Abstract
Using the immersion phase inversion process, polysulfone (PSF), grapheme oxide (GO) and modified carbon nanotubes (MCNTs) were dissolved in 1-methyl-2-pyrrolidone (NMP) to prepare nanocomposite membranes. The GO-MCNTs blended PSF membranes were characterized by several analytical methods, such as morphology analysis, group characteristic peak test, hydrophilic measurement and permeation tests, and the synergistic effect of GO and MCNTs on the membrane performance was investigated. Microscope images depict two-layer structure of the composite membrane, in which, the lower layer is finger like porous layer, and the upper layer is a thinner separation layer. M-CNTs have great influence on formation of the upper separation layer, while the hydrophilic nature of GO results in the formation of the lower supporting layer, which changes from finger shaped hole to honeycomb pore. The change of membrane structure not only improves the surface hydrophilicity, but also promotes the membrane performance. In particular, the composite membrane (mGO:MCNTs = 2:1) exhibits a much smaller contact angle (48.01°), a high permeation flux (33.25 L/m2·h) and superior rejection rate (95.2%). Furthermore, the fine compaction performance of composite membrane also provides great potential application prospects in water treatment.
Funding source: Taishan Scholar Foudation of Shandong Province (China)
Award Identifier / Grant number: ts20190937
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This work was supported by the Taishan Scholar Foudation of Shandong Province, China (no. ts20190937).
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Howe, K. J., Clark, M. M. J. Environ. Sci. Technol. 2002, 36, 3571–3576; https://doi.org/10.1021/es025587r.Search in Google Scholar
2. Xiao, C. F., Liu, Z. Chemical Industry Press: Beijing, 2014; pp. 19–25.Search in Google Scholar
3. Chen, C. X., Guo, H. X., Qin, P. Y. Chemical Industry Press: Beijing, 2017; pp. 13–17.Search in Google Scholar
4. Liu, F., Zhu, B. K., Xu, Y. Y. J. Appl. Polym. Sci. 2007, 105, 291–296; https://doi.org/10.1002/app.25641.Search in Google Scholar
5. Liu, F., Zhu, B. K., Xu, Y. Y. Appl. Surf. Sci. 2006, 253, 2096–2101; https://doi.org/10.1016/j.apsusc.2006.04.007.Search in Google Scholar
6. Zhao, Y. H., Zhu, B. K., Kong, L., Xu, Y. Y. Langmuir 2007, 23, 5779–5786; https://doi.org/10.1021/la070139o.Search in Google Scholar
7. Chiang, Y. C., Chang, Y., Higuchi, A., Chen, W. Y., Ruaan, R. C. J. Membr. Sci. 2008, 309, 165–174.10.1016/j.memsci.2007.10.024Search in Google Scholar
8. Yan, L., Li, Y. S., Xiang, C. B. J. Membr. Sci. 2006, 276, 162–167; https://doi.org/10.1016/j.memsci.2005.09.044.Search in Google Scholar
9. Yu, L. Y., Xu, Z. L., Shen, H. M., Yang, H. Membr. Sci. 2009, 337, 257–265; https://doi.org/10.1016/j.memsci.2009.03.054.Search in Google Scholar
10. Han, L. F., Xu, Z. L., Cao, Y., Wei, Y. M., Xu, H. T. J. Membr. Sci. 2011, 372, 154–164; https://doi.org/10.1016/j.memsci.2011.01.065.Search in Google Scholar
11. Nakagawa, T., Fujisaki, S., Nakano, H., Higuchi, A. J. Membr. Sci. 1994, 94, 183–193; https://doi.org/10.1016/0376-7388(93)e0169-k.Search in Google Scholar
12. Wang, Z. Y., Chen, X., Li, K., Bi, S. Y., Wu, C. L., Chen, L. J. Membr. Sci. 2015, 496, 95–107; https://doi.org/10.1016/j.memsci.2015.08.041.Search in Google Scholar
13. Hu, H. Z., Han, R. F., Liu, Y., Mao, Z. Y., Tan, Z. Y. China Plast. Ind. 2020, 4, 58–60. +97.Search in Google Scholar
14. Li, X., Li, J. S., Fang, X. F., Bakzhan, K., Wang, L. J., Van der Bruggen, B. J. Colloid Interface Sci. 2016, 469, 164–176; https://doi.org/10.1016/j.jcis.2016.02.002.Search in Google Scholar
15. Yan, L., Li, Y. S., Xiang, C. B. Polymer 2005, 46, 7701–7706; https://doi.org/10.1016/j.polymer.2005.05.155.Search in Google Scholar
16. Ganesh, B. M., Isloor, A. M., Ismail, A. F. Desalination 2013, 313, 199–207; https://doi.org/10.1016/j.desal.2012.11.037.Search in Google Scholar
17. Crock, C. A., Rogensues, A. R., Shan, W., Tarabara, V. V. Water Res. 2013, 47, 3984–3996; https://doi.org/10.1016/j.watres.2012.10.057.Search in Google Scholar
18. Wang, Z. H., Yu, H. R., Xia, J. F., Zhang, F. F., Li, F., Xia, Y. Z., Li, Y. H. Desalination 2012, 299, 50–54; https://doi.org/10.1016/j.desal.2012.05.015.Search in Google Scholar
19. Zinadini, S., Zinatizadeh, A. A., Rahimi, M., Vatanpour, V., Zangeneh, H. J. Membr. Sci. 2014, 453, 292–301; https://doi.org/10.1016/j.memsci.2013.10.070.Search in Google Scholar
