Reducing lactose content of milk from livestock and humans via lactose imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-i-aspartic acid) cryogels
Abstract
Lactase, which can cause lactose intolerance in its deficiency, is a vital enzyme concerning digestion. To overcome lactose intolerance for patients with digestion problem depending of this kind of issue, lactose in food should be removed. In this study, lactose imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-l-aspartic acid), poly(HEMA-MAsp), cryogels were synthesized to reduce the amount of lactose content of milk samples. Occurrence of desired bounds, structural integrity, and surface characteristics were analyzed via Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), scanning electron microscope (SEM), micro computed tomography (CT), and confocal microscope methods. Water retention characteristic were tested in solution with different electrolytic nature. Adsorption parameters were optimized in an aqueous medium. The adsorption performance of imprinted cryogels was studied in milk samples obtained from cow, sheep, goat, buffalo, and from human volunteers at different intervals after birth. Amount of lactose adsorbed in aqueous media and milk sample from humans were 322 (56.7%) and 179.5 (5.94%) mg lactose/g polymer, respectively. Selectivity studies revealed an approximately 8-fold increase in adsorption rate of molecularly imprinted cryogels as compared to that of nonimprinted cryogels. In addition, competitive adsorption was conducted using lactose-imprinted cryogels in aqueous media containing lactose, glucose, and galactose molecules resulting in adsorption rates of 220.56, 57.87, and 61.65 mg biomolecule/g polymer, respectively.
Funding source: Hitit University
Award Identifier / Grant number: ALACA19001.17.001
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This study was supported by Hitit University Scientific Research Projects Coordination Unit with the project ALACA19001.17.001.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Garballo-Rubio, A., Soto-Chinchilla, J., Moreno, A., Zafra-Gómez, A. J. Food Compos. Anal. 2018, 66, 39–45. https://doi.org/10.1016/j.jfca.2017.11.006.Search in Google Scholar
2. van Scheppingen, W. B., van Hilten, P. H., Vijverberg, M. P., Duchateau, A. L. J. Chromatogr. B 2017, 1060, 395–399. https://doi.org/10.1016/j.jchromb.2017.06.024.Search in Google Scholar
3. Sudsa-Ard, K., Kijboonchoo, K., Chavasit, V., Chaunchaiyakul, R., Nio, A. Q. X., Lee, J. K. W. J. Int. Soc. Sports Nutr. 2014, 11, 1–6. https://doi.org/10.1186/s12970-014-0049-4.Search in Google Scholar
4. Vieira, D. C., Lima, L. N., Mendes, A. A., Adriano, W. S., Giordano, R. C., Giordano, R. L., Tardioli, P. W. Biochem. Eng. J. 2013, 81, 54–64. https://doi.org/10.1016/j.bej.2013.10.007.Search in Google Scholar
5. Gille, D., Walther, B., Badertscher, R., Bosshart, A., Brügger, C., Brühlhart, M., Gauch, R., Noth, P., Vergères, G., Egger, L. Int. Dairy J. 2018, 83, 17–19. https://doi.org/10.1016/j.idairyj.2018.03.003.Search in Google Scholar
6. Morlock, G. E., Morlock, L. P., Lemo, C. J. Chromatogr. A 2014, 1324, 215–223. https://doi.org/10.1016/j.chroma.2013.11.038.Search in Google Scholar
7. Wolf, M., Gasparin, B. C., Paulino, A. T. Int. J. Biol. Macromol. 2018, 115, 157–164. https://doi.org/10.1016/j.ijbiomac.2018.04.058.Search in Google Scholar
