Home Ablation and thermo-mechanical tailoring of EPDM rubber using carbon fibers
Article
Licensed
Unlicensed Requires Authentication

Ablation and thermo-mechanical tailoring of EPDM rubber using carbon fibers

  • Muhammad Asghar , Nadeem Iqbal EMAIL logo , Sadia Sagar Iqbal , Mohsin Farooq and Tahir Jamil
Published/Copyright: December 17, 2015
Become an author with De Gruyter Brill

Abstract

Carbon fibers (CFs) are incorporated into ethylene propylene diene monomer (EPDM) rubber to fabricate charring elastomeric ablative composites for ultrahigh temperature applications. Ablation characteristics of the ablative composites were evaluated using ASTM E285-08. Variant content incorporation of short CFs in the basic composite formulation reduced the backface temperature acclivity and the ablation rate rose up to 48% and 78%, correspondingly. Thermal stability and endothermic capability were improved with increasing short fiber contents in the rubber matrix. Experimental thermal conductivity measurement results elucidate that thermal conductivity reduces 60% at 473 K with 6 wt% addition of the fibers. A remarkable improvement was scrutinized in the tensile strength and rubber hardness with increasing fiber to matrix ratio. Scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDS) analysis of the composite specimens revealed the uniform dispersion of CFs within the host matrix, formation of voids during ablation, char-reinforcement interaction and composition of the charred ablators and the impregnated fibers.


Corresponding author: Nadeem Iqbal, Center for Undergraduate Studies, University of the Punjab, Lahore, Pakistan, e-mail:

Acknowledgments

The authors have greatly acknowledged Sheikh Iftikhar Ahmed, MD Longman mills for providing facilities regarding fabrication of the ablative specimens, Pakistan Railways Carriage Factory, Islamabad for ablation testing, Dr. Mohammad Bilal Khan for his valuable expert discussions and Dr. Mohammad Mujahid, Principal School of Chemical and Materials Engineering, National University of Sciences and Technology for SEM/EDS analysis.

References

[1] Bahramian AR, Kokabi M, Famili MHN, Beheshty MH. Polymer 2006, 47, 3661–3673.10.1016/j.polymer.2006.03.049Search in Google Scholar

[2] Sagar S, Iqbal N, Maqsood A, Javaid U. J. Therm. Anal. Calorim. 1–7.Search in Google Scholar

[3] Khan MB, Iqbal N, Haider Z. Key Eng. Mater. 2010, 442, 34–40.10.4028/www.scientific.net/KEM.442.34Search in Google Scholar

[4] Yu QC, Wan H. J. Inorg. Mater. 2012, 27, 157–161.10.3724/SP.J.1077.2012.00157Search in Google Scholar

[5] Hu L, Cheng J, Teng H. J. Solid Rock. Tech. 2000, 23, 58–63.Search in Google Scholar

[6] Iqbal N, Sagar S, Khan MB, Rafique HM. Polym. Eng. Sci. 2013, 54, 255–263.10.1002/pen.23573Search in Google Scholar

[7] Iqbal N, Sagar S, Khan MB, Rafique HM. J. Compos. Mater. 2013, 48, 1221–1231.10.1177/0021998313484948Search in Google Scholar

[8] Iqbal N, Khan MB, Sagar S, Maqsood A. J. Appl. Polym. Sci. 2013, 128, 2439–2446.10.1002/app.38410Search in Google Scholar

[9] Sagar S, Iqbal N, Maqsood A. J. Reinf. Plast. Compos. 2013, 32, 1052–1061.10.1177/0731684413484184Search in Google Scholar

[10] Bhuvaneswari C, Sureshkumar M, Kakade S, Gupta M. Def. Sci. J. 2006, 56, 309–320.10.14429/dsj.56.1894Search in Google Scholar

[11] Natali M, Monti M, Puglia D, Kenny JM, Torre L. Composites, Part A 2011, 43, 174–182.10.1016/j.compositesa.2011.10.006Search in Google Scholar

[12] Bassyouni M, Iqbal N, Iqbal SS, Abdel-hamid S-S, Abdel-Aziz M, Javaid U, Khan MB. Polym. Degrad. Stab. 2014, 110, 195–202.10.1016/j.polymdegradstab.2014.08.032Search in Google Scholar

[13] Alagar M, Ashok Kumar A, Mahesh K, Dinakaran K. Eur. Polym. J. 2000, 36, 2449–2454.10.1016/S0014-3057(00)00038-0Search in Google Scholar

[14] Golfman Y. J. Adv. Mater. 2009, 41, 34–39.Search in Google Scholar

[15] Iqbal N, Sagar S, Khan MB, Bassyouni MI, Khan ZM. J. Appl. Polym. Sci. 2013, 130, 4392–4400.10.1002/app.39363Search in Google Scholar

[16] Malas A, Das CK. J. Mater. Sci. 2012, 47, 2016–2024.10.1007/s10853-011-6000-zSearch in Google Scholar

[17] Singh S, Guchhait P, Bandyopadhyay G, Chaki T. Composites, Part A 2012, 44, 8–15.10.1016/j.compositesa.2012.08.016Search in Google Scholar

