Abstract
The ramie plain-woven fabric-reinforced epoxy composites with iron oxide (IO) powders and expandable graphite (EG) particles were fabricated by the hand lay-up and vacuum bagging pressing. The flame retardant layers with IO powders and EG particles have been designed on the surface of the composite structure, to improve the composites flame retardancy. The flame retardancy property of the composites was discussed from the limited oxide index (LOI), vertical burning test, and cone calorimeter test, while the flexural property and interlaminar shear strength of the composites were also investigated through the three-point flexural tests, respectively. It was found that the flame retardancy property of the composites, which contains both IO powders and EG particles, can be greatly improved. However, IO powders and EG particles have a negative effect on flexural properties and interlaminar shear strength of the composites. Also, prepreg with IO powders or EG particles which laminated on the surface layer of the composite with different orders would result in different performances.
Funding source: Zhejiang Provincial Key Research and Development Program
Award Identifier / Grant number: 2021C01123
Funding source: Ph.D. Research Start-Up Foundation of Zhejiang Sci-Tech University
Award Identifier / Grant number: 19012098-Y
Funding source: Fundamental Research Funds of Shaoxing Keqiao Research Institute of Zhejiang Sci-Tech University
Award Identifier / Grant number: KYY2021001Y
Award Identifier / Grant number: KYY2021003Y
Funding source: Outstanding Doctors Foundation of Zhejiang Sci-Tech University
Award Identifier / Grant number: 2019YBZX04
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This work was financially supported by the Zhejiang Provincial Key Research and Development Program (grant no. 2021C01123), the Ph.D. Research Start-Up Foundation of Zhejiang Sci-Tech University (grant no. 19012098-Y), the Fundamental Research Funds of Shaoxing Keqiao Research Institute of Zhejiang Sci-Tech University (grant no. KYY2021001Y and KYY2021003Y) and the Outstanding Doctors Foundation of Zhejiang Sci-Tech University (grant no. 2019YBZX04).
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Chu, F., Yu, X., Hou, Y., Mu, X., Song, L., Hu, W. Composites, Part A. 2018, 115, 264–273; https://doi.org/10.1016/j.compositesa.2018.10.006.Search in Google Scholar
2. da Luz, F. S., Garcia Filho, F. d. C., Oliveira, M. S., Cassiano Nascimento, L. F., Monteiro, S. N. Composites, Part A. 2020, 12, 1–13. https://doi.org/10.3390/polym12091920.Search in Google Scholar
3. Han, Q., Zhao, L., Lin, P., Zhu, Z., Nie, K., Yang, F., Wang, L. React. Funct. Polym. 2020, 146, 104443; https://doi.org/10.1016/j.reactfunctpolym.2019.104443.Search in Google Scholar
4. Kumar, S., Zindani, D., Bhowmik, S. J. Mater. Eng. Perform. 2020, 29, 3161–3171; https://doi.org/10.1007/s11665-020-04845-3.Search in Google Scholar
5. Sadrmanesh, V., Chen, Y. Int. Mater. Rev. 2019, 64, 381–406; https://doi.org/10.1080/09506608.2018.1501171.Search in Google Scholar
6. Kishi, H., Fujita, A . Environ. Eng. Manag. J. 2008, 7, 517–523https://doi.org/10.30638/eemj.2008.074.Search in Google Scholar
7. Wang, H., Xian, G., Li, H., Sui, L. Fibers Polym. 2014, 15, 1029–1034; https://doi.org/10.1007/s12221-014-1029-7.Search in Google Scholar
8. Yan, H., Wang, H., Fang, Z. Ind. Eng. Chem. Res. 2014, 53, 19961–19969; https://doi.org/10.1021/ie504070t.Search in Google Scholar
9. Hae, Y. C., Jung, S. L. Fibers Polym. 2012, 13, 217–223.10.1007/s12221-012-0217-6Search in Google Scholar
10. Azadian, M., Hasani, H., Shokrieh, M. M. Fibers Polym. 2018, 19, 2581–2589; https://doi.org/10.1007/s12221-018-8368-8.Search in Google Scholar
