Home Reducing lactose content of milk from livestock and humans via lactose imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-i-aspartic acid) cryogels
Article
Licensed
Unlicensed Requires Authentication

Reducing lactose content of milk from livestock and humans via lactose imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-i-aspartic acid) cryogels

  • Kadir Erol ORCID logo , Gönül Arslan Akveran , Kazım Köse EMAIL logo and Dursun Ali Köse ORCID logo
Published/Copyright: May 31, 2021
Become an author with De Gruyter Brill

Abstract

Lactase, which can cause lactose intolerance in its deficiency, is a vital enzyme concerning digestion. To overcome lactose intolerance for patients with digestion problem depending of this kind of issue, lactose in food should be removed. In this study, lactose imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-l-aspartic acid), poly(HEMA-MAsp), cryogels were synthesized to reduce the amount of lactose content of milk samples. Occurrence of desired bounds, structural integrity, and surface characteristics were analyzed via Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), scanning electron microscope (SEM), micro computed tomography (CT), and confocal microscope methods. Water retention characteristic were tested in solution with different electrolytic nature. Adsorption parameters were optimized in an aqueous medium. The adsorption performance of imprinted cryogels was studied in milk samples obtained from cow, sheep, goat, buffalo, and from human volunteers at different intervals after birth. Amount of lactose adsorbed in aqueous media and milk sample from humans were 322 (56.7%) and 179.5 (5.94%) mg lactose/g polymer, respectively. Selectivity studies revealed an approximately 8-fold increase in adsorption rate of molecularly imprinted cryogels as compared to that of nonimprinted cryogels. In addition, competitive adsorption was conducted using lactose-imprinted cryogels in aqueous media containing lactose, glucose, and galactose molecules resulting in adsorption rates of 220.56, 57.87, and 61.65 mg biomolecule/g polymer, respectively.


Corresponding author: Kazım Köse, Department of Joint Courses, Hitit University, Çorum19030, Turkey, E-mail:

Funding source: Hitit University

Award Identifier / Grant number: ALACA19001.17.001

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was supported by Hitit University Scientific Research Projects Coordination Unit with the project ALACA19001.17.001.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Garballo-Rubio, A., Soto-Chinchilla, J., Moreno, A., Zafra-Gómez, A. J. Food Compos. Anal. 2018, 66, 39–45. https://doi.org/10.1016/j.jfca.2017.11.006.Search in Google Scholar

2. van Scheppingen, W. B., van Hilten, P. H., Vijverberg, M. P., Duchateau, A. L. J. Chromatogr. B 2017, 1060, 395–399. https://doi.org/10.1016/j.jchromb.2017.06.024.Search in Google Scholar

3. Sudsa-Ard, K., Kijboonchoo, K., Chavasit, V., Chaunchaiyakul, R., Nio, A. Q. X., Lee, J. K. W. J. Int. Soc. Sports Nutr. 2014, 11, 1–6. https://doi.org/10.1186/s12970-014-0049-4.Search in Google Scholar

4. Vieira, D. C., Lima, L. N., Mendes, A. A., Adriano, W. S., Giordano, R. C., Giordano, R. L., Tardioli, P. W. Biochem. Eng. J. 2013, 81, 54–64. https://doi.org/10.1016/j.bej.2013.10.007.Search in Google Scholar

5. Gille, D., Walther, B., Badertscher, R., Bosshart, A., Brügger, C., Brühlhart, M., Gauch, R., Noth, P., Vergères, G., Egger, L. Int. Dairy J. 2018, 83, 17–19. https://doi.org/10.1016/j.idairyj.2018.03.003.Search in Google Scholar

6. Morlock, G. E., Morlock, L. P., Lemo, C. J. Chromatogr. A 2014, 1324, 215–223. https://doi.org/10.1016/j.chroma.2013.11.038.Search in Google Scholar

7. Wolf, M., Gasparin, B. C., Paulino, A. T. Int. J. Biol. Macromol. 2018, 115, 157–164. https://doi.org/10.1016/j.ijbiomac.2018.04.058.Search in Google Scholar

8. Batista, K., Silva, C., Fernandes, P., Campos, I., Fernandes, K. Sep. Purif. Technol. 2017, 185, 54–60. https://doi.org/10.1016/j.seppur.2017.05.019.Search in Google Scholar

9. Datta, D., Pohlentz, G., Schulte, M., Kaiser, M., Goycoolea, F. M., Müthing, J., Mormann, M., Swamy, M. J. Arch. Biochem. Biophys. 2016, 609, 59–68. https://doi.org/10.1016/j.abb.2016.09.009.Search in Google Scholar