20. Chae, H. R., Lee, J., Lee, C. H., Kim, I. C., Park, P. K. J. Membr. Sci. 2015, 483, 128–135; https://doi.org/10.1016/j.memsci.2015.02.045.Search in Google Scholar
21. Zhao, H. Y., Qiu, S., Wu, L. G. J. Membr. Sci. 2014, 450, 249–256; https://doi.org/10.1016/j.memsci.2013.09.014.Search in Google Scholar
22. Manorma, Ferreira, I., Alves, P., Gil, M. H., Gando-Ferreira, L. M. Separ. Purif. Technol. 2021, 260, 118231; https://doi.org/10.1016/j.seppur.2020.118231.Search in Google Scholar
23. Zhang, J. G., Xu, Z. W., Mai, W., Min, C. Y. J. Mater. Chem. 2013, 1, 3101–3111; https://doi.org/10.1039/c2ta01415g.Search in Google Scholar
24. Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., Tour, J. M. ACS Nano 2010, 4, 4806–4814; https://doi.org/10.1021/nn1006368.Search in Google Scholar
25. Sudesh, Kumar, N., Das, S., Bernhard, C., Varma, G. D. Supercond. Sci. Technol. 2013, 26, 95008; https://doi.org/10.1088/0953-2048/26/9/095008.Search in Google Scholar
26. Bissessur, R., Scully, S. F. Solid State Ionics 2007, 178, 877–882; https://doi.org/10.1016/j.ssi.2007.02.030.Search in Google Scholar
27. Yang, T., Liu, L. H., Liu, J. W., Chen, M. L. J. Mater. Chem. 2012, 22, 21909–21916; https://doi.org/10.1039/c2jm34712a.Search in Google Scholar
28. Liu, H. X., Zhang, H. Q., Liu, J. D., Luo, Q. T. Hennan Chemical Industry, 5, 2004; pp. 36–37.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Solid–liquid–liquid phase envelopes from temperature-scanned refractive index data
- Application of the Folgar–Tucker model to predict the orientation of particles of different aspect ratios in polymer suspensions
- Investigating the relationship between tack and degree of conversion in DGEBA-based epoxy resin cured with dicyandiamide and diuron
- Synergistic effect of oxidized low-dimensional carbon nanomaterials on the properties of polysulfone composite membrane
- Investigations of the characteristics and performance of modified polyethersulfones (PES) as membrane oxygenator
- Preparation and assembly
- In vitro biocompatibility study of microwave absorbing conducting polymer blend films for biomedical applications
- Design and characterization of ramie fiber-reinforced composites with flame retardant surface layer including iron oxide and expandable graphite
- Reducing lactose content of milk from livestock and humans via lactose imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-i-aspartic acid) cryogels
- Engineering and processing
- PVA coating of ferrite nanoparticles triggers pH-responsive release of 5-fluorouracil in cancer cells
- Miscible blend polyethersulfone/polyimide asymmetric membrane crosslinked with 1,3-diaminopropane for hydrogen separation
- Pyrolysis and combustion of polystyrene composites based on graphene oxide functionalized with 3-(methacryloyloxy)-propyltrimethoxysilane
Articles in the same Issue
- Frontmatter
- Material properties
- Solid–liquid–liquid phase envelopes from temperature-scanned refractive index data
- Application of the Folgar–Tucker model to predict the orientation of particles of different aspect ratios in polymer suspensions
- Investigating the relationship between tack and degree of conversion in DGEBA-based epoxy resin cured with dicyandiamide and diuron
- Synergistic effect of oxidized low-dimensional carbon nanomaterials on the properties of polysulfone composite membrane
- Investigations of the characteristics and performance of modified polyethersulfones (PES) as membrane oxygenator
- Preparation and assembly
- In vitro biocompatibility study of microwave absorbing conducting polymer blend films for biomedical applications
- Design and characterization of ramie fiber-reinforced composites with flame retardant surface layer including iron oxide and expandable graphite
- Reducing lactose content of milk from livestock and humans via lactose imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-i-aspartic acid) cryogels
- Engineering and processing
- PVA coating of ferrite nanoparticles triggers pH-responsive release of 5-fluorouracil in cancer cells
- Miscible blend polyethersulfone/polyimide asymmetric membrane crosslinked with 1,3-diaminopropane for hydrogen separation
- Pyrolysis and combustion of polystyrene composites based on graphene oxide functionalized with 3-(methacryloyloxy)-propyltrimethoxysilane