8. Batista, K., Silva, C., Fernandes, P., Campos, I., Fernandes, K. Sep. Purif. Technol. 2017, 185, 54–60. https://doi.org/10.1016/j.seppur.2017.05.019.Search in Google Scholar
9. Datta, D., Pohlentz, G., Schulte, M., Kaiser, M., Goycoolea, F. M., Müthing, J., Mormann, M., Swamy, M. J. Arch. Biochem. Biophys. 2016, 609, 59–68. https://doi.org/10.1016/j.abb.2016.09.009.Search in Google Scholar
10. Doğan, T., Bayram, E., Uzun, L., Şenel, S., Denizli, A. J. Appl. Polym. Sci. 2015, 132.10.1002/app.41981Search in Google Scholar
11. Kim, M. Y., Lee, T. G. Chemosphere 2019, 217, 423–429. https://doi.org/10.1016/j.chemosphere.2018.10.021.Search in Google Scholar
12. Santos, T., Brito, A., Boto, R., Sousa, P., Almeida, P., Cruz, C., Tomaz, C. Sep. Purif. Technol. 2018, 206, 192–198. https://doi.org/10.1016/j.seppur.2018.06.002.Search in Google Scholar
13. Niyomdecha, S., Limbut, W., Numnuam, A., Asawatreratanakul, P., Kanatharana, P., Thavarungkul, P. Sens. Actuators, B 2017, 241, 473–481. https://doi.org/10.1016/j.snb.2016.10.102.Search in Google Scholar
14. Sahiner, N., Demirci, S. Mater. Des. 2017, 120, 47–55. https://doi.org/10.1016/j.matdes.2017.02.004.Search in Google Scholar
15. Luo, L-J., Lai, J-Y., Chou, S-F., Hsueh, Y-J., Ma, D. H-K. Acta Biomater. 2018, 65, 123–136. https://doi.org/10.1016/j.actbio.2017.11.018.Search in Google Scholar
16. Petrov, P., Mokreva, P., Kostov, I., Uzunova, V., Tzoneva, R. Carbohydr. Polym. 2016, 140, 349–355. https://doi.org/10.1016/j.carbpol.2015.12.069.Search in Google Scholar
17. Atta, A. M., Ezzat, A. O., Al-Hussain, S. A., Al-Lohedan, H. A., Tawfeek, A. M., Hashem, A. I. React. Funct. Polym. 2018, 131, 420–429. https://doi.org/10.1016/j.reactfunctpolym.2018.08.019.Search in Google Scholar
18. Liang, L., Zhou, M., Yang, W., Jiang, L. Chem. Eng. J. 2018, 352, 673–681. https://doi.org/10.1016/j.cej.2018.07.072.Search in Google Scholar
19. Koshy, S. T., Zhang, D. K., Grolman, J. M., Stafford, A. G., Mooney, D. J. Acta Biomater. 2018, 65, 36–43. https://doi.org/10.1016/j.actbio.2017.11.024.Search in Google Scholar
20. Sarıca, B., Köse, K., Uzunoğlu, A., Erol, K., Köse, D. A. Chromatographia 2018, 81, 127–137.10.1007/s10337-017-3419-7Search in Google Scholar
21. Erol, K., Köse, K., Avcı, E., Köse, D. A. J. Macromol. Sci., Part A: Pure Appl.Chem. 2017, 54, 902–907. https://doi.org/10.1080/10601325.2017.1381852.Search in Google Scholar
22. Köse, K., Uzun, L. J. Sep. Sci. 2016, 39, 1998–2005. https://doi.org/10.1002/jssc.201600199.Search in Google Scholar
23. Erol, K., Köse, K., Köse, D. A., Sızır, Ü., Tosun Satır, İ., Uzun, L. Desalin. Water Treat. 2016, 57, 9307–9317. https://doi.org/10.1080/19443994.2015.1030708.Search in Google Scholar
24. Erol, K. J. Turk. Chem. Soc., Sect. A., 4, 133–148.10.18596/jotcsa.287321Search in Google Scholar
25. Yilmaz, F., Kose, K., Sari, M. M., Demirel, G., Uzun, L., Denizli, A. Colloids Surf., B 2013, 109, 176–182. https://doi.org/10.1016/j.colsurfb.2013.03.041.Search in Google Scholar
26. Erol, K. J. Macromol. Sci., Part A: Pure Appl.Chem. 2016, 53, 629–635. https://doi.org/10.1080/10601325.2016.1212310.Search in Google Scholar
27. Erol, K., Cebeci, B. K., Köse, K., Köse, D. A. Int. J. Biol. Macromol. 2019, 123, 738–743. https://doi.org/10.1016/j.ijbiomac.2018.11.121.Search in Google Scholar
