Abstract
Calculating the wave function and the properties of a molecule in solution is a common procedure today that can be performed with a variety of methods. However, the study of solvated systems did not begin with the establishment of the Schrodinger equation in 1926 and the development of the first methods in computational chemistry. In fact, it took until 1973 to see the first self-consistent field equations that included the electrostatic potential of the solvent. It took another two decades for computational methods and solvent models to become consolidated, with an explosion of applications in the 1990s. This article briefly describes that fascinating story.
Acknowledgments
The author is grateful to the University of Lorraine and the French CNRS for their continuous support.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Camilleri, K. How Quantum Mechanics Emerged in a Few Revolutionary Months 100 Years ago. Nature 2025, 637, 269–271; https://doi.org/10.1038/d41586-024-04217-0.Suche in Google Scholar PubMed
2. Heisenberg, W. Über Quantentheoretische Umdeutung Kinematischer und Mechanischer Beziehungen. Z. Phys. 1925, 33, 879–893; https://doi.org/10.1007/bf01328377.Suche in Google Scholar
3. Schrödinger, E. Quantisierung als Eigenwertproblem (Erste Mitteilung). Ann. Phys. 1926, 79, 361–376.10.1002/andp.19263840404Suche in Google Scholar
4. Schrödinger, E. Quantisierung als Eigenwertproblem. (Zweite Mitteilung). Ann. Phys. 1926, 79, 489–527.10.1002/andp.19263840602Suche in Google Scholar
5. Boyd, R. J. The Nobel History of Computational Chemistry. A Personal Perspective. J. Comput. Chem. 2024, 45, 1921–1935; https://doi.org/10.1002/jcc.27383.Suche in Google Scholar PubMed
6. Moore, T. S.; Winmill, T. F. CLXXVII.—The State of Amines in Aqueous Solution. J. Chem. Soc. Trans. 1912, 101, 1635–1676; https://doi.org/10.1039/ct9120101635.Suche in Google Scholar
7. Latimer, W. M.; Rodebush, W. H. Polarity and Ionization from the Standpoint of the Lewis Theory of Valence. J. Am. Chem. Soc. 1920, 42, 1419–1433; https://doi.org/10.1021/ja01452a015.Suche in Google Scholar
8. Smith, D. A. A Brief-history of the Hydrogen-bond. In Modeling the Hydrogen Bond; Smith, D. A., Ed.; American Chemical Society: Washington DC, Vol. 569, 1994; pp 1–5.10.1021/bk-1994-0569.ch001Suche in Google Scholar
9. Bratož, S. Electronic Theories of Hydrogen Bonding. In Advances in Quantum Chemistry; Löwdin, P.-O., Ed.; Academic Press: London, Vol. 3, 1967; pp 209–237.10.1016/S0065-3276(08)60090-8Suche in Google Scholar
10. Kollman, P. A.; Allen, L. C. Theory of the Hydrogen Bond. Chem. Rev. 1972, 72, 283–303; https://doi.org/10.1021/cr60277a004.Suche in Google Scholar
11. Szalewicz, K. Hydrogen Bond. In Encyclopedia of Physical Science and Technology; Meyers, R. A., Ed.; Academic Press: New York, 2003, 3rd ed.; pp. 505–538.10.1016/B0-12-227410-5/00322-7Suche in Google Scholar
12. Pimentel, G. C. The Bonding of Trihalide and Bifluoride Ions by the Molecular Orbital Method. J. Chem. Phys. 1951, 19, 446–448; https://doi.org/10.1063/1.1748245.Suche in Google Scholar
13. Nukasawa, K.; Tanaka, J.; Nagakura, S. A Note on the Hydrogen Bond. J. Phys. Soc. Jpn. 1953, 8, 792–793; https://doi.org/10.1143/jpsj.8.792.Suche in Google Scholar
14. Lennard-Jones, J. E.; Pople, J. A. Molecular Association in Liquids I. Molecular Association Due to Lone-pair Electrons. Proc. R. Soc. Lond. A: Math. Phys. Sci. 1951, 205, 155–162.10.1098/rspa.1951.0023Suche in Google Scholar
15. Pople, J. A. Molecular Association in Liquids. 2. A Theory of the Structure of Water. Proc. R. Soc. Lond. A: Math. Phys. Sci. 1951, 205, 163–178.10.1098/rspa.1951.0024Suche in Google Scholar
16. Coulson, C. The Hydrogen Bond: A Review of the Present Interpretations and an Introduction to the Theoretical Papers Presented at the Congress. In Hydrogen Bonding; Hadzi, D.; Thompson, H. W., Eds.; Pergamon Pres: London, 1959; pp. 339–360.10.1016/B978-0-08-009140-2.50041-5Suche in Google Scholar
17. Clementi, E. Study of the Electronic Structure of Molecules. II. Wavefunctions for the NH3+ HCl→ NH4Cl Reaction. J. Chem. Phys. 1967, 46, 3851–3880; https://doi.org/10.1063/1.1840458.Suche in Google Scholar
18. Morokuma, K.; Pedersen, L. Molecular-orbital Studies of Hydrogen Bonds. An Ab Initio Calculation for Dimeric H2O. J. Chem. Phys. 1968, 48, 3275–3282; https://doi.org/10.1063/1.1669604.Suche in Google Scholar
19. Del Bene, J. E. Molecular Orbital Theory of the Hydrogen Bond. II. Dimers Containing H2O2 and H2O. J. Chem. Phys. 1972, 56, 4923–4929; https://doi.org/10.1063/1.1676970.Suche in Google Scholar
20. Alagona, G.; Pullman, A.; Scrocco, E.; Tomasi, J. Quantum-mechanical Studies of Environmental Effects on Biomolecules. I. Hydration of Formamide. Int. J. Pept. Protein Res. 1973, 5, 251–259; https://doi.org/10.1111/j.1399-3011.1973.tb03459.x.Suche in Google Scholar PubMed
21. Pimentel, G. C.; McClellan, A. L. The Hydrogen Bond; W.H. Freeman and Co.: San Francisco and London, 1960.Suche in Google Scholar
22. Pullman, B.; Pullman, A. The Electronic Structure of the Purine-pyrimidine Pairs of DNA. Biochim. Biophys. Acta 1959, 36, 343–350; https://doi.org/10.1016/0006-3002(59)90176-3.Suche in Google Scholar PubMed
23. Pullman, B.; Pullman, A. Some Electronic Aspects of Biochemistry. Rev. Mod. Phys. 1960, 32, 428–436; https://doi.org/10.1103/revmodphys.32.428.Suche in Google Scholar
24. Pullman, A. The Supermolecule Approach to the Solvation Problem. In Quantum Theory of Chemical Reactions: II: Solvent Effect, Reaction Mechanisms, Photochemical Processes; Daudel, R.; Pullman, A.; Salem, L.; Veillard, A., Eds.; Springer Netherlands: Dordrecht, 1981; pp. 1–24.10.1007/978-94-010-9716-1_1Suche in Google Scholar
25. Pullman, A.; Pullman, B. New Paths in the Molecular Orbital Approach to Solvation of Biological Molecules. Q. Rev. Biophys. 1974, 7, 505–566; https://doi.org/10.1017/s0033583500001529.Suche in Google Scholar PubMed
26. Pullman, A. The Solvent Effect: Recent Developments. In The New World of Quantum Chemistry; Pullman, B.; Parr, R., Eds.; Springer Netherlands: Dordrecht, 1976; pp. 149–187.10.1007/978-94-010-1523-3_9Suche in Google Scholar
27. Lewis, T. CNDO/2 Calculations on the Acidities of Alkanes and Saturated Alcohols and the Basicities of Methylamines. Tetrahedron 1969, 25, 4117–4126; https://doi.org/10.1016/s0040-4020(01)82944-6.Suche in Google Scholar PubMed
28. Graffeuil, M.; Labarre, J.-F.; Leibovici, C. Interprétation Quantique des Propriétés Physicochimiques des Alkylamines. J. Mol. Struct. 1974, 22, 97–108; https://doi.org/10.1016/0022-2860(74)80070-0.Suche in Google Scholar
29. Hehre, W.; Pople, J. The Methyl Inductive Effect on Acid-base Strengths. Tetrahedron Lett. 1970, 11, 2959–2962; https://doi.org/10.1016/s0040-4039(01)98385-6.Suche in Google Scholar
30. Tollenaere, J. P.; Moereels, H. All-valence Electron Calculations and Proton Affinity of Amines. Tetrahedron Lett. 1978, 19, 1347–1350; https://doi.org/10.1016/0040-4039(78)80125-7.Suche in Google Scholar
31. Pullman, A.; Brochen, P. On the Origin of the Reverse Order of Intrinsic Affinities Towards H+ and Li+ in the Series NH3 to N(CH3)3. Chem. Phys. Lett. 1975, 34, 7–10; https://doi.org/10.1016/0009-2614(75)80189-8.Suche in Google Scholar
32. Umeyama, H.; Morokuma, K. Origin of Alkyl Substituent Effect in the Proton Affinity of Amines, Alcohols, and Ethers. J. Am. Chem. Soc. 1976, 98, 4400–4404; https://doi.org/10.1021/ja00431a011.Suche in Google Scholar
33. Pullman, A.; Armbruster, A.-M. Ab Initio Investigation of the Energy and Electronic Evolution Upon Progressive Solvation of Ammonium Ions. Chem. Phys. Lett. 1975, 36, 558–563; https://doi.org/10.1016/0009-2614(75)85337-1.Suche in Google Scholar
34. Claverie, P.; Daudey, J. P.; Langlet, J.; Pullman, B.; Piazzola, D.; Huron, M. J. Studies of Solvent Effects. 1. Discrete, Continuum, and Discrete-continuum Models and their Comparison for Some Simple Cases : NH4+, CH3OH, and Substituted NH4+. J. Phys. Chem. 1978, 82, 405–418; https://doi.org/10.1021/j100493a008.Suche in Google Scholar
35. Ruiz, M.; Oliva, A.; Fernandez-Alonso, J. I.; Bertrán, J. Estudio Teórico del Efecto de Solvatación Sobre la Basicidad del Amoniaco y de las Metilaminas. Anal. Quím. 1982, 78, 202–205.Suche in Google Scholar
36. Ruiz-López, M. F. Estudio teórico del efecto de la solvatación sobre la basicidad del amoniaco y de las metilaminas. Master Thesis, Autonomous University of Madrid: Madrid, 1980.Suche in Google Scholar
37. Frisch, M. J; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. C.01; Gaussian Inc.: Wallingford, CT, 2016.Suche in Google Scholar
38. Barca, G. M. J.; Bertoni, C.; Carrington, L.; Datta, D.; De Silva, N.; Deustua, J. E.; Fedorov, D. G.; Gour, J. R.; Gunina, A. O.; Guidez, E.; Harville, T.; Irle, S.; Ivanic, J.; Kowalski, K.; Leang, S. S.; Li, H.; Li, W.; Lutz, J. J.; Magoulas, I.; Mato, J.; Mironov, V.; Nakata, H.; Pham, B. Q.; Piecuch, P.; Poole, D.; Pruitt, S. R.; Rendell, A. P.; Roskop, L. B.; Ruedenberg, K.; Sattasathuchana, T.; Schmidt, M. W.; Shen, J.; Slipchenko, L.; Sosonkina, M.; Sundriyal, V.; Tiwari, A.; Galvez Vallejo, J. L.; Westheimer, B.; Włoch, M.; Xu, P.; Zahariev, F.; Gordon, M. S. Recent Developments in the General Atomic and Molecular Electronic Structure System. J. Chem. Phys. 2020, 152, 152. https://doi.org/10.1063/5.0005188.Suche in Google Scholar PubMed
