CO2 absorption in gas–liquid membrane contactor. J. Nat. Gas Sci. Eng. 2016, 31, 428–436; https://doi.org/10.1016/j.jngse.2016.03.053.Search in Google Scholar

45. Bougie, F., Iliuta, I., Iliuta, M. C. Flat sheet membrane contactor (FSMC) for CO2 separation using aqueous amine solutions. Chem. Eng. Sci. 2015, 123, 255–264; https://doi.org/10.1016/j.ces.2014.10.041.Search in Google Scholar

46. Zhang, W., Hao, Z., Chen, G., Li, J., Li, Z., Wang, Z., Ren, Z. Effect of porosity on mass transfer of gas absorption in a hollow fiber membrane contactor. J. Membr. Sci. 2014, 470, 399–410; https://doi.org/10.1016/j.memsci.2014.06.059.Search in Google Scholar

47. Abednejad, A. S., Amoabediny, G., Ghaee, A. Surface modification of polypropylene membrane by polyethylene glycol graft polymerization. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 42, 443–450; https://doi.org/10.1016/j.msec.2014.05.060.Search in Google Scholar

48. Kim, G. B., Kim, S. J., Kim, M. H., Hong, C. U., Kang, H. S. Development of a hollow fiber membrane module for using implantable artificial lung. J. Membr. Sci. 2009, 326, 130–136; https://doi.org/10.1016/j.memsci.2008.09.045.Search in Google Scholar

Received: 2021-03-19
Accepted: 2021-05-07
Published Online: 2021-06-03
Published in Print: 2021-08-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0089/html
Scroll to top button