28. Bilgin, E., Erol, K., Köse, K., Köse, D. A. Environ. Sci. Pollut. Res. 2018, 25, 27614–27627. https://doi.org/10.1007/s11356-018-2784-6.Search in Google Scholar
29. Erol, K., Uzunoglu, A., Köse, K., Sarıca, B., Avcı, E., Köse, D. A. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2018, 1081-1082, 1–7. https://doi.org/10.1016/j.jchromb.2018.02.017.Search in Google Scholar
30. Köse, K., Köse, D. A. Environ. Sci. Pollut. Res. 2017, 24, 9187–9193.https://doi.org/10.1007/s11356-017-8576-6.Search in Google Scholar
31. Andaç, M., Galaev, I. Y., Denizli, A. J. Chromatogr. B 2016, 1021, 69–80. https://doi.org/10.1016/j.jchromb.2015.09.034.Search in Google Scholar
32. Hur, D., Ekti, S. F., Say, R. Lett. Org. Chem. 2007, 4, 585–587. https://doi.org/10.2174/157017807782795556.Search in Google Scholar
33. Erol, K., Köse, K. Artif. Cells, Nanomed., Biotechnol. 2017, 45, 39–45. https://doi.org/10.1080/21691401.2016.1233112.Search in Google Scholar
34. Kanwal, R., Ahmed, T., Mirza, B. Asian J. Plant Sci. 2004, 3, 300–305. https://doi.org/10.3923/ajps.2004.300.305.Search in Google Scholar
35. Morriss, F. H., Brewer, E. D., Spedale, S. B., Riddle, L., Temple, D. M., Caprioli, R. M., West, M. S. Pediatrics 1986, 78, 458–464.10.1542/peds.78.3.458Search in Google Scholar
36. Bobbo, T., Cecchinato, A., Cipolat-Gotet, C., Stocco, G., Bittante, G. Acta Agraria Kaposváriensis 2014, 18, 81–88.Search in Google Scholar
37. Yang, T., Li, H., Wang, F., Liu, X., Li, Q. Asian-Australas. J. Anim. Sci. 2013, 26, 896. https://doi.org/10.5713/ajas.2012.12677.Search in Google Scholar
38. Wang, X., Wang, X., Liu, J., Wang, K., Zhao, R., Yang, S. Microchem. J. 2020, 159, 105359. https://doi.org/10.1016/j.microc.2020.105359.Search in Google Scholar
39. Galhoum, A. A., Hassan, K. M., Desouky, O. A., Masoud, A. M., Akashi, T., Sakai, Y., Guibal, E. React. Funct. Polym. 2017, 113, 13–22. https://doi.org/10.1016/j.reactfunctpolym.2017.02.001.Search in Google Scholar
40. Ye, X., Li, H., Wang, Q., Chai, R., Ma, C., Gao, H., Mao, J. Ecotoxicol. Environ. Saf. 2018, 148, 418–425. https://doi.org/10.1016/j.ecoenv.2017.10.056.Search in Google Scholar
41. Monaco, G. J. Math. Chem. 2011, 49, 1544–1557. https://doi.org/10.1007/s10910-011-9840-5.Search in Google Scholar
42. Christov, S. Int. J. Quantum Chem. 1977, 12, 495–503. https://doi.org/10.1002/qua.560120308.Search in Google Scholar
43. Trautz, M. Z. Anorg. Allg. Chem. 1916, 96, 1–28. https://doi.org/10.1002/zaac.19160960102.Search in Google Scholar
44. Ingavle, G. C., Baillie, L. W., Zheng, Y., Lis, E. K., Savina, I. N., Howell, C. A., Mikhalovsky, S. V., Sandeman, S. R. Biomaterials 2015, 50, 140–153. https://doi.org/10.1016/j.biomaterials.2015.01.039.Search in Google Scholar
45. Hadizadeh, F., Hassanpour Moghadam, M., Mohajeri, S. A. J. Sci. Food Agric. 2013, 93, 304–309. https://doi.org/10.1002/jsfa.5757.Search in Google Scholar
46. Yin, C., Du, J. Phys. A (Amsterdam, Neth.) 2014, 407, 119–127. https://doi.org/10.1016/j.physa.2014.03.057.Search in Google Scholar
47. Fil, B. A., Ozmetin, C. J. Chem. Soc. Pak. 2012, 34, 896–906.Search in Google Scholar
48. de Castro, L. A., Brasil, C. A., Napolitano, Rd. J. Ann. Phys. 2018, 392, 272–286. https://doi.org/10.1016/j.aop.2018.03.014.Search in Google Scholar