39. Epifanovsky, E.; Gilbert, A. T. B.; Feng, X.; Lee, J.; Mao, Y.; Mardirossian, N.; Pokhilko, P.; White, A. F.; Coons, M. P.; Dempwolff, A. L.; Gan, Z.; Hait, D.; Horn, P. R.; Jacobson, L. D.; Kaliman, I.; Kussmann, J.; Lange, A. W.; Lao, K. U.; Levine, D. S.; Liu, J.; McKenzie, S. C.; Morrison, A. F.; Nanda, K. D.; Plasser, F.; Rehn, D. R.; Vidal, M. L.; You, Z.-Q.; Zhu, Y.; Alam, B.; Albrecht, B. J.; Aldossary, A.; Alguire, E.; Andersen, J. H.; Athavale, V.; Barton, D.; Begam, K.; Behn, A.; Bellonzi, N.; Bernard, Y. A.; Berquist, E. J.; Burton, H. G. A.; Carreras, A.; Carter-Fenk, K.; Chakraborty, R.; Chien, A. D.; Closser, K. D.; Cofer-Shabica, V.; Dasgupta, S.; de Wergifosse, M.; Deng, J.; Diedenhofen, M.; Do, H.; Ehlert, S.; Fang, P.-T.; Fatehi, S.; Feng, Q.; Friedhoff, T.; Gayvert, J.; Ge, Q.; Gidofalvi, G.; Goldey, M.; Gomes, J.; González-Espinoza, C. E.; Gulania, S.; Gunina, A. O.; Hanson-Heine, M. W. D.; Harbach, P. H. P.; Hauser, A.; Herbst, M. F.; Hernández Vera, M.; Hodecker, M.; Holden, Z. C.; Houck, S.; Huang, X.; Hui, K.; Huynh, B. C.; Ivanov, M.; Jász, Á.; Ji, H.; Jiang, H.; Kaduk, B.; Kähler, S.; Khistyaev, K.; Kim, J.; Kis, G.; Klunzinger, P.; Koczor-Benda, Z.; Koh, J. H.; Kosenkov, D.; Koulias, L.; Kowalczyk, T.; Krauter, C. M.; Kue, K.; Kunitsa, A.; Kus, T.; Ladjánszki, I.; Landau, A.; Lawler, K. V.; Lefrancois, D.; Lehtola, S.; Li, R. R.; Li, Y.-P.; Liang, J.; Liebenthal, M.; Lin, H.-H.; Lin, Y.-S.; Liu, F.; Liu, K.-Y.; Loipersberger, M.; Luenser, A.; Manjanath, A.; Manohar, P.; Mansoor, E.; Manzer, S. F.; Mao, S.-P.; Marenich, A. V.; Markovich, T.; Mason, S.; Maurer, S. A.; McLaughlin, P. F.; Menger, M. F. S. J.; Mewes, J.-M.; Mewes, S. A.; Morgante, P.; Mullinax, J. W.; Oosterbaan, K. J.; Paran, G.; Paul, A. C.; Paul, S. K.; Pavošević, F.; Pei, Z.; Prager, S.; Proynov, E. I.; Rák, Á.; Ramos-Cordoba, E.; Rana, B.; Rask, A. E.; Rettig, A.; Richard, R. M.; Rob, F.; Rossomme, E.; Scheele, T.; Scheurer, M.; Schneider, M.; Sergueev, N.; Sharada, S. M.; Skomorowski, W.; Small, D. W.; Stein, C. J.; Su, Y.-C.; Sundstrom, E. J.; Tao, Z.; Thirman, J.; Tornai, G. J.; Tsuchimochi, T.; Tubman, N. M.; Veccham, S. P.; Vydrov, O.; Wenzel, J.; Witte, J.; Yamada, A.; Yao, K.; Yeganeh, S.; Yost, S. R.; Zech, A.; Zhang, I. Y.; Zhang, X.; Zhang, Y.; Zuev, D.; Aspuru-Guzik, A.; Bell, A. T.; Besley, N. A.; Bravaya, K. B.; Brooks, B. R.; Casanova, D.; Chai, J.-D.; Coriani, S.; Cramer, C. J.; Cserey, G.; DePrince, A. E.III; DiStasio, R. A.Jr.; Dreuw, A.; Dunietz, B. D.; Furlani, T. R.; Goddard, W. A.III; Hammes-Schiffer, S.; Head-Gordon, T.; Hehre, W. J.; Hsu, C.-P.; Jagau, T.-C.; Jung, Y.; Klamt, A.; Kong, J.; Lambrecht, D. S.; Liang, W.; Mayhall, N. J.; McCurdy, C. W.; Neaton, J. B.; Ochsenfeld, C.; Parkhill, J. A.; Peverati, R.; Rassolov, V. A.; Shao, Y.; Slipchenko, L. V.; Stauch, T.; Steele, R. P.; Subotnik, J. E.; Thom, A. J. W.; Tkatchenko, A.; Truhlar, D. G.; Van Voorhis, T.; Wesolowski, T. A.; Whaley, K. B.; Woodcock, H. L.III; Zimmerman, P. M.; Faraji, S.; Gill, P. M. W.; Head-Gordon, M.; Herbert, J. M.; Krylov, A. I. Software for the Frontiers of Quantum Chemistry: An Overview of Developments in the Q-Chem 5 Package. J. Chem. Phys. 2021, 155, 154102. https://doi.org/10.1063/5.0055522.Suche in Google Scholar PubMed PubMed Central
40. Aquilante, F.; Autschbach, J.; Carlson, R. K.; Chibotaru, L. F.; Delcey, M. G.; De Vico, L.; Fdez. Galván, I.; Ferré, N.; Frutos, L. M.; Gagliardi, L.; Garavelli, M.; Giussani, A.; Hoyer, C. E.; Li Manni, G.; Lischka, H.; Ma, D.; Malmqvist, P. Å.; Müller, T.; Nenov, A.; Olivucci, M.; Pedersen, T. B.; Peng, D.; Plasser, F.; Pritchard, B.; Reiher, M.; Rivalta, I.; Schapiro, I.; Segarra-Martí, J.; Stenrup, M.; Truhlar, D. G.; Ungur, L.; Valentini, A.; Vancoillie, S.; Veryazov, V.; Vysotskiy, V. P.; Weingart, O.; Zapata, F.; Lindh, R. Molcas 8: New Capabilities for Multiconfigurational Quantum Chemical Calculations Across the Periodic Table. J. Comput. Chem. 2016, 37, 506–541. https://doi.org/10.1002/jcc.24221.Suche in Google Scholar PubMed
41. Mossotti, O. F. Memorie di matematica e fisica in Modena, Vol. 24 II, 1850; p. 49.Suche in Google Scholar
42. Clausius, R. J. Die mechanische Wärmetheorie: Die mechanische Behandlung der Electricität; Druck und Verlag von Friedrich Vieweg und Sohn: Braunschweig, Vol. 2, 1879.10.1007/978-3-663-20232-5Suche in Google Scholar
43. Debye, P. Einige Resultate Einer Kinetischen Theorie der Isolatoren. Physik Z. 1912, 13, 97.Suche in Google Scholar
44. Born, M. Volumen und Hydratationswärme der Ionen. Z. Phys. 1920, 1, 45–48; https://doi.org/10.1007/bf01881023.Suche in Google Scholar
45. Kirkwood, J. G. Theory of Solutions of Molecules Containing Widely Separated Charges with Special Application to Zwitterions. J. Chem. Phys. 1934, 2, 351–361; https://doi.org/10.1063/1.1749489.Suche in Google Scholar
46. Onsager, L. Electric Moments of Molecules in Liquids. J. Am. Chem. Soc. 1936, 58, 1486–1493; https://doi.org/10.1021/ja01299a050.Suche in Google Scholar
47. Böttcher, C. J. F. Theory of Electric Polarization, 2nd ed.; Elsevier: Amsterdam, 1973.10.1016/B978-0-444-41019-1.50009-2Suche in Google Scholar
48. Blondel-Mégrelis, M. Between Disciplines: Jean Barriol and the Theoretical Chemistry Laboratory in Nancy. In Chemical Sciences in the 20th Century; Reinhardt, C., Ed.; Wiley VCH: Weinheim, 2001; pp. 105–118.10.1002/9783527612734.ch05Suche in Google Scholar
49. Barriol, J. Les Moments Dipolaires; Gauthier-Villars: Paris, 1957.Suche in Google Scholar
50. Barriol, J.; Weisbecker, A. Contribution à la Théorie de la Constante Dielectrique des Solutions. CR Acad. Sci. Paris 1964, 259, 2831–2833.Suche in Google Scholar
51. Thiébaut, J.; Rivail, J.; Barriol, J. Dielectric Studies of Non‐electrolytic Solutions. J. Chem. Soc., Faraday Trans. II 1972, 68, 1253–1264.10.1039/F29726801253Suche in Google Scholar
52. Rinaldi, D. GEOMO, Program N° 290, Quantum Chemistry Program Exchange (QCPE); Indiana University: Bloomington, IN, 1972.Suche in Google Scholar
53. Rinaldi, D. Versatile Techniques for Semi-empirical SCF-LCAO Calculations Including Minimization of Energy. Comput. Chem. 1977, 1, 109–114; https://doi.org/10.1016/0097-8485(77)80009-0.Suche in Google Scholar
54. Pople, J. A.; Segal, G. A. Approximate Self‐Consistent Molecular Orbital Theory. III. CNDO Results for AB2 and AB3 Systems. J. Chem. Phys. 1966, 44, 3289–3296; https://doi.org/10.1063/1.1727227.Suche in Google Scholar
55. Pople, J. A.; Beveridge, D. L.; Dobosh, P. A. Approximate Self‐Consistent Molecular‐Orbital Theory. V. Intermediate Neglect of Differential Overlap. J. Chem. Phys. 1967, 47, 2026–2033; https://doi.org/10.1063/1.1712233.Suche in Google Scholar
56. Bingham, R. C.; Dewar, M. J. S.; Lo, D. H. Ground States of Molecules. XXV. MINDO/3. Improved Version of the MINDO Semiempirical SCF-MO Method. J. Am. Chem. Soc. 1975, 97, 1285–1293; https://doi.org/10.1021/ja00839a001.Suche in Google Scholar
57. Rinaldi, D.; Rivail, J. L. Recherche Rapide de la Géométrie d’une Molécule à l’aide des Méthodes LCAO Semi-empiriques ne Faisant Intervenir que des Intégrales Mono et Bicentriques. C.R. Acad. Sci. Paris 1972, 274, 1664–1667.Suche in Google Scholar
58. Ruiz-López, M. F.; Rivail, J.-L. Quantum Chemistry in Solution: Fiftieth Anniversary. ChemPhysChem 2023, 24, e202300176; https://doi.org/10.1002/cphc.202300176.Suche in Google Scholar PubMed
59. Granger, P.; University of Nancy. unpublished results, 1972.Suche in Google Scholar
60. Botskor, I.; Rudolph, H. D.; Roussy, G. The Microwave Spectrum of One N-gauche Rotamer of Allylamine. J. Mol. Spectrosc. 1974, 53, 15–36; https://doi.org/10.1016/0022-2852(74)90257-4.Suche in Google Scholar
61. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 3rd ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2003.Suche in Google Scholar
62. Rinaldi, D.; Rivail, J. L. Polarisabilités Moléculaires et Effet Diélectrique de Milieu à l’état Liquide. Étude Théorique de la Molécule d’eau et de ses Dimères. Theor. Chim. Acta 1973, 32, 57–70; https://doi.org/10.1007/bf01209416.Suche in Google Scholar
63. Rivail, J. L.; Rinaldi, D. A Quantum Chemical Approach to Dielectric Solvent Effects in Molecular Liquids. Chem. Phys. 1976, 18, 233–242; https://doi.org/10.1016/0301-0104(76)87050-4.Suche in Google Scholar
64. Yomosa, S. Nonlinear Schrödinger Equation on the Molecular Complex in Solution–Towards a Biophysics. J. Phys. Soc. Jpn. 1973, 35, 1738–1746; https://doi.org/10.1143/jpsj.35.1738.Suche in Google Scholar
65. Johnston, M. D.Jr.; Barfield, M. Theoretical Studies of Solvent Effects on Nuclear Spin–Spin Coupling Constants. I. The Reaction Field Model. J. Chem. Phys. 1971, 54, 3083–3096; https://doi.org/10.1063/1.1675296.Suche in Google Scholar
66. Huron, M. J.; Claverie, P. Calculation of the Interaction Energy of One Molecule with its Whole Surrounding. I. Method and Application to Pure Nonpolar Compounds. J. Phys. Chem. 1972, 76, 2123–2133; https://doi.org/10.1021/j100659a011.Suche in Google Scholar
67. Langlet, J.; Claverie, P.; Caillet, J.; Pullman, A. Improvements of the Continuum Model. 1. Application to the Calculation of the Vaporization Thermodynamic Quantities of Nonassociated Liquids. J. Phys. Chem. 1988, 92, 1617–1631; https://doi.org/10.1021/j100317a048.Suche in Google Scholar
68. Tapia, O.; Goscinski, O. Self-consistent Reaction Field Theory of Solvent Effects. Mol. Phys. 1975, 29, 1653–1661; https://doi.org/10.1080/00268977500101461.Suche in Google Scholar
69. Constanciel, R.; Tapia, O. On the Theory of Solvent Effects: The Virtual Charge Model to Represent the Solvent Polarization. Theor. Chim. Acta 1978, 48, 75–86; https://doi.org/10.1007/bf00550242.Suche in Google Scholar
70. Newton, M. D. Ab Initio Hartree‐Fock Calculations with Inclusion of a Polarized Dielectric; Formalism and Application to the Ground State Hydrated Electron. J. Chem. Phys. 1973, 58, 5833–5835; https://doi.org/10.1063/1.1679211.Suche in Google Scholar
71. McCreery, J. H.; Christoffersen, R. E.; Hall, G. G. The Development of Quantum Mechanical Solvent Effect Models. Macroscopic Electrostatic Contributions. J. Am. Chem. Soc. 1976, 98, 7191–7197; https://doi.org/10.1021/ja00439a015.Suche in Google Scholar