[18] Rathinasamy P, Balamurugan P, Balu S, Subrahmanian V. J. Appl. Polym. Sci. 2003, 91, 1111–1123.10.1002/app.13175Search in Google Scholar

[19] Jiang Y, Zhang X, He J, Yu L, Yang R. Polym. Degrad. Stab. 2011, 96, 949–954.10.1016/j.polymdegradstab.2011.01.034Search in Google Scholar

[20] Ghassemieh E. Polym. Compos. 2009, 30, 1657–1667.10.1002/pc.20810Search in Google Scholar

[21] Barbosa SE, Capiati NJ, Kenny JM. Polym. Compos. 2004, 21, 377–386.10.1002/pc.10196Search in Google Scholar

[22] Das A, Mahaling RN, Stockelhuber KW, Heinrich G. Compos. Sci. Tech. 2011, 71, 276–281.10.1016/j.compscitech.2010.11.009Search in Google Scholar

[23] Zaman W, Li K, Ikram S, Li W, Zhang D, Guo L. Corros. Sci. 2012, 61, 134–142.10.1016/j.corsci.2012.04.036Search in Google Scholar

[24] Iqbal N, Sagar S, Khan MB. Int. J. Eng. Technol. 2014, 6, 162–167.10.7763/IJET.2014.V6.688Search in Google Scholar

[25] Agari Y, Uno T. J. Appl. Polym. Sci. 1985, 30, 2225–2235.10.1002/app.1985.070300534Search in Google Scholar

[26] Guan Y, Zhang LX, Zhang LQ, Lu YL. Polym. Degrad. Stab. 2011, 96, 808–817.10.1016/j.polymdegradstab.2011.02.010Search in Google Scholar

[27] Firouzmanesh M, Azar AA. J. Appl. Polym. Sci. 2003, 88, 2455–2461.10.1002/app.12045Search in Google Scholar

[28] Sun W, Xiong X, Huang B, Li G, Zhang H, Chen Z, Zheng XL. Carbon 2009, 47, 3368–3371.10.1016/j.carbon.2009.07.047Search in Google Scholar

[29] Qiu J, Cao X, Tian C, Zhang J. J. Mater. Sci. Tech. 2005, 21, 92–94.Search in Google Scholar

[30] Patton R, Pittman C, Wang L, Hill J, Day A. Compos. Part A: Appl. Sci. Manufact. 2002, 33, 243–251.10.1016/S1359-835X(01)00092-6Search in Google Scholar

[31] Torre L, Kenny J, Maffezzoli A. J. Mater. Sci. 1998, 33, 3137–3143.10.1023/A:1004399923891Search in Google Scholar

[32] Torre L, Kenny J, Boghetich G, Maffezzoli A. J. Mater. Sci. 2000, 35, 4563–4566.10.1023/A:1004828923152Search in Google Scholar

[33] Bahramian AR, Kokabi M, Famili MHN, Beheshty MH. J. Hazard. Mater. 2008, 150, 136–145.10.1016/j.jhazmat.2007.04.104Search in Google Scholar

[34] Cho D, Il Yoon B. Compos. Sci. Tech. 2001, 61, 271–280.10.1016/S0266-3538(00)00212-8Search in Google Scholar

[35] Lin WS. Int. J. Heat Mass Transfer 2005, 48, 5504–5519.10.1016/j.ijheatmasstransfer.2005.06.040Search in Google Scholar

[36] Ogasawara T, Ishikawa T, Yamada T, Yokota R, Itoh M, Nogi S. J. Compos. Mater. 2002, 36, 143–157.10.1177/0021998302036002554Search in Google Scholar

[37] Park JK, Kang TJ. Carbon 2002, 40, 2125–2134.10.1016/S0008-6223(02)00063-5Search in Google Scholar

[38] Torre L, Kenny J, Maffezzoli A. J. Mater. Sci. 1998, 33, 3145–3149.10.1023/A:1004352007961Search in Google Scholar

[39] Najim TS, Amel M, Barbooti MM. Leonardo Electron. J. Pract. Technol. 2008, 7, 34–46.Search in Google Scholar

[40] Sarkhel G, Choudhury A. J. Mater. Sci. 2008, 108, 3442–3453.10.1002/app.28024Search in Google Scholar

[41] Dijkhuis KAJ, Noordermeer JWM, Dierkes WK. Eur. Polym. J. 2009, 45, 3302–3312.10.1016/j.eurpolymj.2009.06.029Search in Google Scholar

[42] Gao G, Zhang Z, Zheng Y, Jin Z. Polym. Compos. 2010, 31, 1223–1231.10.1002/pc.20974Search in Google Scholar

[43] Gao G, Zhang Z, Li X, Meng Q, Zheng Y, Jin Z. J. Appl. Polym. Sci. 2010, 118, 266–274.10.1002/app.32324Search in Google Scholar

[44] Mahapatra S, Tripathy D. J. Appl. Polym. Sci. 2006, 102, 1600–1608.10.1002/app.23927Search in Google Scholar

[45] Augustine JM, Maiti SN, Gupta AK. J. Appl. Polym. Sci. 2012, 125, E478–E485.10.1002/app.36915Search in Google Scholar

Received: 2015-7-27
Accepted: 2015-9-29
Published Online: 2015-12-17
Published in Print: 2016-9-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2015-0337/html
Scroll to top button