49. Balieiro, A., Santos, R., Pereira, M., Figueiredo, R., Freitas, L., de Alsina, O., Lima, A., Soares, C. Braz. J. Chem. Eng. 2016, 33, 361–372. https://doi.org/10.1590/0104-6632.20160332s20140089.Search in Google Scholar
50. Bakhshpour, M., Idil, N., Perçin, I., Denizli, A. Appl. Sci. 2019, 9, 553. https://doi.org/10.3390/app9030553.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2020-0176).
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Solid–liquid–liquid phase envelopes from temperature-scanned refractive index data
- Application of the Folgar–Tucker model to predict the orientation of particles of different aspect ratios in polymer suspensions
- Investigating the relationship between tack and degree of conversion in DGEBA-based epoxy resin cured with dicyandiamide and diuron
- Synergistic effect of oxidized low-dimensional carbon nanomaterials on the properties of polysulfone composite membrane
- Investigations of the characteristics and performance of modified polyethersulfones (PES) as membrane oxygenator
- Preparation and assembly
- In vitro biocompatibility study of microwave absorbing conducting polymer blend films for biomedical applications
- Design and characterization of ramie fiber-reinforced composites with flame retardant surface layer including iron oxide and expandable graphite
- Reducing lactose content of milk from livestock and humans via lactose imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-i-aspartic acid) cryogels
- Engineering and processing
- PVA coating of ferrite nanoparticles triggers pH-responsive release of 5-fluorouracil in cancer cells
- Miscible blend polyethersulfone/polyimide asymmetric membrane crosslinked with 1,3-diaminopropane for hydrogen separation
- Pyrolysis and combustion of polystyrene composites based on graphene oxide functionalized with 3-(methacryloyloxy)-propyltrimethoxysilane
Articles in the same Issue
- Frontmatter
- Material properties
- Solid–liquid–liquid phase envelopes from temperature-scanned refractive index data
- Application of the Folgar–Tucker model to predict the orientation of particles of different aspect ratios in polymer suspensions
- Investigating the relationship between tack and degree of conversion in DGEBA-based epoxy resin cured with dicyandiamide and diuron
- Synergistic effect of oxidized low-dimensional carbon nanomaterials on the properties of polysulfone composite membrane
- Investigations of the characteristics and performance of modified polyethersulfones (PES) as membrane oxygenator
- Preparation and assembly
- In vitro biocompatibility study of microwave absorbing conducting polymer blend films for biomedical applications
- Design and characterization of ramie fiber-reinforced composites with flame retardant surface layer including iron oxide and expandable graphite
- Reducing lactose content of milk from livestock and humans via lactose imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-i-aspartic acid) cryogels
- Engineering and processing
- PVA coating of ferrite nanoparticles triggers pH-responsive release of 5-fluorouracil in cancer cells
- Miscible blend polyethersulfone/polyimide asymmetric membrane crosslinked with 1,3-diaminopropane for hydrogen separation
- Pyrolysis and combustion of polystyrene composites based on graphene oxide functionalized with 3-(methacryloyloxy)-propyltrimethoxysilane