72. Felder, C. E.; Applequist, J. Energies of Solute Molecules from an Atom Charge–dipole Interaction Model with a Surrounding Dielectric: Application to Gibbs Energies of Proton Transfer Between Carboxylic Acids in Water. J. Chem. Phys. 1981, 75, 2390–2398; https://doi.org/10.1063/1.442302.Suche in Google Scholar
73. Brown, R. D.; Coulson, C. A. In Calcul des Fonctions d’Onde Moléculaires; Colloques Internationaux du Centre Nationale de la Recherche Scientifique: Paris, 1958; pp. 311–327.Suche in Google Scholar
74. Coulson, C. A. Theoretical Considerations of the Effects of the Medium Upon Molecular Energy Levels. Proc. R. Soc. Lond. A: Math. Phys. Sci. 1960, 255, 69–72.10.1098/rspa.1960.0051Suche in Google Scholar
75. Jortner, J.; Coulson, C. Environmental Effects on Atomic Energy Levels. Mol. Phys. 1961, 4, 451–464; https://doi.org/10.1080/00268976100100611.Suche in Google Scholar
76. Bertran, J.; Oliva, A.; Rinaldi, D.; Rivail, J. L. Investigations on the Role of Electrostatic Interactions on Frontier Orbitals and Chemical-reactivity in the Liquid-state. Nouv. J. Chim. 1980, 4, 209–217.Suche in Google Scholar
77. Binkley, J. S.; Whiteside, R. A.; Hariharan, P. C.; Seeger, R.; Pople, J. A.; Hehre, W. J.; Newton, M. D. Gaussian 76; Carnegie-Mellon University: Pittsburgh, PA, 1976.Suche in Google Scholar
78. Ruiz-Lopez, M. F.; Rinaldi, D.; Rivail, J. L. Electrostatic Solvent Effect and Molecular Conformation in Liquids. An Ab Initio Approach Using a Deformable Ellipsoidal Cavity. In 4th International Congress of Quantum Chemistry: Uppsala, Sweden, 1982.Suche in Google Scholar
79. Rinaldi, D.; Ruiz-Lopez, M. F.; Rivail, J. L. Ab Initio SCF Calculations on Electrostatically Solvated Molecules Using a Deformable 3-axes Ellipsoidal Cavity. J. Chem. Phys. 1983, 78, 834–838; https://doi.org/10.1063/1.444783.Suche in Google Scholar
80. Ruiz-López, M. F. Contribution à l’étude théorique des effets électrostatiques de solvant en spectroscopies moléculaires. Thesis. Université de Nancy I: Vandoeuvre-lès-Nancy, 1985.Suche in Google Scholar
81. Ruiz-Lopez, M.; Rinaldi, D.; Rivail, J. L.; Oliva, A. Electrostatic Solvent Effect on Spin-spin Nuclear Coupling-constants. J. Chem. Res.-S 1982, 329.Suche in Google Scholar
82. Ruiz-López, M. F.; Rinaldi, D.; Rivail, J. L. Computation of Nuclear Quadrupole Coupling Constants by Semiempirical Quantum Chemical Techniques. J. Mol. Struct.: THEOCHEM 1983, 91, 373–385; https://doi.org/10.1016/0166-1280(83)80081-5.Suche in Google Scholar
83. Ruiz-López, M. F.; Rinaldi, D. Electrostatic Solvent Effect on the Circular Dichroism of the Carbonyl np* Transition. J. Mol. Struct.: THEOCHEM 1983, 93, 277–281.10.1016/0166-1280(83)80113-4Suche in Google Scholar
84. Ruiz-Lopez, M. F.; Rinaldi, D. Modifications of Circular-dichroism by Electrostatic Influence of the Solvent – A Theoretical Approach in the Random Phase Approximation. Chem. Phys. 1984, 86, 367–373; https://doi.org/10.1016/0301-0104(84)80025-7.Suche in Google Scholar
85. Flament, J. P.; Gervais, H. P. Perturbative Solution of the RPA Equation – An Application to the Calculation of Rotational Strengths. Theor. Chim. Acta 1982, 61, 149–162; https://doi.org/10.1007/bf00549140.Suche in Google Scholar
86. Ruiz-Lopez, M. F.; Rinaldi, D.; Rivail, J. L. Circular-dichroism of (1S,4R)-norcamphor and its Methyl-derivatives – Theoretical Calculation of Solvent Effects and Vibronic Coupling Perturbations. Chem. Phys. 1986, 110, 403–414; https://doi.org/10.1016/0301-0104(86)87095-1.Suche in Google Scholar
87. Bertrán, J.; Rinaldi, D.; Rivail, J. L. Effet de Solvant Dans la Substitutionnucléophile du Fluorure de Méthyle par les Ions Hydroxyle et Cyanure. C. R. Acad. Sci. Paris 1979, 289, 195–198.Suche in Google Scholar
88. Bertrán, J.; Oliva, A.; Rinaldi, D.; Rivail, J. L. Investigations on the Role of Electrostatic Interactions on Frontier Orbitals and Chemical-reactivity in the Liquid-state. Nouv. J. Chim. 1980, 4, 209–217.Suche in Google Scholar
89. Pappalardo, R. R.; Sánchez-Marcos, E.; Ruiz-López, M. F.; Rinaldi, D.; Rivail, J.-L. Theoretical Study of Simple Push-pull Ethylenes in Solution. J. Phys. Org. Chem. 1991, 4, 141–148.10.1002/poc.610040304Suche in Google Scholar
90. Rinaldi, D.; Rivail, J.-L.; Rguini, N. Fast Geometry Optimization in Self-cosistent Reaction Field Computations on Solvated Molecules. J. Comput. Chem. 1992, 13, 675–680; https://doi.org/10.1002/jcc.540130602.Suche in Google Scholar
91. Sanchez Marcos, E.; Pappalardo, R. R.; Rinaldi, D. Effects of the Solvent Reaction Field on the Geometrical Structures of Hexahydrate Metallic Cations. J. Phys. Chem. 1991, 95, 8928–8932; https://doi.org/10.1021/j100175a091.Suche in Google Scholar
92. Rinaldi, D.; Pappalardo, R. R. SCRFPAC, Program No. 622 Quantum Chemistry Program Exchange; Indiana University: Bloomington, IN, 1992.Suche in Google Scholar
93. Bertrán, J.; Ruiz-López, M. F.; Rinaldi, D.; Rivail, J. L. Water Dimer in Liquid Water. Theoret. Chim. Acta 1992, 84, 181–194; https://doi.org/10.1007/bf01113207.Suche in Google Scholar
94. Pappalardo, R. R.; Sánchez-Marcos, E.; Ruiz-López, M. F.; Rinaldi, D.; Rivail, J. L. Solvent Effects on Molecular Geometries and Isomerization Processes: A Study of Push-pull Ethylenes in Solution. J. Am. Chem. Soc. 1993, 115, 3722–3730; https://doi.org/10.1021/ja00062a043.Suche in Google Scholar
95. Ruiz-López, M. F.; Assfeld, X.; García, J. I.; Mayoral, J. A.; Salvatella, L. Solvent Effects on the Mechanism and Selectivities of Asymmetric Diels-Alder Reactions. J. Am. Chem. Soc. 1993, 115, 8780–8787; https://doi.org/10.1021/ja00072a035.Suche in Google Scholar
96. Antonczak, S.; Ruiz-López, M. F.; Rivail, J. L. Ab Initio Analysis of Water-assisted Reaction Mechanisms in Amide Hydrolysis. J. Am. Chem. Soc. 1994, 116, 3912–3921; https://doi.org/10.1021/ja00088a030.Suche in Google Scholar
97. Ruiz-López, M. F.; Bohr, F.; Martins-Costa, M. T. C.; Rinaldi, D. Studies of Solvent Effects Using Density Functional Theory. Co-operative Interactions in H3N…HBr Proton Transfer. Chem. Phys. Lett. 1994, 221, 109–116; https://doi.org/10.1016/0009-2614(94)87025-x.Suche in Google Scholar
98. Dillet, V.; Ángyán, J. G.; Rinaldi, D.; Rivail, J. L. Reaction Field Factors for a Multipole Distribution in a Cavity Surrounded by a Continuum. Chem. Phys. Lett. 1993, 202, 18–22.10.1016/0009-2614(93)85344-NSuche in Google Scholar
99. Rinaldi, D.; Bouchy, A.; Rivail, J. L.; Dillet, V. A Self-consistent Reaction Field Model of Solvation Using Distributed Multipoles. I. Energy and Energy Derivatives. J. Chem. Phys. 2004, 120, 2343–2350; https://doi.org/10.1063/1.1635355.Suche in Google Scholar
100. Costa Cabral, B. J.; Rinaldi, D.; Rivail, J. L. On the Calculation of the Dispersion Contribution to the Free-energy of Solvation by Using Cavity Models. CR Acad. Sci. Paris 1984, 298, 675–678.Suche in Google Scholar
101. Rinaldi, D.; Costa Cabral, B. J.; Rivail, J.-L. Influence of Dispersion Forces on the Electronic Structure of a Solvated Molecule. Chem. Phys. Lett. 1986, 125, 495–499; https://doi.org/10.1016/0009-2614(86)87087-7.Suche in Google Scholar
102. Tuñón, I.; Bertrán, J.; Ruiz-López, M. F.; Rinaldi, D. Computation of Hydration Free Energies Using a Parametrized Continuum Model. Study of Equilibrium Geometries and Reactive Processes in Water Solution. J. Comput. Chem. 1996, 17, 148–155.10.1002/(SICI)1096-987X(19960130)17:2<148::AID-JCC2>3.0.CO;2-WSuche in Google Scholar
103. Costa Cabral, B. J.; Rinaldi, D.; Rivail, J. L. A Monte-Carlo Study of Electrostatic Solvation Energies in Molecular Liquids. Chem. Phys. Lett. 1982, 93, 157–161; https://doi.org/10.1016/0009-2614(82)83684-1.Suche in Google Scholar
104. Rivail, J.-L.; Rinaldi, D.; Ruiz-Lopez, M. F. The Self-Consistent Reaction Field Model for Molecular Computations in Solution. In Theoretical and Computational Models for Organic Chemistry; Formosinho, S. J.; Csizmadia, I. G.; Arnaut, L. G., Eds.; Springer Netherlands: Dordrecht, 1991; pp. 79–92.10.1007/978-94-011-3584-9_5Suche in Google Scholar
105. Wong, M. W.; Frisch, M. J.; Wiberg, K. B. Solvent Effects. 1. The Mediation of Electrostatic Effects by Solvents. J. Am. Chem. Soc. 1991, 113, 4776–4782; https://doi.org/10.1021/ja00013a010.Suche in Google Scholar
106. Marcos, E. S.; Maraver, J.; Ruiz-López, M. F.; Bertrán, J. Electrostatic Interactions as a Factor in the Determination of the HOMO in the Liquid State. Can. J. Chem. 1986, 64, 2353–2358; https://doi.org/10.1139/v86-388.Suche in Google Scholar
107. Ruiz-López, M. F.; Oliva, A.; Tuñón, I.; Bertrán, J. Self-consistent Reaction Field Calculations of Nonequilibrium Solvent Effects on Proton Transfer Processes Through Low-barrier Hydrogen Bonds. J. Phys. Chem. A 1998, 102, 10728–10735; https://doi.org/10.1021/jp983288b.Suche in Google Scholar
108. Sánchez-Marcos, E.; Terryn, B.; Rivail, J. L. Protonation of Nitrogen-containing Bases in Solution: Continuum vs. Discrete-continuum Models for Aqueous Solutions. J. Phys. Chem. 1985, 89, 4695–4700; https://doi.org/10.1021/j100268a010.Suche in Google Scholar
109. Pappalardo, R. R.; Martínez, J. M.; Sánchez Marcos, E. Geometrical Structure of the Cis- and Trans-isomers of 1,2-dihaloethylenes and the Energetics of their Chemical Equilibrium in Solution. Chem. Phys. Lett. 1994, 225, 202–207.10.1016/0009-2614(94)00601-6Suche in Google Scholar
110. Assfeld, X.; Sordo, J. A.; González, J.; Ruiz-López, M. F.; Sordo, T. L. Electrostatic Solvent Effect on the Ketene-imine Cycloaddition Reaction. J. Mol. Struct.: THEOCHEM 1993, 287, 193–199.10.1016/0166-1280(93)87222-YSuche in Google Scholar
111. Assfeld, X.; Ruiz-López, M. F.; Gonzalez, J.; López, R.; Sordo, J. A.; Sordo, T. L. Theoretical Analysis of the Role of the Solvent on the Reaction Mechanisms: One-step Versus Two-step Ketene-imine Cycloaddition. J. Comput. Chem. 1994, 15, 479–487; https://doi.org/10.1002/jcc.540150502.Suche in Google Scholar