11. Gao, X., Li, D., Wu, W., Chen, S. Textil. Res. J. 2018, 88, 333–344; https://doi.org/10.1177/0040517516679155.Search in Google Scholar
12. Mishra, R., Wiener, J., Militky, J., Petru, M., Tomkova, B., Novotna, J. Fibers Polym. 2020, 21, 619–627; https://doi.org/10.1007/s12221-020-9804-0.Search in Google Scholar
13. Nayak, S. Y., Heckadka, S. S., Sadanand, R. V., Bharadwaj, K., Pokharna, H. M., Sanjeev, A. R. J. Eng. Fibers Fabr. 2017, 12, 12–19; https://doi.org/10.1177/155892501701200202.Search in Google Scholar
14. Reis, V. L., Opelt, C. V., Cândido, G. M., Rezende, M. C., Donadon, M. V. Compos. Struct. 2018, 203, 952–959; https://doi.org/10.1016/j.compstruct.2018.06.016.Search in Google Scholar
15. Lazar, S. T., Kolibaba, T. J., Grunlan, J. C. Nat. Rev. Mater. 2020, 5, 259–275; https://doi.org/10.1038/s41578-019-0164-6.Search in Google Scholar
16. Sim, M.-J., Cha, S.-H. Polymer 2019, 43, 204–210; https://doi.org/10.7317/pk.2019.43.2.204.Search in Google Scholar
17. Tian, X., Yin, Q., Wang, Z. J. Photopolym. Sci. Technol. 2019, 32, 769–778.10.2494/photopolymer.32.769Search in Google Scholar
18. Zhang, X., Zhang, W., Zeng, G., Du, J. Polym. Eng. Sci. 2020, 60, 314–322; https://doi.org/10.1002/pen.25286.Search in Google Scholar
19. Chen, X., Liu, L., Jiao, C. Adv. Polym. Technol. 2015, 34, 1–9; https://doi.org/10.1002/adv.21516.Search in Google Scholar
20. Chen, X., Liu, L., Zhuo, J., Jiao, C., Qian, Y. High Perform. Polym. 2015, 27, 233–246; https://doi.org/10.1177/0954008314544341.Search in Google Scholar
21. Liu, L., Chen, X., Jiao, C. J. Therm. Anal. Calorim. 2015, 122, 437–447; https://doi.org/10.1007/s10973-015-4928-y.Search in Google Scholar
22. Liu, X., Xu, D.-M., Wang, Y.-L., Zhou, Y., Hao, J.-W. J. Therm. Anal. Calorim. 2016, 125, 245–254; https://doi.org/10.1007/s10973-016-5356-3.Search in Google Scholar
23. Szadkowski, B., Kusmierek, M., Rybinski, P., Zukowski, W., Marzec, A. Materials 2020, 13, 1–18; https://doi.org/10.3390/ma13153381.Search in Google Scholar
24. Yurddaskal, M., Celik, E. Compos. Struct. 2018, 183, 381–388; https://doi.org/10.1016/j.compstruct.2017.03.093.Search in Google Scholar
25. Zhang, X., Zhang, W., Zeng, G., Du, J., Zhang, W., Yang, R. Polym. Eng. Sci. 2020, 60, 314–322; https://doi.org/10.1002/pen.25286.Search in Google Scholar
26. Lin, M., Li, B., Li, Q., Li, S., Zhang, S. J. Appl. Polym. Sci. 2011, 121, 1951–1960; https://doi.org/10.1002/app.33759.Search in Google Scholar
27. Gao, W., Yu, Y., Chen, T., Zhang, Q., Chen, Z., Chen, Z., Jiang, J. J. Appl. Polym. Sci. 2020, 137, 1–9; https://doi.org/10.1002/app.49148.Search in Google Scholar
28. Polka, M., Czech, Z., Kukfisz, B., Kolano, K. Przem. Chem. 2017, 96, 1095–1099.Search in Google Scholar
29. Qin, J., Liu, N., Wang, N., Li, L., He, W., Guo, J., Chen, X., Zhang, K., Yu, J. Polym. Compos. 2019, 40, E687–E694; https://doi.org/10.1002/pc.24956.Search in Google Scholar
30. Shen, M.-Y., Chen, W.-J., Tsai, K.-C., Kuan, C.-F., Kuan, H.-C., Chou, H.-W., Chiang, C.-L. Polym. Compos. 2017, 38, 2378–2386; https://doi.org/10.1002/pc.23820.Search in Google Scholar
31. Laachachi, A., Burger, N., Apaydin, K., Sonnier, R., Ferriol, M. Polym. Degrad. Stabil. 2015, 117, 22–29; https://doi.org/10.1016/j.polymdegradstab.2015.03.016.Search in Google Scholar
32. Zhang, P., Hu, Y., Song, L., Ni, J., Xing, W., Wang, J. Sol. Energy Mater. Sol. Cells 2010, 94, 360–365; https://doi.org/10.1016/j.solmat.2009.10.014.Search in Google Scholar
33. Wang, X., Hu, Y., Song, L., Xuan, S., Xing, W., Bai, Z., Lu, H. Sol. Energy Mater. Sol. Cells 2011, 50, 713–720; https://doi.org/10.1021/ie1017157.Search in Google Scholar
34. Chen, Y., Luo, Y., Guo, X., Chen, L., Jia, D. Materials 2020, 13; https://doi.org/10.3390/ma13143095.Search in Google Scholar
35. Weil, E. D. Fire Sci. 2011, 29, 259–296; https://doi.org/10.1177/0734904110395469.Search in Google Scholar
