Home Design and characterization of ramie fiber-reinforced composites with flame retardant surface layer including iron oxide and expandable graphite
Article
Licensed
Unlicensed Requires Authentication

Design and characterization of ramie fiber-reinforced composites with flame retardant surface layer including iron oxide and expandable graphite

  • Xiaofei Yan ORCID logo , Jie Fang , Chenkai Zhu , Jiawei Li and Dongmin Qi EMAIL logo
Published/Copyright: June 7, 2021
Become an author with De Gruyter Brill

Abstract

The ramie plain-woven fabric-reinforced epoxy composites with iron oxide (IO) powders and expandable graphite (EG) particles were fabricated by the hand lay-up and vacuum bagging pressing. The flame retardant layers with IO powders and EG particles have been designed on the surface of the composite structure, to improve the composites flame retardancy. The flame retardancy property of the composites was discussed from the limited oxide index (LOI), vertical burning test, and cone calorimeter test, while the flexural property and interlaminar shear strength of the composites were also investigated through the three-point flexural tests, respectively. It was found that the flame retardancy property of the composites, which contains both IO powders and EG particles, can be greatly improved. However, IO powders and EG particles have a negative effect on flexural properties and interlaminar shear strength of the composites. Also, prepreg with IO powders or EG particles which laminated on the surface layer of the composite with different orders would result in different performances.


Corresponding author: Dongmin Qi, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, China; and Research Institute of Keqiao District, Zhejiang Sci-Tech University, Shaoxing, 312030, China, E-mail:

Funding source: Zhejiang Provincial Key Research and Development Program

Award Identifier / Grant number: 2021C01123

Funding source: Ph.D. Research Start-Up Foundation of Zhejiang Sci-Tech University

Award Identifier / Grant number: 19012098-Y

Funding source: Fundamental Research Funds of Shaoxing Keqiao Research Institute of Zhejiang Sci-Tech University

Award Identifier / Grant number: KYY2021001Y

Award Identifier / Grant number: KYY2021003Y

Funding source: Outstanding Doctors Foundation of Zhejiang Sci-Tech University

Award Identifier / Grant number: 2019YBZX04

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by the Zhejiang Provincial Key Research and Development Program (grant no. 2021C01123), the Ph.D. Research Start-Up Foundation of Zhejiang Sci-Tech University (grant no. 19012098-Y), the Fundamental Research Funds of Shaoxing Keqiao Research Institute of Zhejiang Sci-Tech University (grant no. KYY2021001Y and KYY2021003Y) and the Outstanding Doctors Foundation of Zhejiang Sci-Tech University (grant no. 2019YBZX04).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Chu, F., Yu, X., Hou, Y., Mu, X., Song, L., Hu, W. Composites, Part A. 2018, 115, 264–273; https://doi.org/10.1016/j.compositesa.2018.10.006.Search in Google Scholar

2. da Luz, F. S., Garcia Filho, F. d. C., Oliveira, M. S., Cassiano Nascimento, L. F., Monteiro, S. N. Composites, Part A. 2020, 12, 1–13. https://doi.org/10.3390/polym12091920.Search in Google Scholar

3. Han, Q., Zhao, L., Lin, P., Zhu, Z., Nie, K., Yang, F., Wang, L. React. Funct. Polym. 2020, 146, 104443; https://doi.org/10.1016/j.reactfunctpolym.2019.104443.Search in Google Scholar

4. Kumar, S., Zindani, D., Bhowmik, S. J. Mater. Eng. Perform. 2020, 29, 3161–3171; https://doi.org/10.1007/s11665-020-04845-3.Search in Google Scholar

5. Sadrmanesh, V., Chen, Y. Int. Mater. Rev. 2019, 64, 381–406; https://doi.org/10.1080/09506608.2018.1501171.Search in Google Scholar

6. Kishi, H., Fujita, A . Environ. Eng. Manag. J. 2008, 7, 517–523https://doi.org/10.30638/eemj.2008.074.Search in Google Scholar