112. López, R.; Suárez, D.; Ruiz-López, M. F.; González, J.; Sordo, J. A.; Sordo, T. L. Solvent Effects on the Stereoselectivity of Ketene-imine Cycloaddition Reactions. J. Chem. Soc. Chem. Comm. 1995, 1677–1678; https://doi.org/10.1039/c39950001677.Suche in Google Scholar
113. López, R.; Ruiz-López, M. F.; Rinaldi, D.; Sordo, J. A.; Sordo, T. L. Synthesis of b-Lactams from Fluoroketenes and Imines: Ab Initio Potential Energy Surfaces in Gas Phase and in Solution. J. Phys. Chem. 1996, 100, 10600–10608; https://doi.org/10.1021/jp960691e.Suche in Google Scholar
114. Del Río, E.; López, R.; Menéndez, M. I.; Sordo, T. L.; Ruiz-López, M. F. Theoretical Study of Ester Enolate-imine Condensation Route to b-Lactams. J. Comput. Chem. 1998, 19, 1826–1833; https://doi.org/10.1002/(sici)1096-987x(199812)19:16<1826::aid-jcc4>3.0.co;2-n.10.1002/(SICI)1096-987X(199812)19:16<1826::AID-JCC4>3.0.CO;2-NSuche in Google Scholar
115. López, R.; Suarez, D.; Sordo, T. L.; Ruiz-López, M. F. Theoretical Study of the [2+2] Cycloaddition of Thioketenes with Imines to form b-Thiolactams. Chem. Eur. J. 1998, 4, 328–334; https://doi.org/10.1002/(sici)1521-3765(19980210)4:2<328::aid-chem328>3.0.co;2-q.10.1002/(SICI)1521-3765(19980210)4:2<328::AID-CHEM328>3.0.CO;2-QSuche in Google Scholar
116. Cativiela, C.; García, J. I.; Mayoral, J. A.; Royo, A. J.; Salvatella, L.; Assfeld, X.; Ruiz-López, M. F. Experimental and Theoretical Study of the Influence of the Solvent on Asymmetric Diels-Alder Reactions. J. Phys. Org. Chem. 1992, 5, 230–238.10.1002/poc.610050503Suche in Google Scholar
117. Assfeld, X.; Ruiz-López, M. F.; García, J. I.; Mayoral, J. A.; Salvatella, L. Importance of Electronic and Nuclear Polarization Energy on Diastereofacial Selectivity of Diels-Alder Reactions in Aqueous Solution. J. Chem. Soc., Chem. Commun. 1995, 0, 1371–1372; https://doi.org/10.1039/c39950001371.Suche in Google Scholar
118. Cativiela, C.; Dillet, V.; Garcia, J.; Mayoral, J.; Ruiz-López, M. F.; Salvatella, L. Solvent Effects on Diels-Alder Reactions. A Semi-empirical Study. J. Mol. Struct.: THEOCHEM 1995, 331, 37–50; https://doi.org/10.1016/0166-1280(94)03795-m.Suche in Google Scholar
119. Assfeld, X.; García, J.; García, J. I.; Mayoral, J. A.; Proietti, M. G.; Ruiz-López, M. F.; Sánchez, M. C. Investigation of Dienophile-TiCl4 Complexation by Means of X-ray Absorption and 13C-NMR Spectroscopies. J. Org. Chem. 1996, 61, 1636–1642; https://doi.org/10.1021/jo950945c.Suche in Google Scholar
120. García, J.; Mayoral, J.; Salvatella, L.; Assfeld, X.; Ruiz-López, M. F. On the Conformational Preferences of a,b-Unsaturated Carbonyl Compounds. An Ab Initio Study. J. Mol. Struct.: THEOCHEM 1996, 362, 187–197.10.1016/0166-1280(95)04391-8Suche in Google Scholar
121. Cancès, E.; Mennucci, B. The Escaped Charge Problem in Solvation Continuum Models. J. Chem. Phys. 2001, 115, 6130–6135; https://doi.org/10.1063/1.1401157.Suche in Google Scholar
122. Ruiz-López, M. F. The Multipole Moment Expansion Solvent Continuum Model: A Brief Review. In Solvation Effects on Molecules and Biomolecules: Computational Methods and Applications; Canuto, S., Ed.; Springer: Dordrecht, Vol. 6, 2008; pp. 23–38.10.1007/978-1-4020-8270-2_2Suche in Google Scholar
123. Miertus, S.; Scrocco, E.; Tomasi, J. Electrostatic Interaction of a Solute with a Continuum. A Direct Utilization of Ab Initio Molecular Potentials for the Prevision of Solvent Effects. Chem. Phys. 1981, 55, 117–129.10.1016/0301-0104(81)85090-2Suche in Google Scholar
124. Bonaccorsi, R.; Petrongolo, C.; Scrocco, E.; Tomasi, J. Theoretical Investigations on the Solvation Process. Theor. Chim. Acta 1971, 20, 331–342; https://doi.org/10.1007/bf00527188.Suche in Google Scholar
125. Floris, F.; Tomasi, J. Evaluation of the Dispersion Contribution to the Solvation Energy. A Simple Computational Model in the Continuum Approximation. J. Comput. Chem. 1989, 10, 616–627; https://doi.org/10.1002/jcc.540100504.Suche in Google Scholar
126. Floris, F. M.; Tomasi, J.; Pascual-Ahuir, J. L. Dispersion and Repulsion Contributions to the Solvation Energy : Refinements to a Simple Computational Model in the Continuum Approximation. J. Comp. Chem. 1991, 12, 784–791; https://doi.org/10.1002/jcc.540120703.Suche in Google Scholar
127. Bianco, R.; Miertus, S.; Persico, M.; Tomasi, J. Molecular Reactivity in Solution. Modelling of the Effects of the Solvent and of its Stochastic Fluctuation on an SN2 Reaction. Chem. Phys. 1992, 168, 281–292.10.1016/0301-0104(92)87162-3Suche in Google Scholar
128. Cossi, M.; Persico, M.; Tomasi, J. A Simple Solvent Model for Electron Transfer Reactions. J. Mol. Liquids 1994, 60, 87–105; https://doi.org/10.1016/0167-7322(94)00741-1.Suche in Google Scholar
129. Frisch, M. J.; T, G. W.; Schegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzeski, V. G.; Ortiz, J. V.; Foresman, J. B.; Ciolowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andrés, J. L.; Reploge, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94; Gaussian, Inc.: Pittsburgh, PA, 1995.Suche in Google Scholar
130. Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Ab Initio Study of Solvated Molecules: A New Implementation of the Polarizable Continuum Model. Chem. Phys. Lett. 1996, 255, 327–335; https://doi.org/10.1016/0009-2614(96)00349-1.Suche in Google Scholar
131. Pomelli, C. S.; Tomasi, J. Ab Initio Study of the SN2 Reaction CH3Cl+ Cl-→ Cl-+ CH3Cl in Supercritical Water with the Polarizable Continuum Model. J. Phys. Chem. A 1997, 101, 3561–3568; https://doi.org/10.1021/jp962358g.Suche in Google Scholar
132. Cancès, E.; Mennucci, B.; Tomasi, J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics. J. Chem. Phys. 1997, 107, 3032–3041; https://doi.org/10.1063/1.474659.Suche in Google Scholar
133. Tomasi, J.; Mennucci, B.; Cancès, E. The IEF Version of the PCM Solvation Method: An Overview of a New Method Addressed to Study Molecular Solutes at the QM Ab Initio Level. J. Mol. Struct.: THEOCHEM 1999, 464, 211–226.10.1016/S0166-1280(98)00553-3Suche in Google Scholar
134. Cancès, E.; Mennucci, B. New Applications of Integral Equations Methods for Solvation Continuum Models: Ionic Solutions and Liquid Crystals. J. Math. Chem. 1998, 23, 309–326.10.1023/A:1019133611148Suche in Google Scholar
135. Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102, 1995–2001; https://doi.org/10.1021/jp9716997.Suche in Google Scholar
136. Klamt, A.; Schüürmann, G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and its Gradient. J. Chem. Soc. Perkin Trans. 1993, 2, 799–805.10.1039/P29930000799Suche in Google Scholar
137. Cancès, E.; Mennucci, B.; Tomasi, J. Analytical Derivatives for Geometry Optimization in Solvation Continuum Models. II. Numerical Applications. J. Chem. Phys. 1998, 109, 260–266; https://doi.org/10.1063/1.476559.Suche in Google Scholar
138. Mennucci, B.; Cammi, R.; Tomasi, J. Analytical Free Energy Second Derivatives with Respect to Nuclear Coordinates: Complete Formulation for Electrostatic Continuum Solvation Models. J. Chem. Phys. 1999, 110, 6858–6870; https://doi.org/10.1063/1.478591.Suche in Google Scholar
139. Olivares del Valle, F. J.; Tomasi, J. A Simple Model for Molecular Vibrations in Solution: Application to Hydrogen Fluoride and its Dimer in Polar and Non-polar Solvents. Chem. Phys. 1987, 114, 231–239.10.1016/0301-0104(87)80112-XSuche in Google Scholar
140. Aguilar, M. A.; Bianco, R.; Miertus, S.; Persico, M.; Tomasi, J. Chemical Reactions in Solution : Modelling of the Delay of Solvent Synchronism (dielectric Friction) Along the Reaction Path of an SN2 Reaction. Chem. Phys. 1993, 174, 397–407; https://doi.org/10.1016/0301-0104(93)80006-u.Suche in Google Scholar
141. Aguilar, M. A.; Olivares del Valle, F. J.; Tomasi, J. Non-equilibrium Solvation: An Ab Initio Quantum-mechanical Method the Continuum Cavity Model Approximation. J. Chem. Phys. 1993, 98, 7375–7384; https://doi.org/10.1063/1.464728.Suche in Google Scholar
142. Pascual‐Ahuir, J.; Silla, E.; Tomasi, J.; Bonaccorsi, R. Electrostatic Interaction of a Solute with a Continuum. Improved Description of the Cavity and of the Surface Cavity Bound Charge Distribution. J. Comput. Chem. 1987, 8, 778–787; https://doi.org/10.1002/jcc.540080605.Suche in Google Scholar
143. Pascual-Ahuir, J. L.; Silla, E. GEPOL – An Improved Description of Molecular-surfaces 1. Building the Spherical Surface Set. J. Comput. Chem. 1990, 11, 1047–1060; https://doi.org/10.1002/jcc.540110907.Suche in Google Scholar
144. Silla, E.; Tuñón, I.; Pascual-Ahuir, J. L. GEPOL – An Improved Description of Molecular-surfaces 2. Computing the Molecular Area and Volume. J. Comput. Chem. 1991, 12, 1077–1088.10.1002/jcc.540120905Suche in Google Scholar
145. Pascual-Ahuir, J. L.; Silla, E.; Tuñón, I. GEPOL – an Improved Description of Molecular-surfaces 3. A New Algorithm for the Computation of a Solvent-excluding Surface. J. Comput. Chem. 1994, 15, 1127–1138; https://doi.org/10.1002/jcc.540151009.Suche in Google Scholar
146. Orozco, M.; Jorgensen, W. L.; Luque, F. J. Comparison of 6-31G*-based MST/SCRF and FEP Evaluations of the Free Energies of Hydration for Small Neutral Molecules. J. Comp. Chem. 1993, 14, 1498–1503; https://doi.org/10.1002/jcc.540141212.Suche in Google Scholar
147. Bachs, M.; Luque, F. J.; Orozco, M. Optimization of Solute Cavities and Van Der Waals Parameters in Ab Initio MST-SCRF Calculations of Neutral Molecules. J. Comp. Chem. 1994, 15, 446–454; https://doi.org/10.1002/jcc.540150408.Suche in Google Scholar
148. Orozco, M.; Bachs, M.; Luque, F. J. Development of Optimized MST/SCRF Methods for Semiempirical Calculations – The MNDO and PM3 Hamiltonians. J. Comput. Chem. 1995, 16, 563–575; https://doi.org/10.1002/jcc.540160505.Suche in Google Scholar
