Home Numerical investigation of the temperature influence on the melt predistribution in a spiral mandrel die with different polyolefins
Article
Licensed
Unlicensed Requires Authentication

Numerical investigation of the temperature influence on the melt predistribution in a spiral mandrel die with different polyolefins

  • Christian Hopmann and Nafi Yesildag EMAIL logo
Published/Copyright: December 10, 2015
Become an author with De Gruyter Brill

Abstract

The main goal in the design of spiral mandrel dies for blown film extrusion is to achieve a homogeneous velocity distribution of the plastics melt at the die outlet. However, thermal inhomogeneities in the die can lead to an uneven flow distribution despite a rheologically optimized design of the die. The thermal inhomogeneities are especially dominant in the predistributor of spiral mandrel dies. Against this background, the temperature influence on the melt distribution in the predistributor is investigated for different polyolefins with the help of flow simulations in Polyflow (Ansys). The simulation models the whole predistributor and takes both the heat transfer in the predistributor and the shear heating in the melt into account. Afterwards, simulations are conducted in which the thermal design measures for the homogenization of the flow in the die are applied. With the combination of heating cartridges, brass inserts, and isolating gaps in the die, a significant homogenization of the predistribution can be achieved. Finally, the simulation results are validated in practical tests, whereby a good agreement between simulation and measurement can be observed.


Corresponding author: Nafi Yesildag, Institute of Plastics Processing, RWTH Aachen University, Seffenter Weg 201, 52074 Aachen, Germany, e-mail:

Acknowledgments

The research project 17645 N of the Forschungsvereinigung Kunststoffverarbeitung was sponsored as part of the “Industrielle Gemeinschaftsforschung und -entwicklung (IGF)” by the German Bundesministerium für Wirtschaft und Energie (BMWi) due to an enactment of the German Bundestag through the AiF. We would like to extend our thanks to all organizations mentioned. We also thank the LyondellBasell GmbH, The Dow Chemical Company, and the Sabic Europe B.V., who provided the materials for the practical examinations.

  1. Conflict of interest statement: The authors have no conflict of interest to declare.

References

[1] Michaeli W, Ed., Extrusion Dies for Plastics and Rubber, 3rd ed., Carl-Hanser Verlag, 2003.10.3139/9783446401815Search in Google Scholar

[2] Ettinger HT, Pittman JFT, Sienz J. Polym. Eng. Sci. 2013, 53, 189–203.10.1002/pen.23228Search in Google Scholar

[3] Gonçalves ND, Teixeira P, Ferrás LL, Afonso AM, Nóbrega JM, Carneiro OS. Polym. Eng. Sci. 2015, 55, 1849–1855.10.1002/pen.24024Search in Google Scholar

[4] Hopmann C, Behr M, Siegbert R, Elgeti S, Kurth K, Windeck C. AIP Conf. Proc. 2014, 1593, 587–591.10.1063/1.4873849Search in Google Scholar

[5] Rauwendaal C. Polym. Eng. Sci. 1987, 27, 186–191.10.1002/pen.760270303Search in Google Scholar

[6] Seibel S, Ed., Konzeptionelle Aspekte bei der Gestaltung und Auslegung von Extrusionswerkzeugen, Ph.D. thesis, University Paderborn, 2006.Search in Google Scholar

[7] Burmann G, Saul K. 7. Duisburger Extrusionstagung 2010, Duisburg, Germany, 16.03.2010.Search in Google Scholar

[8] Saul K, Ed., Automatisierte Auslegung von Extrusionswerkzeugen, Ph.D. thesis, University Duisburg-Essen, 2011.Search in Google Scholar

[9] Blömer P, Ed., Untersuchung und Weiterentwicklung von Berechnungsverfahren für Strömungen in Wendelverteilern, Ph.D. thesis, RWTH Aachen University, 2006.Search in Google Scholar

[10] Carneiro OS, Nóbrega JM, Pinho FT, Oliveira PJ. J. Mater. Process. Technol. 2001, 114, 75–86.10.1016/S0924-0136(01)00574-XSearch in Google Scholar

[11] Charlton Z, Vlachopoulos J, Suwanda D. SPE Annu. Tech. Conf., Orlando, FL, USA, 2000, 2914–2918.Search in Google Scholar

[12] Sidiropoulos V, Vlachopoulos J. Adv. Polym. Technol. 2005, 24, 83–90.10.1002/adv.20039Search in Google Scholar

[13] Skabrahova P, Svabik J, Perdikoulias J. SPE Annu. Tech. Conf., Nashville, TN, USA, 2003, 305–309.Search in Google Scholar

[14] Sun Y, Gupta M. Adv. Polym. Technol. 2006, 25, 90–97.10.1002/adv.20061Search in Google Scholar

[15] Pittman JFT. Proc. Inst. Mech. Eng. Pt. E 2011, 225, 280–321.10.1177/0954408911415324Search in Google Scholar

[16] Hopmann C, Yesildag N. Kunststoffe Int. 2014, 8, 101–105.Search in Google Scholar

[17] Hopmann C, Yesildag N. IKV Folientagung 2014-Trends bei Rohstoffen, Verarbeitung, Anwendungen 2014, Aachen, Germany, 11.11.2014.Search in Google Scholar

[18] Chorin A, Ed., A Mathematical Introduction to Fluid Mechanics, Springer-Verlag, 2000.Search in Google Scholar

[19] Carreau PJ, Ed., Rheological equations from molecular network theories, Ph.D. thesis, University of Wisconsin, 1968.Search in Google Scholar

[20] Williams ML, Landel RF, Ferry JD. J. Am. Chem. Soc. 1955, 77, 3701–3706.10.1021/ja01619a008Search in Google Scholar

[21] Baehr HD, Ed., Heat and Mass Transfer, Springer-Verlag, 2014.Search in Google Scholar

[22] Osswald TA, Menges G, Eds., Materials Science of Polymers for Engineers, 3rd ed., Carl-Hanser Verlag, 2012.10.3139/9781569905241.fmSearch in Google Scholar

Received: 2015-6-17
Accepted: 2015-9-25
Published Online: 2015-12-10
Published in Print: 2016-9-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2015-0267/html
Scroll to top button