7. Wang, H., Xian, G., Li, H., Sui, L. Fibers Polym. 2014, 15, 1029–1034; https://doi.org/10.1007/s12221-014-1029-7.Search in Google Scholar

8. Yan, H., Wang, H., Fang, Z. Ind. Eng. Chem. Res. 2014, 53, 19961–19969; https://doi.org/10.1021/ie504070t.Search in Google Scholar

9. Hae, Y. C., Jung, S. L. Fibers Polym. 2012, 13, 217–223.10.1007/s12221-012-0217-6Search in Google Scholar

10. Azadian, M., Hasani, H., Shokrieh, M. M. Fibers Polym. 2018, 19, 2581–2589; https://doi.org/10.1007/s12221-018-8368-8.Search in Google Scholar

11. Gao, X., Li, D., Wu, W., Chen, S. Textil. Res. J. 2018, 88, 333–344; https://doi.org/10.1177/0040517516679155.Search in Google Scholar

12. Mishra, R., Wiener, J., Militky, J., Petru, M., Tomkova, B., Novotna, J. Fibers Polym. 2020, 21, 619–627; https://doi.org/10.1007/s12221-020-9804-0.Search in Google Scholar

13. Nayak, S. Y., Heckadka, S. S., Sadanand, R. V., Bharadwaj, K., Pokharna, H. M., Sanjeev, A. R. J. Eng. Fibers Fabr. 2017, 12, 12–19; https://doi.org/10.1177/155892501701200202.Search in Google Scholar

14. Reis, V. L., Opelt, C. V., Cândido, G. M., Rezende, M. C., Donadon, M. V. Compos. Struct. 2018, 203, 952–959; https://doi.org/10.1016/j.compstruct.2018.06.016.Search in Google Scholar

15. Lazar, S. T., Kolibaba, T. J., Grunlan, J. C. Nat. Rev. Mater. 2020, 5, 259–275; https://doi.org/10.1038/s41578-019-0164-6.Search in Google Scholar

16. Sim, M.-J., Cha, S.-H. Polymer 2019, 43, 204–210; https://doi.org/10.7317/pk.2019.43.2.204.Search in Google Scholar

17. Tian, X., Yin, Q., Wang, Z. J. Photopolym. Sci. Technol. 2019, 32, 769–778.10.2494/photopolymer.32.769Search in Google Scholar

18. Zhang, X., Zhang, W., Zeng, G., Du, J. Polym. Eng. Sci. 2020, 60, 314–322; https://doi.org/10.1002/pen.25286.Search in Google Scholar

19. Chen, X., Liu, L., Jiao, C. Adv. Polym. Technol. 2015, 34, 1–9; https://doi.org/10.1002/adv.21516.Search in Google Scholar

20. Chen, X., Liu, L., Zhuo, J., Jiao, C., Qian, Y. High Perform. Polym. 2015, 27, 233–246; https://doi.org/10.1177/0954008314544341.Search in Google Scholar

21. Liu, L., Chen, X., Jiao, C. J. Therm. Anal. Calorim. 2015, 122, 437–447; https://doi.org/10.1007/s10973-015-4928-y.Search in Google Scholar

22. Liu, X., Xu, D.-M., Wang, Y.-L., Zhou, Y., Hao, J.-W. J. Therm. Anal. Calorim. 2016, 125, 245–254; https://doi.org/10.1007/s10973-016-5356-3.Search in Google Scholar

23. Szadkowski, B., Kusmierek, M., Rybinski, P., Zukowski, W., Marzec, A. Materials 2020, 13, 1–18; https://doi.org/10.3390/ma13153381.Search in Google Scholar

24. Yurddaskal, M., Celik, E. Compos. Struct. 2018, 183, 381–388; https://doi.org/10.1016/j.compstruct.2017.03.093.Search in Google Scholar