149. Luque, F. J.; Bachs, M.; Alemán, C.; Orozco, M. Extension of MST/SCRF Method to Organic Solvents: Ab Initio and Semiempirical Parametrization for Neutral Solutes in CCl4. J. Comp. Chem. 1996, 17, 806–820; https://doi.org/10.1002/(sici)1096-987x(199605)17:7<806::aid-jcc5>3.0.co;2-w.10.1002/(SICI)1096-987X(199605)17:7<806::AID-JCC5>3.0.CO;2-WSuche in Google Scholar
150. Orozco, M.; Luque, F. J. Theretical Methods for the Description of the Solvent Effect in Biomolecular Systems. Chem. Rev. 2000, 100, 4187–4225.10.1021/cr990052aSuche in Google Scholar
151. Tomasi, J. Selected Features of the Polarizable Continuum Model for the Representation of Solvation. WIRes Comput. Mol. Sci. 2011, 1, 855–867; https://doi.org/10.1002/wcms.54.Suche in Google Scholar
152. Mennucci, B. Polarizable Continuum Model. WIRes Comput. Mol. Sci. 2012, 2, 386–404; https://doi.org/10.1002/wcms.1086.Suche in Google Scholar
153. Tomasi, J. PCM: A Short History of the Method (1981–2001). https://www.dcci.unipi.it/images/varie/PCM_A_short_history.pdf (accessed 2025-03-04).Suche in Google Scholar
154. Karelson, M. M.; Katritzky, A. R.; Zerner, M. C. Reaction Field Effects on the Electron Distribution and Chemical Reactivity of Molecules. Int. J. Quantum Chem. 1986, 30, 521–527; https://doi.org/10.1002/qua.560300745.Suche in Google Scholar
155. Mikkelsen, K. V.; Dalgaard, E.; Swanstroem, P. Electron-transfer Reactions in Solution: An Ab Initio Approach. J. Phys. Chem. 1987, 91, 3081–3092; https://doi.org/10.1021/j100295a088.Suche in Google Scholar
156. Karlström, G. New Approach to the Modeling of Dielectric Media Effects in Ab Initio Quantum Chemical Calculations. J. Phys. Chem. 1988, 92, 1315–1318; https://doi.org/10.1021/j100316a060.Suche in Google Scholar
157. van Duijnen, P. T.; Juffer, A. H.; Dijkman, H. P. Quantum Chemistry in the Condensed Phase: An Extended Direct Reaction Field Approach. J. Mol. Struct.: THEOCHEM 1992, 260, 195–205; https://doi.org/10.1016/0166-1280(92)87043-y.Suche in Google Scholar
158. Chipman, D. M. Reaction Field Treatment of Charge Penetration. J. Chem. Phys. 2000, 112, 5558–5565; https://doi.org/10.1063/1.481133.Suche in Google Scholar
159. Cramer, C. J.; Truhlar, D. G. General Parameterized SCF Model for Free Energies of Solvation in Aqueous Solution. J. Am. Chem. Soc. 1991, 113, 8305–8311; https://doi.org/10.1021/ja00022a017.Suche in Google Scholar
160. Klamt, A. The COSMO and COSMO-RS Solvation Models. WIRes Comput. Mol. Sci. 2011, 1, 699–709; https://doi.org/10.1002/wcms.56.Suche in Google Scholar
161. Klamt, A. COSMO-RS for Aqueous Solvation and Interfaces. Fluid Phase Equilib. 2016, 407, 152–158; https://doi.org/10.1016/j.fluid.2015.05.027.Suche in Google Scholar
162. Cramer, C. J.; Truhlar, D. G. A Universal Approach to Solvation Modeling. Acc. Chem. Res. 2008, 41, 760–768; https://doi.org/10.1021/ar800019z.Suche in Google Scholar PubMed
163. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396; https://doi.org/10.1021/jp810292n.Suche in Google Scholar PubMed
164. Martínez, J. M.; Pappalardo, R. R.; Sánchez Marcos, E.; Mennucci, B.; Tomasi, J. Analysis of the Opposite Solvent Effects Caused by Different Solute Cavities on the Metal−Water Distance of Monoatomic Cation Hydrates. J. Phys. Chem. B 2002, 106, 1118–1123; https://doi.org/10.1021/jp012404z.Suche in Google Scholar
165. Curutchet, C.; Cramer, C. J.; Truhlar, D. G.; Ruiz-López, M. F.; Rinaldi, D.; Orozco, M.; Luque, F. J. Electrostatic Component of Solvation: Comparison of SCRF Continuum Models. J. Comput. Chem. 2003, 24, 284–297; https://doi.org/10.1002/jcc.10143.Suche in Google Scholar PubMed
166. Terryn, B.; Barriol, J. Calcul des Grandeurs et Coefficients Liés à la Forme d’une Molécule Définie à Partir des Rayons de van der Waals des Atomes. Cas Particulier du Volume Moléculaire. J. Chim. Phys. 1981, 78, 207–212; https://doi.org/10.1051/jcp/1981780207.Suche in Google Scholar
167. Curutchet, C.; Orozco, M.; Luque, F. J. Solvation in Octanol: Parametrization of the Continuum MST Model. J. Comput. Chem. 2001, 22, 1180–1193; https://doi.org/10.1002/jcc.1076.abs.Suche in Google Scholar
168. Barone, V.; Cossi, M.; Tomasi, J. A New Definition of Cavities for the Computation of Solvation Free Energies by the Polarizable Continuum Model. J. Chem. Phys. 1997, 107, 3210–3221; https://doi.org/10.1063/1.474671.Suche in Google Scholar
169. Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3093; https://doi.org/10.1021/cr9904009.Suche in Google Scholar PubMed
170. Tomasi, J. Thirty Years of Continuum Solvation Chemistry: A Review, and Prospects for the Near Future. Theoret. Chem. Acc. 2004, 112, 184–203; https://doi.org/10.1007/s00214-004-0582-3.Suche in Google Scholar
171. Tomasi, J.; Persico, M. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chem. Rev. 1994, 94, 2027–2094; https://doi.org/10.1021/cr00031a013.Suche in Google Scholar
172. Tomasi, J.; Cancès, E.; Pomelli, C. S.; Caricato, M.; Scalmani, G.; Frisch, M. J.; Cammi, R.; Basilevsky, M. V.; Chuev, G. N.; Mennucci, B. Modern Theories of Continuum Models. In Continuum Solvation Models in Chemical Physics; John Wiley & Sons Ltd: Chichester, 2007; pp 1–123.10.1002/9780470515235.ch1Suche in Google Scholar
173. Cramer, C. J.; Truhlar, D. G. Continuum Solvation Models: Classical and Quantum Implementations. In Reviews in Computational Chemistry; Lipkowitz, K. B.; Boyd, D. B., Eds.; VCH Publishers Inc.: New York, Vol. 6, 1995; pp. 1–72.10.1002/9780470125830.ch1Suche in Google Scholar
174. Cramer, C. J.; Truhlar, D. G. Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics. Chem. Rev. 1999, 99, 2161–2200; https://doi.org/10.1021/cr960149m.Suche in Google Scholar PubMed
175. Cramer, C. J.; Truhlar, D. G. Continuum Solvation Models. In Solvent Effects and Chemical Reactivity; Tapia, O.; Bertrán, J., Eds.; Springer Netherlands: Dordrecht, 2002; pp. 1–80.10.1007/0-306-46931-6_1Suche in Google Scholar
176. Mennucci, B. Continuum Solvation Models: What Else Can We Learn from Them? J. Phys. Chem. Lett. 2010, 1, 1666–1674; https://doi.org/10.1021/jz100506s.Suche in Google Scholar
177. Rivail, J. L.; Terryn, B.; Rinaldi, D.; Ruiz-López, M. F. Liquid State Quantum Chemistry : A Cavity Model. J. Mol. Struct.: THEOCHEM 1985, 120, 387–400; https://doi.org/10.1016/0166-1280(85)85133-2.Suche in Google Scholar
178. Sánchez Marcos, E.; Pappalardo, R. R.; Rinaldi, D. Effects of the Solvent Reaction Field on the Geometrical Structures of Hexahydrate Metallic Cations. J. Phys. Chem. 1991, 95, 8928–8932; https://doi.org/10.1021/j100175a091.Suche in Google Scholar
179. Martínez, J. M.; Pappalardo, R. R.; Sánchez Marcos, E. First-Principles Ion−Water Interaction Potentials for Highly Charged Monatomic Cations. Computer Simulations of Al3+, Mg2+, and Be2+ in Water. J. Am. Chem. Soc. 1999, 121, 3175–3184; https://doi.org/10.1021/ja9830748.Suche in Google Scholar
180. Alemán, C.; Maseras, F.; Lledós, A.; Duran, M.; Bertrán, J. Analysis of Solvent Effect on SN2 Reactions by Different Theoretical Models. J. Phys. Org. Chem. 1989, 2, 611–622; https://doi.org/10.1002/poc.610020804.Suche in Google Scholar
181. Tuñón, I.; Silla, E.; Bertrán, J. Proton Solvation in Liquid Water: An Ab Initio Study Using the Continuum Model. J. Phys. Chem. 1993, 97, 5547–5552; https://doi.org/10.1021/j100123a016.Suche in Google Scholar
182. Tuñón, I.; Rinaldi, D.; Ruiz-López, M. F.; Rivail, J. L. Hydroxide Ion in Liquid Water: Structure, Energetics, and Proton Transfer Using a Mixed Discrete-continuum Ab Initio Model. J. Phys. Chem. 1995, 99, 3798–3805; https://doi.org/10.1021/j100011a056.Suche in Google Scholar
183. Floris, F.; Persico, M.; Tani, A.; Tomasi, J. Free Energies and Structures of Hydrated Cations, Based on Effective Pair Potentials. Chem. Phys. 1995, 195, 207–220; https://doi.org/10.1016/0301-0104(95)00094-5.Suche in Google Scholar
184. Grimm, A. R.; Bacskay, G. B.; Haymet, A. D. J. Quantum Chemical Studies of the Solvation of the Hydroxide Ion. Mol. Phys. 1995, 86, 369–384; https://doi.org/10.1080/00268979500102081.Suche in Google Scholar
185. Pliego, J. R.; Riveros, J. M. The Cluster-continuum Model for the Calculation of the Solvation Free Energy of Ionic Species. J. Phys. Chem. A 2001, 105, 7241–7247; https://doi.org/10.1021/jp004192w.Suche in Google Scholar
186. Pliego, J. R.; Riveros, J. M. Theoretical Calculation of pKa Using the Cluster−Continuum Model. J. Phys. Chem. A 2002, 106, 7434–7439; https://doi.org/10.1021/jp025928n.Suche in Google Scholar
187. Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. Adding Explicit Solvent Molecules to Continuum Solvent Calculations for the Calculation of Aqueous Acid Dissociation Constants. J. Phys. Chem. A 2006, 110, 2493–2499; https://doi.org/10.1021/jp055336f.Suche in Google Scholar PubMed PubMed Central
188. Warshel, A.; Karplus, M. Calculation of Ground and Excited State Potential Surfaces of Conjugated Molecules. I. Formulation and Parametrization. J. Am. Chem. Soc. 1972, 94, 5612–5625; https://doi.org/10.1021/ja00771a014.Suche in Google Scholar
189. Warshel, A.; Levitt, M. Theoretical Studies of Enzymic Reactions : Dielectric, Electrostatic and Steric Stabilization of the Carbonium Ion in the Reaction of Lysozyme. J. Mol. Biol. 1976, 103, 227–249; https://doi.org/10.1016/0022-2836(76)90311-9.Suche in Google Scholar PubMed
190. Warshel, A. Calculations of Chemical Processes in Solutions. J. Phys. Chem. 1979, 83, 1640–1652; https://doi.org/10.1021/j100475a014.Suche in Google Scholar
191. Warshel, A.; King, G. Polarization Constraints in Molecular Dynamics Simulation of Aqueous Solutions: The Surface Constraint All Atom Solvent (SCAAS) Model. Chem. Phys. Lett. 1985, 121, 124–129; https://doi.org/10.1016/0009-2614(85)87168-2.Suche in Google Scholar
192. Warshel, A.; Weiss, R. M. An Empirical Valence Bond Approach for Comparing Reactions in Solutions and in Enzymes. J. Am. Chem. Soc. 1980, 102, 6218–6226; https://doi.org/10.1021/ja00540a008.Suche in Google Scholar