10. Doğan, T., Bayram, E., Uzun, L., Şenel, S., Denizli, A. J. Appl. Polym. Sci. 2015, 132.10.1002/app.41981Search in Google Scholar

11. Kim, M. Y., Lee, T. G. Chemosphere 2019, 217, 423–429. https://doi.org/10.1016/j.chemosphere.2018.10.021.Search in Google Scholar

12. Santos, T., Brito, A., Boto, R., Sousa, P., Almeida, P., Cruz, C., Tomaz, C. Sep. Purif. Technol. 2018, 206, 192–198. https://doi.org/10.1016/j.seppur.2018.06.002.Search in Google Scholar

13. Niyomdecha, S., Limbut, W., Numnuam, A., Asawatreratanakul, P., Kanatharana, P., Thavarungkul, P. Sens. Actuators, B 2017, 241, 473–481. https://doi.org/10.1016/j.snb.2016.10.102.Search in Google Scholar

14. Sahiner, N., Demirci, S. Mater. Des. 2017, 120, 47–55. https://doi.org/10.1016/j.matdes.2017.02.004.Search in Google Scholar

15. Luo, L-J., Lai, J-Y., Chou, S-F., Hsueh, Y-J., Ma, D. H-K. Acta Biomater. 2018, 65, 123–136. https://doi.org/10.1016/j.actbio.2017.11.018.Search in Google Scholar

16. Petrov, P., Mokreva, P., Kostov, I., Uzunova, V., Tzoneva, R. Carbohydr. Polym. 2016, 140, 349–355. https://doi.org/10.1016/j.carbpol.2015.12.069.Search in Google Scholar

17. Atta, A. M., Ezzat, A. O., Al-Hussain, S. A., Al-Lohedan, H. A., Tawfeek, A. M., Hashem, A. I. React. Funct. Polym. 2018, 131, 420–429. https://doi.org/10.1016/j.reactfunctpolym.2018.08.019.Search in Google Scholar

18. Liang, L., Zhou, M., Yang, W., Jiang, L. Chem. Eng. J. 2018, 352, 673–681. https://doi.org/10.1016/j.cej.2018.07.072.Search in Google Scholar

19. Koshy, S. T., Zhang, D. K., Grolman, J. M., Stafford, A. G., Mooney, D. J. Acta Biomater. 2018, 65, 36–43. https://doi.org/10.1016/j.actbio.2017.11.024.Search in Google Scholar

20. Sarıca, B., Köse, K., Uzunoğlu, A., Erol, K., Köse, D. A. Chromatographia 2018, 81, 127–137.10.1007/s10337-017-3419-7Search in Google Scholar

21. Erol, K., Köse, K., Avcı, E., Köse, D. A. J. Macromol. Sci., Part A: Pure Appl.Chem. 2017, 54, 902–907. https://doi.org/10.1080/10601325.2017.1381852.Search in Google Scholar

22. Köse, K., Uzun, L. J. Sep. Sci. 2016, 39, 1998–2005. https://doi.org/10.1002/jssc.201600199.Search in Google Scholar

23. Erol, K., Köse, K., Köse, D. A., Sızır, Ü., Tosun Satır, İ., Uzun, L. Desalin. Water Treat. 2016, 57, 9307–9317. https://doi.org/10.1080/19443994.2015.1030708.Search in Google Scholar

24. Erol, K. J. Turk. Chem. Soc., Sect. A., 4, 133–148.10.18596/jotcsa.287321Search in Google Scholar

25. Yilmaz, F., Kose, K., Sari, M. M., Demirel, G., Uzun, L., Denizli, A. Colloids Surf., B 2013, 109, 176–182. https://doi.org/10.1016/j.colsurfb.2013.03.041.Search in Google Scholar

26. Erol, K. J. Macromol. Sci., Part A: Pure Appl.Chem. 2016, 53, 629–635. https://doi.org/10.1080/10601325.2016.1212310.Search in Google Scholar

27. Erol, K., Cebeci, B. K., Köse, K., Köse, D. A. Int. J. Biol. Macromol. 2019, 123, 738–743. https://doi.org/10.1016/j.ijbiomac.2018.11.121.Search in Google Scholar

28. Bilgin, E., Erol, K., Köse, K., Köse, D. A. Environ. Sci. Pollut. Res. 2018, 25, 27614–27627. https://doi.org/10.1007/s11356-018-2784-6.Search in Google Scholar

29. Erol, K., Uzunoglu, A., Köse, K., Sarıca, B., Avcı, E., Köse, D. A. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2018, 1081-1082, 1–7. https://doi.org/10.1016/j.jchromb.2018.02.017.Search in Google Scholar

