Startseite Prolonged protein immobilization of biosensor by chemically cross-linked glutaraldehyde on mixed cellulose membrane
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Prolonged protein immobilization of biosensor by chemically cross-linked glutaraldehyde on mixed cellulose membrane

  • Roswani Shaimi und Siew Chun Low EMAIL logo
Veröffentlicht/Copyright: 17. Dezember 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Protein immobilization studies with high protein binding sensitivity are of primary concern for any bio-sensing applications. In the present study, glutaraldehyde (GA) was utilized to chemically cross-link with the cellulose compound in mixed cellulose (MC) membrane and the protein molecules. Optimal cross-linking process on membrane was determined statistically and corresponded responses of protein immobilization were described through a quadratic empirical model. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) micrographs and thermogravimetric analysis (TGA) have demonstrated the successful deposition of GA on membranes. The optimum GA integration process condition was found at 3 wt% of GA on a single layer and 30 min of integration time, with protein binding predicted at 896.6 μg/cm3. The experimental validation was conducted at this optimum condition, and the result was found at 911.9 μg/cm3, with standard deviation of 1.6%. This small error confirms the adequacy of the empirical model and its ability to predict the GA-protein immobilization performances.


Corresponding author: Siew Chun Low, School of Chemical Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal S.P.S. Penang, Malaysia, e-mail:

Acknowledgments

The authors are grateful for the financial support provided by the MOHE-FRGS grant (6071251) and the USM Membrane Science and Technology Cluster (8610012). R. Shaimi is financially assisted by the Ministry of Higher Education (MOHE).

References

[1] Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O’Kennedy R. Enzyme Microb. Technol. 2003, 32, 3–13.10.1016/S0141-0229(02)00232-6Suche in Google Scholar

[2] Wu CY, Cheng HY, Ou KL, Wu CC. J. Polym. Eng. 2014, 34, 273–277.10.1515/polyeng-2013-0216Suche in Google Scholar

[3] Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C. Biotechnol. Adv. 2010, 28, 232–254.10.1016/j.biotechadv.2009.12.004Suche in Google Scholar

[4] Valencia GA, De Oliveira Vercik LC, Vercik A. J. Polym. Eng. 2014, 34, 633–638.10.1515/polyeng-2014-0072Suche in Google Scholar

[5] Yuk JS, Jin J-H, Alocilja EC, Rose JB. Biosens. Bioelectron. 2009, 24, 1348–1352.10.1016/j.bios.2008.07.079Suche in Google Scholar

[6] Morais S, Maquieira Á, Puchades R. J. Immunol. Methods 1999, 224, 101–109.10.1016/S0022-1759(99)00014-9Suche in Google Scholar

[7] Low SC, Shaimi R, Thandaithabany Y, Lim JK, Ahmad AL, Ismail A. Colloids Surf., B 2013, 110, 248–253.10.1016/j.colsurfb.2013.05.001Suche in Google Scholar PubMed

[8] Apostolova EL, Dobrikova AG, Rashkov GD, Dankov KG, Vladkova RS, Misra AN. Sens. Actuators, B 2011, 156, 140–146.10.1016/j.snb.2011.04.002Suche in Google Scholar

[9] Filipkowska U, Józwiak T. J. Polym. Eng. 2013, 33, 735–747.10.1515/polyeng-2013-0166Suche in Google Scholar

[10] Alonso N, López-Gallego F, Betancor L, Hidalgo A, Mateo C, Guisan JM, Fernandez-Lafuente R. J. Mol. Catal. B: Enzym. 2005, 35, 57–61.10.1016/j.molcatb.2005.05.007Suche in Google Scholar

[11] Emre FB, Ekiz F, Balan A, Emre S, Timur S, Toppare L. Sens. Actuators, B 2011, 158, 117–123.10.1016/j.snb.2011.05.052Suche in Google Scholar

[12] Babu K, Bera A, Kumari K, Mandal A, Saxena VK. J. Polym. Eng. 2015, 35, 79–88.10.1515/polyeng-2014-0118Suche in Google Scholar

[13] Busto MD, Ortega N, Perez-Mateos M. Bioresour. Technol. 1997, 60, 27–33.10.1016/S0960-8524(97)00001-1Suche in Google Scholar

[14] Adeloju SB, Lawal AT. Anal. Chim. Acta 2011, 691, 89–94.10.1016/j.aca.2011.02.020Suche in Google Scholar

[15] Mansur HS, Sadahira CM, Souza AN, Mansur AA. Mater. Sci. Eng., C 2008, 28, 539–548.10.1016/j.msec.2007.10.088Suche in Google Scholar

[16] Muhammad-Tahir Z, Alocilja EC. Biosens. Bioelectron. 2003, 18, 813–819.10.1016/S0956-5663(03)00020-4Suche in Google Scholar

[17] Pundir CS, Sandeep Singh B, Narang J. Clin. Biochem. 2010, 43, 467–472.10.1016/j.clinbiochem.2009.12.003Suche in Google Scholar PubMed

[18] Wilson LD, Pratt DY, Kozinski JA. J. Colloid Interface Sci. 2013, 393, 271–277.10.1016/j.jcis.2012.10.046Suche in Google Scholar PubMed

[19] Urkut Z, Kara P, Goksungur Y, Ozsoz M. Electroanalysis 2011, 23, 2668–2676.10.1002/elan.201100310Suche in Google Scholar

[20] Gouda MD, Thakur MS, Karanth NG. World J. Microbiol. Biotechnol. 2001, 17, 595–600.10.1023/A:1012473522593Suche in Google Scholar

[21] Gunawan ER, Basri M, Rahman MBA, Salleh AB, Rahman RNZA. Enzyme Microb. Technol. 2005, 37, 739–744.10.1016/j.enzmictec.2005.04.010Suche in Google Scholar

[22] Hasanzadeh M, Moieni T, Moghadam BH. J. Polym. Eng. 2013, 33, 445–452.10.1515/polyeng-2012-0145Suche in Google Scholar

[23] Sundaram SK, Jayabal S. J. Polym. Eng. 2014, 34, 839–849.10.1515/polyeng-2014-0084Suche in Google Scholar

[24] Srivastava D. J. Polym. Eng. 2002, 22, 457–471.10.1007/3-540-45631-7_64Suche in Google Scholar

[25] Ahmad AL, Low SC, Shukor SRA, Ismail A. Sep. Purif. Technol. 2009, 66, 177–186.10.1016/j.seppur.2008.11.007Suche in Google Scholar

[26] Zhang G, Liu D, Shuang S, Choi MM. Sens. Actuators, B 2006, 114, 936–942.10.1016/j.snb.2005.08.011Suche in Google Scholar

[27] Yuan Y, Chesnutt BM, Utturkar G, Haggard WO, Yang Y, Ong JL, Bumgardner JD. Carbohydr. Polym. 2007, 68, 561–567.10.1016/j.carbpol.2006.10.023Suche in Google Scholar

Received: 2015-7-8
Accepted: 2015-9-30
Published Online: 2015-12-17
Published in Print: 2016-9-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2015-0308/html?lang=de
Button zum nach oben scrollen