193. Kamerlin, S. C. L.; Warshel, A. The Empirical Valence Bond Model: Theory and Applications. WIRes Comput. Mol. Sci. 2011, 1, 30–45; https://doi.org/10.1002/wcms.10.Suche in Google Scholar
194. Warshel, A. Dynamics of Reactions in Polar Solvents. Semiclassical Trajectory Studies of Electron-transfer and Proton-transfer Reactions. J. Phys. Chem. 1982, 86, 2218–2224; https://doi.org/10.1021/j100209a016.Suche in Google Scholar
195. Åqvist, J.; Warshel, A. Simulation of Enzyme Reactions Using Valence Bond Force Fields and Other Hybrid Quantum/classical Approaches. Chem. Rev. 1993, 93, 2523–2544; https://doi.org/10.1021/cr00023a010.Suche in Google Scholar
196. Warshel, A. Nobel Lecture: Multiscale Modeling of Biological Functions: From Enzymes to Molecular Machines. https://www.nobelprize.org/uploads/2018/06/warshel-lecture.pdf (accessed 2025-03-17).Suche in Google Scholar
197. Jorgensen, W. L. Energy Profiles for Organic Reactions in Solution. Adv. Chem. Phys. 2009, 70, 469–488; https://doi.org/10.1002/9780470122693.ch10.Suche in Google Scholar
198. Jorgensen, W. L. Free Energy Calculations: A Breakthrough for Modeling Organic Chemistry in Solution. Acc. Chem. Res. 1989, 22, 184–189; https://doi.org/10.1021/ar00161a004.Suche in Google Scholar
199. Jorgensen, W. L.; Chandrashekar, J.; Madura, J. D.; Impey, W. R.; Klein, M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935.10.1063/1.445869Suche in Google Scholar
200. Jorgensen, W. L.; Madura, J. D.; Swenson, C. J. Optimized Intermolecular Potential Functions for Liquid Hydrocarbons. J. Am. Chem. Soc. 1984, 106, 6638–6646; https://doi.org/10.1021/ja00334a030.Suche in Google Scholar
201. Jorgensen, W. L. Optimized Intermolecular Potential Functions for Liquid Alcohols. J. Phys. Chem. 1986, 90, 1276–1284; https://doi.org/10.1021/j100398a015.Suche in Google Scholar
202. Jorgensen, W. L.; Tirado-Rives, J. The OPLS Potential Functions for Proteins, Energy Minimizations for Crystals of Cyclic Peptides and Crambin. J. Am. Chem. Soc. 1988, 110, 1657–1666; https://doi.org/10.1021/ja00214a001.Suche in Google Scholar PubMed
203. Chandrasekhar, J.; Smith, S. F.; Jorgensen, W. L. SN2 Reaction Profiles in the Gas Phase and Aqueous Solution. J. Am. Chem. Soc. 1984, 106, 3049–3050; https://doi.org/10.1021/ja00322a059.Suche in Google Scholar
204. Solà, M.; Lledós, A.; Duran, M.; Bertrán, J.; Abboud, J.-L. M. Analysis of Solvent Effects on the Menshutkin Reaction. J. Am. Chem. Soc. 1991, 113, 2873–2879; https://doi.org/10.1021/ja00008a013.Suche in Google Scholar
205. Blake, J. F.; Jorgensen, W. L. Solvent Effects on a Diels-Alder Reaction from Computer-simulations. J. Am. Chem. Soc. 1991, 113, 7430–7432; https://doi.org/10.1021/ja00019a055.Suche in Google Scholar
206. Severance, D. L.; Jorgensen, W. L. Effects of Hydration on the Claisen Rearrangement of Allyl Vinyl Ether from Computer-simulations. J. Am. Chem. Soc. 1992, 114, 10966–10968; https://doi.org/10.1021/ja00053a046.Suche in Google Scholar
207. Hynes, J. T. Chemical-reaction Dynamics in Solution. Annu. Rev. Phys. Chem. 1985, 36, 573–597; https://doi.org/10.1146/annurev.pc.36.100185.003041.Suche in Google Scholar
208. Northrup, S. H.; Hynes, J. T. The Stable States Picture of Chemical Reactions. I. Formulation for Rate Constants and Initial Condition Effects. J. Chem. Phys. 1980, 73, 2700–2714; https://doi.org/10.1063/1.440484.Suche in Google Scholar
209. Grote, R. F.; Hynes, J. T. The Stable States Picture of Chemical Reactions. II. Rate Constants for Condensed and Gas-phase Reaction Models. J. Chem. Phys. 1980, 73, 2715–2732; https://doi.org/10.1063/1.440485.Suche in Google Scholar
210. Bergsma, J. P.; Gertner, B. J.; Wilson, K. R.; Hynes, J. T. Molecular Dynamics of a Model SN2 Reaction in Water. J. Chem. Phys. 1987, 86, 1356–1376; https://doi.org/10.1063/1.452224.Suche in Google Scholar
211. Gertner, B. J.; Wilson, K. R.; Zichi, D. A.; Lee, S.; Hynes, J. T. Non-equilibrium Solvation in SN1 and SN2 Reactions in Polar-solvents. Faraday Discuss. 1988, 85, 297–308; https://doi.org/10.1039/dc9888500297.Suche in Google Scholar
212. Gertner, B. J.; Wilson, K. R.; Hynes, J. T. Nonequilibrium Solvation Effects on Reaction-rates for Model SN2 Reactions in Water. J. Chem. Phys. 1989, 90, 3537–3558; https://doi.org/10.1063/1.455864.Suche in Google Scholar
213. Hynes, J. T. Molecules in Motion: Chemical Reaction and Allied Dynamics in Solution and Elsewhere. Annu. Rev. Phys. Chem. 2015, 66, 1–20; https://doi.org/10.1146/annurev-physchem-040214-121833.Suche in Google Scholar PubMed
214. Berkowitz, M.; Karim, O. A.; McCammon, J. A.; Rossky, P. J. Sodium Chloride Ion Pair Interaction in Water: Computer Simulation. Chem. Phys. Lett. 1984, 105, 577–580; https://doi.org/10.1016/0009-2614(84)85660-2.Suche in Google Scholar
215. Karim, O. A.; McCammon, J. A. Dynamics of a Sodium Chloride Ion Pair in Water. J. Am. Chem. Soc. 1986, 108, 1762–1766; https://doi.org/10.1021/ja00268a008.Suche in Google Scholar
216. Ciccotti, G.; Ferrario, M.; Hynes, J. T.; Kapral, R. Molecular Dynamics Simulation of Ion Association Reactions in a Polar Solvent. J. Chim. Phys. 1988, 85, 925–929; https://doi.org/10.1051/jcp/1988850925.Suche in Google Scholar
217. Hwang, J. K.; King, G.; Creighton, S.; Warshel, A. Simulation of Free Energy Relationships and Dynamics of SN2 Reactions in Aqueous Solution. J. Am. Chem. Soc. 1988, 110, 5297–5311; https://doi.org/10.1021/ja00224a011.Suche in Google Scholar
218. Gertner, B. J.; Whitnell, R. M.; Wilson, K. R.; Hynes, J. T. Activation to the Transition State: Reactant and Solvent Energy Flow for a Model SN2 Reaction in Water. J. Am. Chem. Soc. 1991, 113, 74–87; https://doi.org/10.1021/ja00001a014.Suche in Google Scholar PubMed
219. Borgis, D. C.; Lee, S.; Hynes, J. T. A Dynamical Theory of Nonadiabatic Proton and Hydrogen Atom Transfer Reaction Rates in Solution. Chem. Phys. Lett. 1989, 162, 19–26; https://doi.org/10.1016/0009-2614(89)85059-6.Suche in Google Scholar
220. Warshel, A.; Chu, Z. Quantum Corrections for Rate Constants of Diabatic and Adiabatic Reactions in Solutions. J. Chem. Phys. 1990, 93, 4003–4015; https://doi.org/10.1063/1.458785.Suche in Google Scholar
221. Nagaoka, M.; Okuno, Y.; Yamabe, T. The Chemical Reaction Molecular Dynamics Method and the Dynamic Transition State: Proton Transfer Reaction in Formamidine and Water Solvent System. J. Am. Chem. Soc. 1991, 113, 769–778; https://doi.org/10.1021/ja00003a007.Suche in Google Scholar
222. Borgis, D.; Tarjus, G.; Azzouz, H. An Adiabatic Dynamical Simulation Study of the Zundel Polarization of Strongly H-bonded Complexes in Solution. J. Chem. Phys. 1992, 97, 1390–1400; https://doi.org/10.1063/1.463265.Suche in Google Scholar
223. Borgis, D.; Tarjus, G.; Azzouz, H. Solvent-induced Proton Transfer in Strongly H-bonded Complexes: An Adiabatic Dynamical Simulation Study. J. Phys. Chem. 1992, 96, 3188–3191; https://doi.org/10.1021/j100187a003.Suche in Google Scholar
224. Whitnell, R. M.; Wilson, K. R. Computational Molecular Dynamics of Chemical Reactions in Solution. In Reviews in Computational Chemistry; Lipkowitz, K. B.; Boyd, D. B., Eds.; VCH Publishers, Inc.: New York, Vol. 4, 1993; pp. 67–148; https://doi.org/10.1002/9780470125816.ch3.Suche in Google Scholar
225. Car, R.; Parrinello, M. Unified Approach for Molecular Dynamics and Density-functional Theory. Phys. Rev. Lett. 1985, 55, 2471–2474; https://doi.org/10.1103/physrevlett.55.2471.Suche in Google Scholar PubMed
226. Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. Optimization by Simulated Annealing. Science 1983, 220, 671–680; https://doi.org/10.1126/science.220.4598.671.Suche in Google Scholar PubMed
227. Marx, D. An Introduction to Ab Initio Molecular Dynamics Simulations. In Computational Nanoscience: Do It Yourself; Grotendorst, J.; Marx, S. B. D., Eds.; John von Neumann Institute for Computing: Jülich, Vol. 31, 2006; pp. 195–244.Suche in Google Scholar
228. Marx, D.; Parrinello, M. Ab Initio Path-integral Molecular Dynamics. Z. Phys. B: Condens. Matter 1994, 95, 143–144; https://doi.org/10.1007/bf01312185.Suche in Google Scholar
229. Marx, D.; Parrinello, M. Ab Initio Path Integral Molecular Dynamics: Basic Ideas. J. Chem. Phys. 1996, 104, 4077–4082; https://doi.org/10.1063/1.471221.Suche in Google Scholar
230. Tuckerman, M. E.; Marx, D.; Klein, M. L.; Parrinello, M. Efficient and General Algorithms for Path Integral Car–Parrinello Molecular Dynamics. J. Chem. Phys. 1996, 104, 5579–5588; https://doi.org/10.1063/1.471771.Suche in Google Scholar
231. Rothlisberger, U. 15 Years of Car-Parrinello Simulations in Physics, Chemistry and Biology. In Computational Chemistry: Reviews of Current Trends; Leszczynski, J., Ed.; World Scientific Publishing Co Pte Ltd: Singapour, Vol. 6, 2001; pp. 33–68; https://doi.org/10.1142/9789812799937_0002.Suche in Google Scholar
232. Laasonen, K.; Sprik, M.; Parrinello, M.; Car, R. Ab Initio Liquid Water. J. Chem. Phys. 1993, 99, 9080–9089; https://doi.org/10.1063/1.465574.Suche in Google Scholar
233. Tuckerman, M.; Laasonen, K.; Sprik, M.; Parrinello, M. Ab Initio Molecular Dynamics Simulation of the Solvation and Transport of Hydronium and Hydroxyl Ions in Water. J. Chem. Phys. 1995, 103, 150–161; https://doi.org/10.1063/1.469654.Suche in Google Scholar
234. Sprik, M.; Hutter, J.; Parrinello, M. Ab Initio Molecular Dynamics Simulation of Liquid Water: Comparison of Three Gradient-corrected Density Functionals. J. Chem. Phys. 1996, 105, 1142–1152; https://doi.org/10.1063/1.471957.Suche in Google Scholar
235. Silvestrelli, P. L.; Bernasconi, M.; Parrinello, M. Ab Initio Infrared Spectrum of Liquid Water. Chem. Phys. Lett. 1997, 277, 478–482; https://doi.org/10.1016/s0009-2614(97)00930-5.Suche in Google Scholar
236. Trout, B. L.; Parrinello, M. The Dissociation Mechanism of H2O in Water Studied by First-principles Molecular Dynamics. Chem. Phys. Lett. 1998, 288, 343–347; https://doi.org/10.1016/s0009-2614(98)00286-3.Suche in Google Scholar
