Miscible blend polyethersulfone/polyimide asymmetric membrane crosslinked with 1,3-diaminopropane for hydrogen separation
-
Nur’ Adilah Abdul Nasir
, Nur Awanis Hashim
Abstract
Efficient purification technology is crucial to fully utilize hydrogen (H2) as the next generation fuel source. Polyimide (PI) membranes have been intensively applied for H2 purification but its current separation performance of neat PI membranes is insufficient to fulfill industrial demand. This study employs blending and crosslinking modification simultaneously to enhance the separation efficiency of a membrane. Polyethersulfone (PES) and Co-PI (P84) blend asymmetric membranes have been prepared via dry–wet phase inversion with three different ratios. Pure H2 and carbon dioxide (CO2) gas permeation are conducted on the polymer blends to find the best formulation for membrane composition for effective H2 purification. Next, the membrane with the best blending ratio is chemically modified using 1,3-diaminopropane (PDA) with variable reaction time. Physical and chemical characterization of all membranes was evaluated using field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR). Upon 15 min modification, the polymer membrane achieved an improvement on H2/CO2 selectivity by 88.9%. Moreover, similar membrane has demonstrated the best performance as it has surpassed Robeson’s upper bound curve for H2/CO2 gas pair performance. Therefore, this finding is significant towards the development of H2-selective membranes with improved performance.
Funding source: Universiti Malaya
Award Identifier / Grant number: GPF056A-2018
Award Identifier / Grant number: GPF065A-2018
Award Identifier / Grant number: RU019Q-2017
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: The author would like to recognize University of Malaya for the project funding via Faculty Program Research grants (GPF056A-2018, GPF065A-2018 and RU019Q-2017).
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Norfadilah, N., Raheem, A., Harun, R., Ahmadun, Fl. R. Int. J. Hydrogen Energy 2016, 41, 11960–11964; https://doi.org/10.1016/j.ijhydene.2016.04.096.Search in Google Scholar
2. Chong, M-L., Sabaratnam, V., Shirai, Y., Hassan, M. A. Int. J. Hydrogen Energy 2009, 34, 3277–3287; https://doi.org/10.1016/j.ijhydene.2009.02.010.Search in Google Scholar
3. Lin, H., He, Z., Sun, Z., Vu, J., Ng, A., Mohammed, M., Kniep, J., Merkel, T. C., Wu, T., Lambrecht, R. C. J. Membr. Sci. 2014, 457, 149–161; https://doi.org/10.1016/j.memsci.2014.01.020.Search in Google Scholar
4. Rezakazemi, M., Amooghin, A. E., Montazer-Rahmati, M. M., Ismail, A. F., Matsuura, T. Prog. Polym. Sci. 2014, 39, 817–861; https://doi.org/10.1016/j.progpolymsci.2014.01.003.Search in Google Scholar
5. Shao, L., Low, B. T., Chung, T-S., Greenberg, A. R. J. Membr. Sci. 2009, 327, 18–31; https://doi.org/10.1016/j.memsci.2008.11.019.Search in Google Scholar
6. Etxeberria-Benavides, M., Johnson, T., Cao, S., Zornoza, B., Coronas, J., Sanchez-Lainez, J., Sabetghadam, A., Liu, X., Andres-Garcia, E., Kapteijn, F. J. S. Technology P. 2020, 237, 116347; https://doi.org/10.1016/j.seppur.2019.116347.Search in Google Scholar
7. Li, P., Wang, Z., Qiao, Z., Liu, Y., Cao, X., Li, W., Wang, J., Wang, S. J. Membr. Sci. 2015, 495, 130–168; https://doi.org/10.1016/j.memsci.2015.08.010.Search in Google Scholar
8. Chung, T. S., Shao, L., Tin, P. S. Macromol. Rapid Commun. 2006, 27, 998–1003; https://doi.org/10.1002/marc.200600147.Search in Google Scholar