25. Zhang, X., Zhang, W., Zeng, G., Du, J., Zhang, W., Yang, R. Polym. Eng. Sci. 2020, 60, 314–322; https://doi.org/10.1002/pen.25286.Search in Google Scholar

26. Lin, M., Li, B., Li, Q., Li, S., Zhang, S. J. Appl. Polym. Sci. 2011, 121, 1951–1960; https://doi.org/10.1002/app.33759.Search in Google Scholar

27. Gao, W., Yu, Y., Chen, T., Zhang, Q., Chen, Z., Chen, Z., Jiang, J. J. Appl. Polym. Sci. 2020, 137, 1–9; https://doi.org/10.1002/app.49148.Search in Google Scholar

28. Polka, M., Czech, Z., Kukfisz, B., Kolano, K. Przem. Chem. 2017, 96, 1095–1099.Search in Google Scholar

29. Qin, J., Liu, N., Wang, N., Li, L., He, W., Guo, J., Chen, X., Zhang, K., Yu, J. Polym. Compos. 2019, 40, E687–E694; https://doi.org/10.1002/pc.24956.Search in Google Scholar

30. Shen, M.-Y., Chen, W.-J., Tsai, K.-C., Kuan, C.-F., Kuan, H.-C., Chou, H.-W., Chiang, C.-L. Polym. Compos. 2017, 38, 2378–2386; https://doi.org/10.1002/pc.23820.Search in Google Scholar

31. Laachachi, A., Burger, N., Apaydin, K., Sonnier, R., Ferriol, M. Polym. Degrad. Stabil. 2015, 117, 22–29; https://doi.org/10.1016/j.polymdegradstab.2015.03.016.Search in Google Scholar

32. Zhang, P., Hu, Y., Song, L., Ni, J., Xing, W., Wang, J. Sol. Energy Mater. Sol. Cells 2010, 94, 360–365; https://doi.org/10.1016/j.solmat.2009.10.014.Search in Google Scholar

33. Wang, X., Hu, Y., Song, L., Xuan, S., Xing, W., Bai, Z., Lu, H. Sol. Energy Mater. Sol. Cells 2011, 50, 713–720; https://doi.org/10.1021/ie1017157.Search in Google Scholar

34. Chen, Y., Luo, Y., Guo, X., Chen, L., Jia, D. Materials 2020, 13; https://doi.org/10.3390/ma13143095.Search in Google Scholar

35. Weil, E. D. Fire Sci. 2011, 29, 259–296; https://doi.org/10.1177/0734904110395469.Search in Google Scholar

36. Kandola, B. K., Bhatti, W., Kandare, E. Polym. Degrad. Stabil. 2012, 97, 2418–2427; https://doi.org/10.1016/j.polymdegradstab.2012.07.023.Search in Google Scholar

37. Malucelli, G., Carosio, F., Alongi, J., Fina, A., Frache, A., Camino, G. Mater. Sci. Eng.: R. 2014, 84, 1–20; https://doi.org/10.1016/j.mser.2014.08.001.Search in Google Scholar

38. Lewin, M. Polym. Adv. Technol. 2001, 12, 215e22; https://doi.org/10.1002/pat.132.Search in Google Scholar

39. Weil, E. D., Grand, A. F., Wilkie, C. A., Eds. Fire Retardancy of Polymeric Materials; Marcel Dekker: New York, 2000.Search in Google Scholar

40. Chen, X. E., Liu, L., Jiao, C. M. Adv. Polym. Technol. 2015, 119, 625–633.10.1007/s10973-014-4193-5Search in Google Scholar

41. Liu, X., Haoa, J., Gaan, S. RSC Adv. 2016, 6, 74742; https://doi.org/10.1039/c6ra14345h.Search in Google Scholar

Received: 2021-03-13
Accepted: 2021-04-24
Published Online: 2021-06-07
Published in Print: 2021-08-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0074/html
Scroll to top button