237. Silvestrelli, P. L.; Parrinello, M. Water Molecule Dipole in the gas and in the Liquid Phase. Phys. Rev. Lett. 1999, 82, 3308–3311; https://doi.org/10.1103/physrevlett.82.3308.Suche in Google Scholar
238. Silvestrelli, P. L.; Parrinello, M. Structural, Electronic, and Bonding Properties of Liquid Water from First Principles. J. Chem. Phys. 1999, 111, 3572–3580; https://doi.org/10.1063/1.479638.Suche in Google Scholar
239. Tuckerman, M. E.; Marx, D.; Klein, M. L.; Parrinello, M. On the Quantum Nature of the Shared Proton in Hydrogen Bonds. Science 1997, 275, 817–820; https://doi.org/10.1126/science.275.5301.817.Suche in Google Scholar PubMed
240. Marx, D.; Tuckerman, M. E.; Hutter, J.; Parrinello, M. The Nature of the Hydrated Excess Proton in Water. Nature 1999, 397, 601–604; https://doi.org/10.1038/17579.Suche in Google Scholar
241. Marx, D.; Tuckerman, M. E.; Parrinello, M. Solvated Excess Protons in Water: Quantum Effects on the Hydration Structure. J. Phys.: Condens. Matt. 2000, 12, A153–A159; https://doi.org/10.1088/0953-8984/12/8a/317.Suche in Google Scholar
242. Sprik, M. Ab Initio Molecular Dynamics Simulation of Liquids and Solutions. J. Phys.: Condens. Matt. 1996, 8, 9405–9409; https://doi.org/10.1088/0953-8984/8/47/036.Suche in Google Scholar
243. Curioni, A.; Andreoni, W.; Hutter, J.; Schiffer, H.; Parrinello, M. Density-functional-theory-based Molecular Dynamics Study of 1, 3, 5-trioxane and 1, 3-dioxolane Protolysis. J. Am. Chem. Soc. 1994, 116, 11251–11255; https://doi.org/10.1021/ja00104a006.Suche in Google Scholar
244. Curioni, A.; Sprik, M.; Andreoni, W.; Schiffer, H.; Hutter, J.; Parrinello, M. Density Functional Theory-based Molecular Dynamics Simulation of Acid-catalyzed Chemical Reactions in Liquid Trioxane. J. Am. Chem. Soc. 1997, 119, 7218–7229; https://doi.org/10.1021/ja970935o.Suche in Google Scholar
245. Meijer, E. J.; Sprik, M. A Density Functional Study of the Addition of Water to SO3 in the Gas Phase and in Aqueous Solution. J. Phys. Chem. A 1998, 102, 2893–2898; https://doi.org/10.1021/jp972146z.Suche in Google Scholar
246. Liu, Z.; Siu, C.; John, S. T. Ab Initio Molecular Dynamics Study on the Hydrolysis of Molecular Chlorine. Chem. Phys. Lett. 1999, 311, 93–101.10.1016/S0009-2614(99)00809-XSuche in Google Scholar
247. Doclo, K.; Rothlisberger, U. Conformational Equilibria of Peroxynitrous Acid in Water: A First-Principles Molecular Dynamics Study. J. Phys. Chem. A 2000, 104, 6464–6469; https://doi.org/10.1021/jp0012193.Suche in Google Scholar
248. Meijer, E. J.; Sprik, M. Ab Initio Molecular Dynamics Study of the Reaction of Water with Formaldehyde in Sulfuric Acid Solution. J. Am. Chem. Soc. 1998, 120, 6345–6355; https://doi.org/10.1021/ja972935u.Suche in Google Scholar
249. Lindan, P.; Harrison, N.; Holender, J.; Gillan, M. First-principles Molecular Dynamics Simulation of Water Dissociation on TiO2 (110). Chem. Phys. Lett. 1996, 261, 246–252; https://doi.org/10.1016/0009-2614(96)00934-7.Suche in Google Scholar
250. Boero, M.; Parrinello, M.; Terakura, K. First Principles Molecular Dynamics Study of Ziegler-Natta Heterogeneous Catalysis. J. Am. Chem. Soc. 1998, 120, 2746–2752; https://doi.org/10.1021/ja972367i.Suche in Google Scholar
251. Coussens, B. B.; Buda, F.; Oevering, H.; Meier, R. J. Simulations of Ethylene Insertion in the PtII−H Bond of (H)Pt(PX3)2+ Species. Organometallics 1998, 17, 795–801; https://doi.org/10.1021/om970080o.Suche in Google Scholar
252. Hass, K. C.; Schneider, W. F.; Curioni, A.; Andreoni, W. The Chemistry of Water on Alumina Surfaces: Reaction Dynamics from First Principles. Science 1998, 282, 265–268; https://doi.org/10.1126/science.282.5387.265.Suche in Google Scholar PubMed
253. Zhang, C.; Hu, P.; Alavi, A. A Density Functional Theory Study of CO Oxidation on Ru (0001) at Low Coverage. J. Chem. Phys. 2000, 112, 10564–10570; https://doi.org/10.1063/1.481690.Suche in Google Scholar
254. Carloni, P.; Bloechl, P. E.; Parrinello, M. Electronic Structure of the Cu, Zn Superoxide Dismutase Active Site and its Interactions with the Substrate. J. Phys. Chem. 1995, 99, 1338–1348; https://doi.org/10.1021/j100004a039.Suche in Google Scholar
255. Rothlisberger, U.; Carloni, P.; Doclo, K.; Parrinello, M. A Comparative Study of Galactose Oxidase and Active Site Analogs Based on QM/MM Car-Parrinello Simulations. J. Biol. Inorg. Chem. 2000, 5, 236–250; https://doi.org/10.1007/s007750050368.Suche in Google Scholar PubMed
256. VandeVondele, J.; Rothlisberger, U. Efficient Multidimensional Free Energy Calculations for Ab Initio Molecular Dynamics Using Classical Bias Potentials. J. Chem. Phys. 2000, 113, 4863–4868; https://doi.org/10.1063/1.1289527.Suche in Google Scholar
257. Röthlisberger, U.; Sprik, M.; Hutter, J. Time and Length Scales in Ab Initio Molecular Dynamics. In Bridging Time Scales: Molecular Simulations for the Next Decade; Nielaba, P.; Mareschal, M.; Ciccotti, G., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2002; pp. 413–442.10.1007/3-540-45837-9_15Suche in Google Scholar
258. Iannuzzi, M.; Laio, A.; Parrinello, M. Efficient Exploration of Reactive Potential Energy Surfaces Using Car-Parrinello Molecular Dynamics. Phys. Rev. Lett. 2003, 90, 238302; https://doi.org/10.1103/physrevlett.90.238302.Suche in Google Scholar PubMed
259. Kühne, T. D.; Krack, M.; Mohamed, F. R.; Parrinello, M. Efficient and Accurate Car-Parrinello-like Approach to Born-Oppenheimer Molecular Dynamics. Phys. Rev. Lett. 2007, 98, 066401; https://doi.org/10.1103/physrevlett.98.066401.Suche in Google Scholar
260. Lippert, G.; Hutter, J.; Parrinello, M. The Gaussian and Augmented-plane-wave Density Functional Method for Ab Initio Molecular Dynamics Simulations. Theoret. Chem. Acc. 1999, 103, 124–140; https://doi.org/10.1007/s002140050523.Suche in Google Scholar
261. Lippert, G.; Hutter, J.; Parrinello, M. A Hybrid Gaussian and Plane Wave Density Functional Scheme. Mol. Phys. 1997, 92, 477–488; https://doi.org/10.1080/00268979709482119.Suche in Google Scholar
262. Tuckerman, M. E. Ab Initio Molecular Dynamics: Basic Concepts, Current Trends and Novel Applications. J. Phys.: Condens. Matt. 2002, 14, R1297–R1355; https://doi.org/10.1088/0953-8984/14/50/202.Suche in Google Scholar
263. Liu, Y.; Yarne, D. A.; Tuckerman, M. E. Ab Initio Molecular Dynamics Calculations with Simple, Localized, Orthonormal Real-space Basis Sets. Phys. Rev. B 2003, 68, 125110; https://doi.org/10.1103/physrevb.68.125110.Suche in Google Scholar
264. Maupin, C. M.; Aradi, B.; Voth, G. A. The Self-consistent Charge Density Functional Tight Binding Method Applied to Liquid Water and the Hydrated Excess Proton: Benchmark Simulations. J. Phys. Chem. B 2010, 114, 6922–6931; https://doi.org/10.1021/jp1010555.Suche in Google Scholar PubMed
265. Goyal, P.; Elstner, M.; Cui, Q. Application of the SCC-DFTB Method to Neutral and Protonated Water Clusters and Bulk Water. J. Phys. Chem. B 2011, 115, 6790–6805; https://doi.org/10.1021/jp202259c.Suche in Google Scholar PubMed PubMed Central
266. Cuny, J.; Cerda Calatayud, J.; Ansari, N.; Hassanali, A. A.; Rapacioli, M.; Simon, A. Simulation of Liquids with the Tight-Binding Density-Functional Approach and Improved Atomic Charges. J. Phys. Chem. B 2020, 124, 7421–7432; https://doi.org/10.1021/acs.jpcb.0c04167.Suche in Google Scholar PubMed
267. Gao, J.; Rossky, P. J. The Age of Direct Chemical Dynamics. Acc. Chem. Res. 2022, 55, 471–472; https://doi.org/10.1021/acs.accounts.2c00021.Suche in Google Scholar PubMed
268. Wang, I. S. Y.; Karplus, M. Dyanmics of Organic Reactions. J. Am. Chem. Soc. 1973, 95, 8160–8164; https://doi.org/10.1021/ja00805a033.Suche in Google Scholar
269. Leforestier, C. Classical Trajectories Using the Full Ab Initio Potential Energy Surface H-+CH4→CH4+H-. J. Chem. Phys. 1978, 68, 4406–4410; https://doi.org/10.1063/1.435520.Suche in Google Scholar
270. Tuckerman, M. E.; Ungar, P. J.; Von Rosenvinge, T.; Klein, M. L. Ab Initio Molecular Dynamics Simulations. J. Phys. Chem. 1996, 100, 12878–12887; https://doi.org/10.1021/jp960480+.10.1021/jp960480+Suche in Google Scholar
271. Krack, M.; Parrinello, M. All-electron ab-initio Molecular Dynamics. Phys. Chem. Chem. Phys. 2000, 2, 2105–2112; https://doi.org/10.1039/b001167n.Suche in Google Scholar
272. Tse, J. S. Ab Initio Molecular Dynamics with Density Functional Theory. Annu. Rev. Phys. Chem. 2002, 53, 249–290; https://doi.org/10.1146/annurev.physchem.53.090401.105737.Suche in Google Scholar PubMed
273. Iftimie, R.; Minary, P.; Tuckerman, M. E. Ab Initio Molecular Dynamics: Concepts, Recent Developments, and Future Trends. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 6654–6659; https://doi.org/10.1073/pnas.0500193102.Suche in Google Scholar PubMed PubMed Central
274. Marx, D.; Hutter, J. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods; Cambridge University Press: Cambridge, 2009.10.1017/CBO9780511609633Suche in Google Scholar
275. Paquet, E.; Viktor, H. L. Computational Methods for Ab Initio Molecular Dynamics. Adv. Chem. 2018, 2018, 9839641–14; https://doi.org/10.1155/2018/9839641.Suche in Google Scholar
276. Schlegel, H. B. Ab Initio Direct Dynamics. Acc. Chem. Res. 2021, 54, 3749–3759; https://doi.org/10.1021/acs.accounts.1c00390.Suche in Google Scholar PubMed
277. Mouvet, F.; Villard, J.; Bolnykh, V.; Rothlisberger, U. Recent Advances in First-Principles Based Molecular Dynamics. Acc. Chem. Res. 2022, 55, 221–230; https://doi.org/10.1021/acs.accounts.1c00503.Suche in Google Scholar
278. Wesolowski, T. A.; Warshel, A. Frozen Density-functional Approach for ab-initio Calculations of Solvated Molecules. J. Phys. Chem. 1993, 97, 8050–8053; https://doi.org/10.1021/j100132a040.Suche in Google Scholar