9. Kapantaidakis, G., Kaldis, S., Dabou, X., Sakellaropoulos, G. J. Membr. Sci. 1996, 110, 239–247; https://doi.org/10.1016/0376-7388(95)00265-0.Search in Google Scholar
10. Visser, T., Masetto, N., Wessling, M. J. Membr. Sci. 2007, 306, 16–28; https://doi.org/10.1016/j.memsci.2007.07.048.Search in Google Scholar
11. Omidvar, M., Stafford, C. M., Lin, H. J. Membr. Sci. 2019, 575, 118–125; https://doi.org/10.1016/j.memsci.2019.01.003.Search in Google Scholar PubMed PubMed Central
12. Hayes, R. A. Amine-modified Polyimide Membranes; Google Patents, 1991.10.1016/0958-2118(91)90266-WSearch in Google Scholar
13. Liu, Y., Wang, R., Chung, T-S. J. Membr. Sci. 2001, 189, 231–239; https://doi.org/10.1016/s0376-7388(01)00415-x.Search in Google Scholar
14. Shao, L., Chung, T-S., Goh, S. H., Pramoda, K. P. J. Membr. Sci. 2004, 238, 153–163; https://doi.org/10.1016/j.memsci.2004.03.034.Search in Google Scholar
15. Shao, L., Chung, T-S., Goh, S., Pramoda, K. J. Membr. Sci. 2005, 267, 78–89; https://doi.org/10.1016/j.memsci.2005.06.004.Search in Google Scholar
16. Shao, L., Liu, L., Cheng, S-X., Huang, Y-D., Ma, J. J. Membr. Sci. 2008, 312, 174–185; https://doi.org/10.1016/j.memsci.2007.12.060.Search in Google Scholar
17. Tin, P., Chung, T., Liu, Y., Wang, R., Liu, S., Pramoda, K. J. Membr. Sci. 2003, 225, 77–90; https://doi.org/10.1016/j.memsci.2003.08.005.Search in Google Scholar
18. Low, B. T., Xiao, Y., Chung, T. S., Liu, Y. Macromolecules 2008, 41, 1297–1309; https://doi.org/10.1021/ma702360p.Search in Google Scholar
19. Lau, C. H., Low, B. T., Shao, L., Chung, T-S. Int. J. Hydrogen Energy 2010, 35, 8970–8982; https://doi.org/10.1016/j.ijhydene.2010.06.013.Search in Google Scholar
20. Shao, L., Lau, C-H., Chung, T-S. Int. J. Hydrogen Energy 2009, 34, 8716–8722; https://doi.org/10.1016/j.ijhydene.2009.07.115.Search in Google Scholar
21. Junaidi, M. U. M., Leo, C. P., Kamal, S. N. M., Ahmad, A. L., Chew, T. L. Fuel Process. Technol. 2013, 112, 1–6; https://doi.org/10.1016/j.fuproc.2013.02.014.Search in Google Scholar
22. Hamid, M. A. A., Chung, Y. T., Rohani, R., Junaidi, M. U. M. Separ. Purif. Technol. 2018, 209, 598–607; https://doi.org/10.1016/j.seppur.2018.07.067.Search in Google Scholar
23. Liu, G., Labreche, Y., Li, N., Liu, Y., Zhang, C., Miller, S. J., Babu, V. P., Bhuwania, N., Koros, W. J. AlChE J. 2019, 65, 1269–1280; https://doi.org/10.1002/aic.16520.Search in Google Scholar
24. Zhu, L., Swihart, M. T., Lin, H. J. Mater. Chem. 2017, 5, 19914–19923; https://doi.org/10.1039/c7ta03874g.Search in Google Scholar
25. Hosseini, S. S., Teoh, M. M., Chung, T. S. Polymer 2008, 49, 1594–1603; https://doi.org/10.1016/j.polymer.2008.01.052.Search in Google Scholar
26. Hosseini, S. S., Chung, T. S. J. Membr. Sci. 2009, 328, 174–185; https://doi.org/10.1016/j.memsci.2008.12.005.Search in Google Scholar
27. Han, J., Lee, W., Choi, J. M., Patel, R., Min, B-R. J. Membr. Sci. 2010, 351, 141–148; https://doi.org/10.1016/j.memsci.2010.01.038.Search in Google Scholar
28. Wijenayake, S. N., Panapitiya, N. P., Versteeg, S. H., Nguyen, C. N., Goel, S., Balkus, K. J.Jr, Musselman, I. H., Ferraris, J. P. Ind. Eng. Chem. Res. 2013, 52, 6991–7001; https://doi.org/10.1021/ie400149e.Search in Google Scholar
29. Chatzidaki, E., Favvas, E., Papageorgiou, S., Kanellopoulos, N., Theophilou, N. Eur. Polym. J. 2007, 43, 5010–5016; https://doi.org/10.1016/j.eurpolymj.2007.09.005.Search in Google Scholar
