Home Effect of mechanical properties of metal powder-filled hybrid moulded products
Article
Licensed
Unlicensed Requires Authentication

Effect of mechanical properties of metal powder-filled hybrid moulded products

  • Karolina Głogowska , Janusz W. Sikora EMAIL logo and Branislav Duleba
Published/Copyright: December 10, 2015
Become an author with De Gruyter Brill

Abstract

The extensive research on polymer composites is motivated by the fact that it can result in obtaining new materials with enhanced properties. This research primarily focuses on investigating basic mechanical properties which determine the use of a particular composite material. This paper presents the results of tests investigating the mechanical properties, i.e. tensile strength, hardness and impact strength, of hybrid injection mouldings produced at constant processing parameters. We used five metal powder fillers: aluminium, zinc, tin, iron and copper powders, with their contents ranging from 2.5 wt% to 15 wt% relative to a polypropylene matrix composite material. The relationships were determined between different contents of the aforementioned metal powder fillers and Young’s modulus, maximum tensile stress, tensile stress at break, strains, Shore hardness and Charpy impact strength. The research also involved investigating mould shrinkage. Relevant conclusions were drawn.


Corresponding author: Janusz W. Sikora, Department of Polymer Processing, Lublin University of Technology, 38D, Nadbystrzycka St., 20-618 Lublin, Poland, e-mail:

Acknowledgments

We wish to express our deep gratitude to the Slovak Academic Information Agency for enabling us to conduct the research at the Technical University of Kosice under the National Scholarship Programme of the Slovak Republic.

References

[1] Sikora R. Przetwórstwo tworzyw polimerowych. Podstawy logiczne formalne i terminologiczne. Politechnika Lubelska: Lublin, 2006.Search in Google Scholar

[2] Chiang WY, Yang WD, Pukánszky B. Polym. Eng. Sci. 1992, 10, 641–648.10.1002/pen.760321002Search in Google Scholar

[3] Rusu M, Dãrângã M, Sofian NM, Rusu DL. Mater. Plast. 1998, 1, 15–21.Search in Google Scholar

[4] Garbacz T. Cell. Polym. 2014, 2, 71–90.Search in Google Scholar

[5] Amash A, Zugenmaier P. J. Appl. Polym. Sci. 1997, 9, 1143–1154.10.1002/(SICI)1097-4628(19970228)63:9<1143::AID-APP6>3.0.CO;2-HSearch in Google Scholar

[6] Samujło B, Sikora JW. J. Polym. Eng. 2013, 1, 77–85.10.1515/polyeng-2012-0100Search in Google Scholar

[7] Sikora JW, Duleba B, Dulebova L, Greškovič F. Adv. Mater. Res. 2013, 739, 171–176.10.4028/www.scientific.net/AMR.739.171Search in Google Scholar

[8] Garbacz T. Polimery 2013, 4, 295–303.10.14314/polimery.2013.295Search in Google Scholar

[9] Klepka T, Dębski H, Rydarkowski H. Polimery 2009, 9, 668–673.10.14314/polimery.2009.668Search in Google Scholar

[10] Sikora JW. Polym. Eng. Sci. 2001, 9, 1636–1643.10.1002/pen.10861Search in Google Scholar

[11] Jachowicz T, Gajdoš I, Krasinskyi V. Adv. Sci. Technol. Res. J. 2014, 8, 6–13.Search in Google Scholar

[12] Sikora JW, Samujło B, Stasiek A. J. Polym. Eng. 2013, 1, 77–85.10.1515/polyeng-2012-0100Search in Google Scholar

[13] Tor-Świątek A, Dulebova L, Krasinskiy V, Suberlyak O. Mater. Sci. 2014, 6, 812–818.10.1007/s11003-014-9678-7Search in Google Scholar

[14] Pettarin V, Churruca MJ, Felhős D, Karger-Kocsis J, Frontini PM. Wear 2010, 1–2, 31–45.10.1016/j.wear.2010.03.006Search in Google Scholar

[15] Luyt AS, Molefi JA, Krump H. Polym. Degrad. Stab. 2006, 7, 1629–1636.10.1016/j.polymdegradstab.2005.09.014Search in Google Scholar

[16] Taşdemir M, Ozkan Gülsoy H. Int. J. Polym. Mater. Polym. Biomater. 2008, 3, 189–293.Search in Google Scholar

[17] Rusu M, Sofian N, Rusu D. Polym. Test 2001, 4, 409–417.10.1016/S0142-9418(00)00051-9Search in Google Scholar

[18] Gungar A. Mater. Des. 2007, 3, 1027–1030.10.1016/j.matdes.2005.11.003Search in Google Scholar

[19] Ghosh K, Maiti SN. J. Appl. Polym. Sci. 1996, 3, 323–331.10.1002/(SICI)1097-4628(19960418)60:3<323::AID-APP5>3.0.CO;2-NSearch in Google Scholar

[20] Bishay K, Abd-El-Messieh SL, Mansour SH. Mater. Des. 2011, 1, 62–68.10.1016/j.matdes.2010.06.035Search in Google Scholar

[21] Chrusciel J, Leśniak E, Fejdys M. Polimery 2008, 10, 709–716.10.14314/polimery.2008.709Search in Google Scholar

[22] ISO 868:2005 Plastics and ebonite – Determination of indentation hardness by mean of a durometer (Shore hardness).Search in Google Scholar

[23] ISO 527-1:2012 Plastics Determination of tensile properties Part 1: General principles.Search in Google Scholar

[24] ISO 179-1:2010 Plastics Determination of Charpy impact properties Part 2: Instrumented impact test.Search in Google Scholar

[25] Arjmand S. J. Polym. Text Eng. 2014, 3, 37–45.10.1002/pc.23181Search in Google Scholar

[26] Fisher JM. Handbook of Molded Part Shrinkage and Warpage. Plastic Design Library: Norwich, 2003.10.1016/B978-188420772-3.50004-3Search in Google Scholar

[27] Rosato DV, Rosato DV, Rosato MG. Injection Molding Handbook. Kluwer Academic Publisher: Norwell, 2000.10.1007/978-1-4615-4597-2Search in Google Scholar

Received: 2015-3-1
Accepted: 2015-9-23
Published Online: 2015-12-10
Published in Print: 2016-9-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2015-0068/html
Scroll to top button