Home Magneto-optical Kerr effect analysis of strain-induced martensite formation during flow forming of metastable austenitic steel AISI 304L
Article
Licensed
Unlicensed Requires Authentication

Magneto-optical Kerr effect analysis of strain-induced martensite formation during flow forming of metastable austenitic steel AISI 304L

  • J. Rozo Vasquez

    Julian Rozo Vasquez works as Scientific Assistant at the Chair of Materials Test Engineering (WPT) of the TU Dortmund University since May 2019. Within the project “Property control during spinning of metastable austenites” funded by DFG, he is concerned with microstructural characterization using EBSD and MOKE

    EMAIL logo
    , J. Tappe

    Jan Mate Tappe works as Research Assistant at the Chair of Materials Test Engineering (WPT) of the TU Dortmund University since August 2024. In the project, he is responsible for the metallographic preparation of the specimens and the imaging on the magnetooptical Kerr effect microscope

    , B. Arian , L. Kersting , W. Homberg , A. Trächtler and F. Walther
Published/Copyright: September 18, 2025
Become an author with De Gruyter Brill

Abstract

This paper presents a characterization of the microstructural evolution and its correlation with the magnetic structure due to flow forming of semi-finished tubes of austenitic stainless steel AISI 304L. The plastic deformation triggers a phase transformation of the metastable austenite into α’-martensite.

Depending on the combination of production parameters, different fractions of strain-induced α’-martensite were measured by means non-destructive micromagnetic techniques and correlated with the evolution of hardness and the microstructure using electron backscatter diffraction analyses. The magneto-optical Kerr effect analysis was used as a tool to perform a qualitative analysis of the evolution of the magnetic domain structure correlated with the formation of α’-martensite. An analysis of these data allowed to derive surface magnetization hysteresis loops that were compared with integral hysteresis loops of the specimens. It was proven by both methods that the formation of martensite increases the magnetic energy and the spontaneous magnetization of the specimens. The results of this investigation contribute to a better understanding of micromagnetic sensors to monitor and control the formation of α’-martensite in a flow forming. Furthermore, various techniques have demonstrated the evolution of the magnetic properties of the material, which can be applied in applications for invisible coding of workpieces.

Kurzfassung

Dieses Manuskript beschreibt eine Charakterisierung der Mikrostruktur-Evolution und deren Korrelation mit der magnetischen Struktur wegen des Drückwalzens von Rohrhalbzeugen aus austenitischem Edelstahl AISI 304L. Die plastische Verformung ruft eine Phasenumwandlung des metastabilen Austenits zu α‘-Martensit hervor. Je nach Kombination der Produktionsparameter wurden mit zerstörungsfreien mikromagnetischen Verfahren unterschiedliche Anteile von verformungsinduzierter α‘-Martensit gemessen und mit der Härte- und Mikrostrukturevolution aus Untersuchungen mittels Elektronenrückstreubeugung korreliert. Mithilfe der magnetooptischen Kerr-Effekt-Untersuchungen wurden qualitative Korrelationen zwischen der Evolution der magnetischen Domänenstruktur und der Bildung von α‘-Martensit untersucht. Basierend auf einer Analyse dieser Daten konnten Magnetisierungs-Hystereseschleifen an der Oberfläche abgeleitet und mit integralen Hystereseschleifen der Proben verglichen werden. Mit beiden Verfahren wurde nachgewiesen, dass die magnetische Energie und spontane Magnetisierung der Proben durch die Bildung von Martensit zunehmen. Die Ergebnisse dieser Untersuchung tragen zu einem besseren Verständnis mikromagnetischer Sensoren zur Überwachung und Steuerung der α‘-Martensitbildung beim Drückwalzen bei. Darüber hinaus wurde die Evolution der magnetischen Eigenschaften des Materials anhand verschiedener Messmethoden veranschaulicht. Diese Informationen können wiederum für Anwendungen zur unsichtbaren Codierung von Werkstücken genutzt werden.

About the authors

J. Rozo Vasquez

Julian Rozo Vasquez works as Scientific Assistant at the Chair of Materials Test Engineering (WPT) of the TU Dortmund University since May 2019. Within the project “Property control during spinning of metastable austenites” funded by DFG, he is concerned with microstructural characterization using EBSD and MOKE

J. Tappe

Jan Mate Tappe works as Research Assistant at the Chair of Materials Test Engineering (WPT) of the TU Dortmund University since August 2024. In the project, he is responsible for the metallographic preparation of the specimens and the imaging on the magnetooptical Kerr effect microscope

5

5 Acknowledgements

The authors would like to thank the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) for their support of the depicted research within the priority program SPP 2183 “Property-controlled deformation processes”, through project no. 424335026 “Property control during spinning of metastable austenites”. The authors further thank the German Research Foundation and the Ministry of Culture and Science of North Rhine-Westphalia (Ministerium fuer Kultur und Wissenschaft des Landes Nordrhein-Westfalen, MKW NRW) for their financial support within the major research instrumentation program “Magneto-optical Kerr microscope with in situ tension-compression stage” (project no. 464498574).