30. Köse, K., Köse, D. A. Environ. Sci. Pollut. Res. 2017, 24, 9187–9193.https://doi.org/10.1007/s11356-017-8576-6.Search in Google Scholar

31. Andaç, M., Galaev, I. Y., Denizli, A. J. Chromatogr. B 2016, 1021, 69–80. https://doi.org/10.1016/j.jchromb.2015.09.034.Search in Google Scholar

32. Hur, D., Ekti, S. F., Say, R. Lett. Org. Chem. 2007, 4, 585–587. https://doi.org/10.2174/157017807782795556.Search in Google Scholar

33. Erol, K., Köse, K. Artif. Cells, Nanomed., Biotechnol. 2017, 45, 39–45. https://doi.org/10.1080/21691401.2016.1233112.Search in Google Scholar

34. Kanwal, R., Ahmed, T., Mirza, B. Asian J. Plant Sci. 2004, 3, 300–305. https://doi.org/10.3923/ajps.2004.300.305.Search in Google Scholar

35. Morriss, F. H., Brewer, E. D., Spedale, S. B., Riddle, L., Temple, D. M., Caprioli, R. M., West, M. S. Pediatrics 1986, 78, 458–464.10.1542/peds.78.3.458Search in Google Scholar

36. Bobbo, T., Cecchinato, A., Cipolat-Gotet, C., Stocco, G., Bittante, G. Acta Agraria Kaposváriensis 2014, 18, 81–88.Search in Google Scholar

37. Yang, T., Li, H., Wang, F., Liu, X., Li, Q. Asian-Australas. J. Anim. Sci. 2013, 26, 896. https://doi.org/10.5713/ajas.2012.12677.Search in Google Scholar

38. Wang, X., Wang, X., Liu, J., Wang, K., Zhao, R., Yang, S. Microchem. J. 2020, 159, 105359. https://doi.org/10.1016/j.microc.2020.105359.Search in Google Scholar

39. Galhoum, A. A., Hassan, K. M., Desouky, O. A., Masoud, A. M., Akashi, T., Sakai, Y., Guibal, E. React. Funct. Polym. 2017, 113, 13–22. https://doi.org/10.1016/j.reactfunctpolym.2017.02.001.Search in Google Scholar

40. Ye, X., Li, H., Wang, Q., Chai, R., Ma, C., Gao, H., Mao, J. Ecotoxicol. Environ. Saf. 2018, 148, 418–425. https://doi.org/10.1016/j.ecoenv.2017.10.056.Search in Google Scholar

41. Monaco, G. J. Math. Chem. 2011, 49, 1544–1557. https://doi.org/10.1007/s10910-011-9840-5.Search in Google Scholar

42. Christov, S. Int. J. Quantum Chem. 1977, 12, 495–503. https://doi.org/10.1002/qua.560120308.Search in Google Scholar

43. Trautz, M. Z. Anorg. Allg. Chem. 1916, 96, 1–28. https://doi.org/10.1002/zaac.19160960102.Search in Google Scholar

44. Ingavle, G. C., Baillie, L. W., Zheng, Y., Lis, E. K., Savina, I. N., Howell, C. A., Mikhalovsky, S. V., Sandeman, S. R. Biomaterials 2015, 50, 140–153. https://doi.org/10.1016/j.biomaterials.2015.01.039.Search in Google Scholar

45. Hadizadeh, F., Hassanpour Moghadam, M., Mohajeri, S. A. J. Sci. Food Agric. 2013, 93, 304–309. https://doi.org/10.1002/jsfa.5757.Search in Google Scholar

46. Yin, C., Du, J. Phys. A (Amsterdam, Neth.) 2014, 407, 119–127. https://doi.org/10.1016/j.physa.2014.03.057.Search in Google Scholar

47. Fil, B. A., Ozmetin, C. J. Chem. Soc. Pak. 2012, 34, 896–906.Search in Google Scholar

48. de Castro, L. A., Brasil, C. A., Napolitano, Rd. J. Ann. Phys. 2018, 392, 272–286. https://doi.org/10.1016/j.aop.2018.03.014.Search in Google Scholar

49. Balieiro, A., Santos, R., Pereira, M., Figueiredo, R., Freitas, L., de Alsina, O., Lima, A., Soares, C. Braz. J. Chem. Eng. 2016, 33, 361–372. https://doi.org/10.1590/0104-6632.20160332s20140089.Search in Google Scholar

50. Bakhshpour, M., Idil, N., Perçin, I., Denizli, A. Appl. Sci. 2019, 9, 553. https://doi.org/10.3390/app9030553.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2020-0176).


Received: 2020-07-08
Accepted: 2021-04-23
Published Online: 2021-05-31
Published in Print: 2021-08-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0176/html
Scroll to top button