30. Mangindaan, D. W., Shi, G. M., Chung, T-S. J. Membr. Sci. 2014, 458, 76–85; https://doi.org/10.1016/j.memsci.2014.01.030.Search in Google Scholar
31. Robeson, L. M. J. Membr. Sci. 2008, 320, 390–400; https://doi.org/10.1016/j.memsci.2008.04.030.Search in Google Scholar
32. Farrokhnia, M., Rashidzadeh, M., Safekordi, A., Khanbabaei, G. Iran. Polym. J. (Engl. Ed.) 2015, 24, 171–183; https://doi.org/10.1007/s13726-015-0308-5.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Solid–liquid–liquid phase envelopes from temperature-scanned refractive index data
- Application of the Folgar–Tucker model to predict the orientation of particles of different aspect ratios in polymer suspensions
- Investigating the relationship between tack and degree of conversion in DGEBA-based epoxy resin cured with dicyandiamide and diuron
- Synergistic effect of oxidized low-dimensional carbon nanomaterials on the properties of polysulfone composite membrane
- Investigations of the characteristics and performance of modified polyethersulfones (PES) as membrane oxygenator
- Preparation and assembly
- In vitro biocompatibility study of microwave absorbing conducting polymer blend films for biomedical applications
- Design and characterization of ramie fiber-reinforced composites with flame retardant surface layer including iron oxide and expandable graphite
- Reducing lactose content of milk from livestock and humans via lactose imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-i-aspartic acid) cryogels
- Engineering and processing
- PVA coating of ferrite nanoparticles triggers pH-responsive release of 5-fluorouracil in cancer cells
- Miscible blend polyethersulfone/polyimide asymmetric membrane crosslinked with 1,3-diaminopropane for hydrogen separation
- Pyrolysis and combustion of polystyrene composites based on graphene oxide functionalized with 3-(methacryloyloxy)-propyltrimethoxysilane
Articles in the same Issue
- Frontmatter
- Material properties
- Solid–liquid–liquid phase envelopes from temperature-scanned refractive index data
- Application of the Folgar–Tucker model to predict the orientation of particles of different aspect ratios in polymer suspensions
- Investigating the relationship between tack and degree of conversion in DGEBA-based epoxy resin cured with dicyandiamide and diuron
- Synergistic effect of oxidized low-dimensional carbon nanomaterials on the properties of polysulfone composite membrane
- Investigations of the characteristics and performance of modified polyethersulfones (PES) as membrane oxygenator
- Preparation and assembly
- In vitro biocompatibility study of microwave absorbing conducting polymer blend films for biomedical applications
- Design and characterization of ramie fiber-reinforced composites with flame retardant surface layer including iron oxide and expandable graphite
- Reducing lactose content of milk from livestock and humans via lactose imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-i-aspartic acid) cryogels
- Engineering and processing
- PVA coating of ferrite nanoparticles triggers pH-responsive release of 5-fluorouracil in cancer cells
- Miscible blend polyethersulfone/polyimide asymmetric membrane crosslinked with 1,3-diaminopropane for hydrogen separation
- Pyrolysis and combustion of polystyrene composites based on graphene oxide functionalized with 3-(methacryloyloxy)-propyltrimethoxysilane