Home Preparation and microstructural examination of additively manufactured alloys 316L and 17-4PH
Article
Licensed
Unlicensed Requires Authentication

Preparation and microstructural examination of additively manufactured alloys 316L and 17-4PH

  • A. Triebe

    Adrian Triebe completed his masters-degree in materials physics at the Georg-August university in Göttingen in collaboration with the Fraunhofer Wilhelm-Klauditz-Institut. Following that he started his doctorate at the Arbeitsgruppe Werkstoffprüfung (AWP) at the Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau (RPTU) and is currently investigating hybrid porose Materials for additive manufacturing.

    EMAIL logo
    , A. Hebestreit

    Anja Hebestreit She trained as a physics laboratory technician at BASF SE and worked there with SEM and TEM for 12 years. After a family phase, she started working as a metallographer in the materials testing group in 2016.

    and E. Kerscher
Published/Copyright: September 18, 2025
Become an author with De Gruyter Brill

Abstract

Several samples made of the stainless steels AISI 316L and 17-4PH (equivalent to AISI 630) in different compositions were investigated as part of the Collaborative Research Center/Transregio (TRR) 375 on Multifunctional High-Performance Components made of hybrid porous materials (HyPo).

The samples were manufactured under the subproject B01 at the Institute for Manufacturing Technology and Production Systems (Fertigungstechnik und Betriebsorganisation, FBK) by laser metal deposition. Individual blocks consisting of four welding layers which are, in turn, composed of eight printed tracks, respectively, were built using different powder compositions. The powder mixture was gradually varied from 100 % 316L to 100 % 17-4PH.

This contribution addresses the specifics of visualizing the microstructure of samples with different material compositions. One challenge lies in selecting the appropriate etchants for the samples made of mixed powders. For the investigations, the samples were embedded as longitudinal and transverse sections. Various etching solutions were then tested to visualize the microstructure. The results of the etching experiments and the light micrographs are presented and interpreted based on the findings of energy-dispersive X-ray spectroscopy (EDS) analyses in the scanning electron microscope. They can be used to derive strategies for adjusting the microstructure of graded samples which may serve in the future to obtain specific properties.

Kurzfassung

Im Rahmen des Sonderforschungsbereichs / Transregio (TRR) 375 zu Multifunktionalen Hochleistungskomponenten aus hybriden porösen Werkstoffen (HyPo) wurden mehrere aus den rostfreien Stählen AISI 316L und 17-4PH (entspricht AISI 630) verschieden zusammengesetzte Proben untersucht.

Die Proben wurden in dem Teilprojekt B01 am Lehrstuhl für Fertigungstechnik und Betriebsorganisation (FBK) mittels Laserauftragsschweißen hergestellt. Dabei wurden einzelne Blöcke aus vier Schweißlagen mit je acht Bahnen gedruckt, bei denen jeweils unterschiedliche Pulverzusammensetzungen verwendet wurden. Die Pulvermischung wurde dazu von 100 % 316L schrittweise bis 100 % 17-4PH variiert.

Im Beitrag wird auf die Besonderheiten bei der Sichtbarmachung des Gefüges der Proben mit unterschiedlicher Materialzusammensetzung eingegangen. Dabei besteht eine Herausforderung in der Auswahl der passenden Ätzmittel für die Proben aus gemischten Pulvern. Für die Untersuchungen wurden die Proben als Längs- und Querschliffe eingebettet. Anschließend wurden verschiedene Ätzlösungen zur Sichtbarmachung des Gefüges getestet. Die Ergebnisse der Ätzversuche und der lichtmikroskopisch aufgenommenen Gefügebilder werden vorgestellt und mithilfe der Ergebnisse von Untersuchungen mit energiedispersiver Röntgenstrahlung (EDX) im Rasterelektronenmikroskop interpretiert. So lassen sich Strategien für gradierte Proben zur gezielten Gefügeeinstellung ableiten, welche in Zukunft zur Erreichung spezifischer Eigenschaften genutzt werden können.

About the authors

A. Triebe

Adrian Triebe completed his masters-degree in materials physics at the Georg-August university in Göttingen in collaboration with the Fraunhofer Wilhelm-Klauditz-Institut. Following that he started his doctorate at the Arbeitsgruppe Werkstoffprüfung (AWP) at the Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau (RPTU) and is currently investigating hybrid porose Materials for additive manufacturing.

A. Hebestreit

Anja Hebestreit She trained as a physics laboratory technician at BASF SE and worked there with SEM and TEM for 12 years. After a family phase, she started working as a metallographer in the materials testing group in 2016.

6

6 Acknowledgement

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 511263698 – TRR 375

6

6 Danksagung

Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) – Projektnummer 511263698 – TRR 375

References / Literatur

[1] Xu, K.; Bochuan, L.; Chao, J.: Adjusting microstructure and improving mechanical property of additive manufacturing 316L based on process optimization. Materials Science and Engineering A 870 (2023), p. 144824. DOI:10.1016/j.msea.2023.14482410.1016/j.msea.2023.144824Search in Google Scholar

[2] Mathoho, I.; Akinlabi, E. T.; Arthur, N.; Tlotleng, M.: Impact of DED process parameters on the metallurgical characteristics of 17-4 PH SS deposited using DED. CIRP Journal of Manufacturing Science and Technology 31 (2020), pp. 450–58. DOI:10.1016/j.cirpj.2020.07.00710.1016/j.cirpj.2020.07.007Search in Google Scholar

[3] Yoon, H.; Kumai, C. S.; Devine, T. M.; Yang, N.; Yee, J. K.; Hardwick, R.; Burgmann, K.: Micro-structural banding of directed energy deposition-additively manufactured 316L stainless steel. Journal of Materials Science & Technology 69 (2021), pp. 96–105. DOI:10.1016/j.jmst.2020.08.02210.1016/j.jmst.2020.08.022Search in Google Scholar

[4] Bochuan, L.; Xu, K.; Jiang, C.: Anisotropy reduction and mechanical property improvement of additively manufactured stainless steel based on cyclic phase transformation. Journal of Materials Science & Technology 184 (2024), pp. 1–14. DOI:10.1016/j.jmst.2023.09.04110.1016/j.jmst.2023.09.041Search in Google Scholar

[5] Aripin, M.A.; Sajuri, Z.; Jamadon, N.H.; Baghdadi, A.H.; Syarif, J.; Mohamed, I.F.; Aziz, A.M.: Effects of Build Orientations on Microstructure Evolution, Porosity Formation, and Mechanical Performance of Selective Laser Melted 17-4 PH Stainless Steel. Metals 12 (2022), p. 1968. DOI:10.3390/met12111968.10.3390/met12111968Search in Google Scholar

[6] Schumann, U.; Del Genovese, D.; Rösler, J.: Auswahl der Ätzmedien für Ein- und Polykristalline Hochtemperaturwerkstoffe. Fortschritte in Der Metallographie. Frankfurt: Werkstoff-Informationsgesellschaft (2004).Search in Google Scholar

Received: 2025-05-30
Accepted: 2025-07-08
Published Online: 2025-09-18
Published in Print: 2025-09-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pm-2025-0064/html
Scroll to top button