5

5 Danksagung

Die Autoren danken der Deutschen Forschungsgemeinschaft (DFG) für die Förderung der hier ausgeführten Forschungsarbeit im Rahmen des Schwerpunktprogramms SPP 2183 „Eigenschaftsgeregelte Umformprozesse“ durch das Projekt Nr. 424335026 „Eigenschaftsorientierte Regelung von Verfestigungs- und Phasenumwandlungsprozessen beim Drücken und Drückwalzen metastabiler Austenite“. Die Autoren danken außerdem der Deutschen Forschungsgemeinschaft und dem Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen (MKW NRW) für die finanzielle Unterstützung im Rahmen des Programms Forschungsgroßgeräte „Magnetooptisches Kerr-Mikroskop mit in-situ Zug-Druck-Modul“ (Projekt Nr. 464498574).

References / Literatur

[1] Marini, D.; Cunninigham, D.; Xirouchakis, P.; Corney, J.: Flow forming: A review of research methodologies, prediction models and their applications. Int. J. Mech. Eng. 7 (2016) 5, pp. 285–315.Search in Google Scholar

[2] Olson, G.; Cohen, M.: Kinetics of strain-induced martensitic nucleation. Metall Trans A 6A (1975), pp. 791–795. DOI:10.1007/BF0267230110.1007/BF02672301Search in Google Scholar

[3] Kersting, L.; Arian, B.; Vasquez, J.; Trächtler, A.; Homberg, W.; Walther, F.: Innovative online measurement and modelling approach for property-controlled flow forming processes. Key Engineering Materials 926 (2022), pp. 862–874. DOI:10.4028/p-yp2hj310.4028/p-yp2hj3Search in Google Scholar

[4] Cullity, B.; Graham, C.: Introduction to magnetic materials. IEEE Press; Wiley, Piscataway, NJ, Hoboken, NJ, 2009.10.1002/9780470386323Search in Google Scholar

[5] Neslušan, M.; Šugárová, J.; Haušild, P.; Minárik, P.; Čapek, J.; Jambor, M.; Šugár, P.: Barkhausen noise emission in AISI 321 austenitic steel originating from the strain-induced martensite transformation. Metals 11 (2021) 3, p. 429. DOI:10.3390/met1103042910.3390/met11030429Search in Google Scholar

[6] Haušild, P.; Kolarˇík, K.; Karlík, M.: Characterization of strain-induced martensitic transformation in A301 stainless steel by Barkhausen noise measurement. Materials & Design 44 (2013), pp. 548–554. DOI:10.1016/j.matdes.2012.08.05810.1016/j.matdes.2012.08.058Search in Google Scholar

[7] Astudillo, M.; Nicolás, M.; Ruzzante, J.; Gómez, M.; Ferrari, G.; Padovese, L.; Pumarega, M.: Correlation between martensitic phase transformation and magnetic Barkhausen noise of AISI 304 steel. Procedia Materials Science 9 (2015), pp. 435–443. DOI:10.1016/j.mspro.2015.05.01410.1016/j.mspro.2015.05.014Search in Google Scholar

[8] Hubert, A.; Schaefer, R.: Magnetic domains. Springer, Berlin, Heidelberg, 1998.Search in Google Scholar

[9] Nishiyama, Z.: Martensitic transformation. Elsevier Science, Saint Louis, 2014.Search in Google Scholar

[10] Rozo Vasquez, J.; Kersting, L.; Arian, B.; Homberg, W.; Trächtler, A.; Walther, F.: Soft sensor model of phase transformation during flow forming of metastable austenitic steel AISI 304L. In: Numerical Methods in Industrial Forming Processes, Springer International Publishing, Cham, 2024. DOI:10.1007/978-3-031-58006-2_1010.1007/978-3-031-58006-2_10Search in Google Scholar

[11] Schwartz, A.; Kumar, M.; Adams, B.; Field, D.: Electron backscatter diffraction in materials science. Springer US, Boston, MA, 2009. DOI:10.1007/978-0-387-88136-210.1007/978-0-387-88136-2Search in Google Scholar

[12] Wright, S.; Nowell, M.; Field, D.: A review of strain analysis using electron backscatter diffraction. Microsc. Microanal. 17 (2011) 3, pp. 316–329. DOI:10.1017/S143192761100005510.1017/S1431927611000055Search in Google Scholar PubMed

[13] Rui, S.-S.; Han, Q.-N.; Wang, X.; Li, S.; Ma, X.; Su, Y.; Cai, Z.; Du, D.; Shi, H.-J.: Correlations between two EBSD-based metrics Kernel Average Misorientation and Image Quality on indicating dislocations of near-failure low alloy steels induced by tensile and cyclic deformations. Materials Today Communications 27 (2021), p. 102445. DOI:10.1016/j.mtcomm.2021.10244510.1016/j.mtcomm.2021.102445Search in Google Scholar

[14] Weidner, A.: Deformation processes in TRIP/TWIP steels. Springer International Publishing, Cham, 2020. DOI:10.1007/978-3-030-37149-410.1007/978-3-030-37149-4Search in Google Scholar

[15] Chikazumi, S.: Physics of magnetism. John Wiley & Sons, Inc., New York, NY, USA, 1966.Search in Google Scholar

Received: 2025-05-27
Accepted: 2025-07-08
Published Online: 2025-09-18
Published in Print: 2025-09-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 30.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pm-2025-0059/html
Scroll to top button