36. Kandola, B. K., Bhatti, W., Kandare, E. Polym. Degrad. Stabil. 2012, 97, 2418–2427; https://doi.org/10.1016/j.polymdegradstab.2012.07.023.Search in Google Scholar
37. Malucelli, G., Carosio, F., Alongi, J., Fina, A., Frache, A., Camino, G. Mater. Sci. Eng.: R. 2014, 84, 1–20; https://doi.org/10.1016/j.mser.2014.08.001.Search in Google Scholar
38. Lewin, M. Polym. Adv. Technol. 2001, 12, 215e22; https://doi.org/10.1002/pat.132.Search in Google Scholar
39. Weil, E. D., Grand, A. F., Wilkie, C. A., Eds. Fire Retardancy of Polymeric Materials; Marcel Dekker: New York, 2000.Search in Google Scholar
40. Chen, X. E., Liu, L., Jiao, C. M. Adv. Polym. Technol. 2015, 119, 625–633.10.1007/s10973-014-4193-5Search in Google Scholar
41. Liu, X., Haoa, J., Gaan, S. RSC Adv. 2016, 6, 74742; https://doi.org/10.1039/c6ra14345h.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Solid–liquid–liquid phase envelopes from temperature-scanned refractive index data
- Application of the Folgar–Tucker model to predict the orientation of particles of different aspect ratios in polymer suspensions
- Investigating the relationship between tack and degree of conversion in DGEBA-based epoxy resin cured with dicyandiamide and diuron
- Synergistic effect of oxidized low-dimensional carbon nanomaterials on the properties of polysulfone composite membrane
- Investigations of the characteristics and performance of modified polyethersulfones (PES) as membrane oxygenator
- Preparation and assembly
- In vitro biocompatibility study of microwave absorbing conducting polymer blend films for biomedical applications
- Design and characterization of ramie fiber-reinforced composites with flame retardant surface layer including iron oxide and expandable graphite
- Reducing lactose content of milk from livestock and humans via lactose imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-i-aspartic acid) cryogels
- Engineering and processing
- PVA coating of ferrite nanoparticles triggers pH-responsive release of 5-fluorouracil in cancer cells
- Miscible blend polyethersulfone/polyimide asymmetric membrane crosslinked with 1,3-diaminopropane for hydrogen separation
- Pyrolysis and combustion of polystyrene composites based on graphene oxide functionalized with 3-(methacryloyloxy)-propyltrimethoxysilane
Articles in the same Issue
- Frontmatter
- Material properties
- Solid–liquid–liquid phase envelopes from temperature-scanned refractive index data
- Application of the Folgar–Tucker model to predict the orientation of particles of different aspect ratios in polymer suspensions
- Investigating the relationship between tack and degree of conversion in DGEBA-based epoxy resin cured with dicyandiamide and diuron
- Synergistic effect of oxidized low-dimensional carbon nanomaterials on the properties of polysulfone composite membrane
- Investigations of the characteristics and performance of modified polyethersulfones (PES) as membrane oxygenator
- Preparation and assembly
- In vitro biocompatibility study of microwave absorbing conducting polymer blend films for biomedical applications
- Design and characterization of ramie fiber-reinforced composites with flame retardant surface layer including iron oxide and expandable graphite
- Reducing lactose content of milk from livestock and humans via lactose imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-i-aspartic acid) cryogels
- Engineering and processing
- PVA coating of ferrite nanoparticles triggers pH-responsive release of 5-fluorouracil in cancer cells
- Miscible blend polyethersulfone/polyimide asymmetric membrane crosslinked with 1,3-diaminopropane for hydrogen separation
- Pyrolysis and combustion of polystyrene composites based on graphene oxide functionalized with 3-(methacryloyloxy)-propyltrimethoxysilane