279. Wesolowski, T.; Warshel, A. Ab Initio Free Energy Perturbation Calculations of Solvation Free Energy Using the Frozen Density Functional Approach. J. Phys. Chem. 1994, 98, 5183–5187; https://doi.org/10.1021/j100071a003.Suche in Google Scholar
280. Wesolowski, T. A.; Chermette, H.; Weber, J. Accuracy of Approximate Kinetic Energy Functionals in the Model of Kohn-Sham Equations with Constrained Electron Density: The FH Center Dot Center Dot Center Dot NCH Complex as a Test Case. J. Chem. Phys. 1996, 105, 9182–9190; https://doi.org/10.1063/1.472823.Suche in Google Scholar
281. Wesolowski, T. A.; Weber, J. Kohn-Sham Equations with Constrained Electron Density: An Iterative Evaluation of the Ground-state Electron Density of Interacting Molecules. Chem. Phys. Lett. 1996, 248, 71–76; https://doi.org/10.1016/0009-2614(95)01281-8.Suche in Google Scholar
282. Wesolowski, T. A.; Weber, J. Kohn-Sham Equations with Constrained Electron Density: The Effect of Various Kinetic Energy Functional Parametrizations on the Ground-state Molecular Properties. Int. J. Quantum Chem. 1997, 61, 303–311; https://doi.org/10.1002/(sici)1097-461x(1997)61:2<303::aid-qua13>3.0.co;2-c.10.1002/(SICI)1097-461X(1997)61:2<303::AID-QUA13>3.3.CO;2-LSuche in Google Scholar
283. Yang, W. Direct Calculation of Electron Density in Density-functional Theory: Implementation for Benzene and a Tetrapeptide. Phys. Rev. A 1991, 44, 7823–7826; https://doi.org/10.1103/physreva.44.7823.Suche in Google Scholar
284. Yang, W.; Lee, T.-S. A Density-matrix Divide-and-conquer Approach for Electronic Structure Calculations of Large Molecules. J. Chem. Phys. 1995, 103, 5674–5678; https://doi.org/10.1063/1.470549.Suche in Google Scholar
285. York, D. M.; Lee, T.-S.; Yang, W. Parameterization and Efficient Implementation of a Solvent Model for Linear-scaling Semiempirical Quantum Mechanical Calculations of Biological Macromolecules. Chem. Phys. Lett. 1996, 263, 297–304; https://doi.org/10.1016/s0009-2614(96)01198-0.Suche in Google Scholar
286. Lee, T. S.; York, D. M.; Yang, W. Linear‐scaling Semiempirical Quantum Calculations for Macromolecules. J. Chem. Phys. 1996, 105, 2744–2750; https://doi.org/10.1063/1.472136.Suche in Google Scholar
287. Dixon, S. L.; Merz, Jr, K. M. Semiempirical Molecular Orbital Calculations with Linear System Size Scaling. J. Chem. Phys. 1996, 104, 6643–6649; https://doi.org/10.1063/1.471382.Suche in Google Scholar
288. Dixon, S. L.; Merz, K. M. J. The Divide and Conquer Methodology Applied to Emiempirical SCF MO Calculations. In Encyclopedia of Computational Chemistry; Schleyer, P. V. R., Ed.; Wiley: Baffins Lane: Chichester, UK, Vol. 1, 1998; pp. 762–776.Suche in Google Scholar
289. Gogonea, V.; Westerhoff, L. M.; Merz, K. M.Jr Quantum Mechanical/quantum Mechanical Methods. I. A Divide and Conquer Strategy for Solving the Schrödinger Equation for Large Molecular Systems Using a Composite Density Functional–semiempirical Hamiltonian. J. Chem. Phys. 2000, 113, 5604–5613; https://doi.org/10.1063/1.1290608.Suche in Google Scholar
290. Monard, G.; Bernal-Uruchurtu, M. I.; Van Der Vaart, A.; Merz Jr, K. M.; Ruiz-López, M. F. Simulation of Liquid Water Using Semiempirical Hamiltonians and the Divide and Conquer Approach. J. Phys. Chem. A 2005, 109, 3425–3432; https://doi.org/10.1021/jp0459099.Suche in Google Scholar PubMed
291. Gadre, S. R.; Shirsat, R. N.; Limaye, A. C. Molecular Tailoring Approach for Simulation of Electrostatic Properties. J. Phys. Chem. 1994, 98, 9165–9169; https://doi.org/10.1021/j100088a013.Suche in Google Scholar
292. Sahu, N.; Gadre, S. R. Molecular Tailoring Approach: A Route for Ab Initio Treatment of Large Clusters. Acc. Chem. Res. 2014, 47, 2739–2747; https://doi.org/10.1021/ar500079b.Suche in Google Scholar PubMed
293. Kitaura, K.; Ikeo, E.; Asada, T.; Nakano, T.; Uebayasi, M. Fragment Molecular Orbital Method: An Approximate Computational Method for Large Molecules. Chem. Phys. Lett. 1999, 313, 701–706; https://doi.org/10.1016/s0009-2614(99)00874-x.Suche in Google Scholar
294. Komeiji, Y.; Nakano, T.; Fukuzawa, K.; Ueno, Y.; Inadomi, Y.; Nemoto, T.; Uebayasi, M.; Fedorov, D. G.; Kitaura, K. Fragment Molecular Orbital Method: Application to Molecular Dynamics Simulation, ‘Ab Initio FMO-MD’. Chem. Phys. Lett. 2003, 372, 342–347; https://doi.org/10.1016/s0009-2614(03)00430-5.Suche in Google Scholar
295. Komeiji, Y.; Ishikawa, T.; Mochizuki, Y.; Yamataka, H.; Nakano, T. Fragment Molecular Orbital Method-Based Molecular Dynamics (FMO-MD) as a Simulator for Chemical Reactions in Explicit Solvation. J. Comput. Chem. 2009, 30, 40–50; https://doi.org/10.1002/jcc.21025.Suche in Google Scholar PubMed
296. Walker, P. D.; Mezey, P. G. Molecular Electron Density Lego Approach to Molecule Building. J. Am. Chem. Soc. 1993, 115, 12423–12430; https://doi.org/10.1021/ja00079a025.Suche in Google Scholar
297. Exner, T. E.; Mezey, P. G. Ab Initio Quality Properties for Macromolecules Using the ADMA Approach. J. Comput. Chem. 2003, 24, 1980–1986; https://doi.org/10.1002/jcc.10340.Suche in Google Scholar PubMed
298. Macetti, G.; Wieduwilt, E. K.; Assfeld, X.; Genoni, A. Localized Molecular Orbital-Based Embedding Scheme for Correlated Methods. J. Chem. Theor. Comput. 2020, 16, 3578–3596; https://doi.org/10.1021/acs.jctc.0c00084.Suche in Google Scholar
299. Meyer, B.; Guillot, B.; Ruiz-López, M. F.; Genoni, A. Libraries of Extremely Localized Molecular Orbitals. 1. Model Molecules Approximation and Molecular Orbitals Transferability. J. Chem. Theor. Comput. 2016, 12, 1052–1067.10.1021/acs.jctc.5b01007Suche in Google Scholar
300. Singh, U. C.; Kollman, P. A. A Combined Ab Initio Quantum Mechanical and Molecular Mechanical Method for Carrying Out Simulations on Complex Molecular Systems : Applications to the CH3Cl + Cl- Exchange Reaction and Gas Phase Protonation and Polyethers. J. Comput. Chem. 1986, 7, 718–730; https://doi.org/10.1002/jcc.540070604.Suche in Google Scholar
301. Bash, P. A.; Field, M. J.; Karplus, M. Free Energy Perturbation Method for Chemical Reactions in the Condensed Phase: A Dynamic Approach Based on a Combined Quantum and Molecular Mechanics Potential. J. Am. Chem. Soc. 1987, 109, 8092–8094; https://doi.org/10.1021/ja00260a028.Suche in Google Scholar
302. Field, M. J.; Bash, P. A.; Karplus, M. A Combined Quantum Mechanical and Molecular Mechanical Potential for Molecular Dynamics Simulations. J. Comput. Chem. 1990, 11, 700–733; https://doi.org/10.1002/jcc.540110605.Suche in Google Scholar
303. Ford, G. P.; Wang, B. New Approach to the Rapid Semiempirical Calculation of Molecular Electrostatic Potentials Based on the am1 Wave Function: Comparison with Ab Initio HF/6-31g* Results. J. Comput. Chem. 1993, 14, 1101–1111; https://doi.org/10.1002/jcc.540140911.Suche in Google Scholar
304. Luque, F.; Orozco, M. Reliability of the AM1 Wavefunction to Compute Molecular Electrostatic Potentials. Chem. Phys. Lett. 1990, 168, 269–275; https://doi.org/10.1016/0009-2614(90)85609-g.Suche in Google Scholar
305. Bakowies, D.; Thiel, W. Semiempirical Treatment of Electrostatic Potentials and Partial Charges in Combined Quantum Mechanical and Molecular Mechanical Approaches. J. Comp. Chem. 1996, 17, 87–108; https://doi.org/10.1002/(sici)1096-987x(19960115)17:1<87::aid-jcc8>3.3.co;2-t.10.1002/(SICI)1096-987X(19960115)17:1<87::AID-JCC8>3.3.CO;2-TSuche in Google Scholar
306. Luque, F. J.; Reuter, N.; Cartier, A.; Ruiz-López, M. F. Calibration of the Quantum/classical Hamiltonian in Semiempirical QM/MM AM1 and PM3 Methods. J. Phys. Chem. A 2000, 104, 10923–10931; https://doi.org/10.1021/jp001974g.Suche in Google Scholar
307. Tapia, O.; Colonna, F.; Angyan, J. Generalized Self-consistent Reaction Field Theory in a Multicenter-multipole ab-initio LCGO Framework. I. Electronic Properties of the Water Molecule in a Monte Carlo Sample of Liquid Water Molecules Studied with Standard Basis Sets. J. Chim. Phys. 1990, 87, 875–903; https://doi.org/10.1051/jcp/1990870875.Suche in Google Scholar
308. Gao, J.; Xia, X. A Priori Evaluation of Aqueous Polarization Effects Through Monte Carlo QM-MM Simulations. Science 1992, 258, 631–635; https://doi.org/10.1126/science.1411573.Suche in Google Scholar
309. Gao, J. Potential of Mean Force for the Isomerization of DMF in Aqueous Solution: A Monte Carlo QM/MM Simulation Study. J. Am. Chem. Soc. 1993, 115, 2930–2935; https://doi.org/10.1021/ja00060a047.Suche in Google Scholar
310. Gao, J. Absolute Free Energy of Solvation from Monte Carlo Simulations Using Combined Quantum and Molecular Mechanical Potentials. J. Phys. Chem. 1992, 96, 537–540; https://doi.org/10.1021/j100181a009.Suche in Google Scholar
311. Gao, J.; Xia, X. A Two-dimensional Energy Surface fr a Type II SN2 Reaction in Aqueous Solution. J. Am. Chem. Soc. 1993, 115, 9667–9675; https://doi.org/10.1021/ja00074a036.Suche in Google Scholar
312. Vasilyev, V. V.; Bliznyuk, A. A.; Voityuk, A. A. A Combined Quantum Chemical/molecular Mechanical Study of Hydrogen-bonded Systems. Int. J. Quantum Chem. 1992, 44, 897–930; https://doi.org/10.1002/qua.560440517.Suche in Google Scholar
313. Bash, P. A.; Ho, L. L.; MacKerell, A. D.; Levine, D.; Hallstrom, P. Progress Toward Chemical Accuracy in the Computer Simulation of Condensed Phase Reactions. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 3698–3703; https://doi.org/10.1073/pnas.93.8.3698.Suche in Google Scholar
314. Bakowies, D.; Thiel, W. Hybrid Models for Combined Quantum Mechanical and Molecular Mechanical Approaches. J. Phys. Chem. 1996, 100, 10580–10594; https://doi.org/10.1021/jp9536514.Suche in Google Scholar
315. Thompson, M. A. QM/MMpol: A Consistent Model for Solute/solvent Polarization. Application to the Aqueous Solvation and Spectroscopy of Formaldehyde, Acetaldehyde, and Acetone. J. Phys. Chem. 1996, 100, 14492–14507; https://doi.org/10.1021/jp960690m.Suche in Google Scholar
316. Field, M. J. Hybrid Quantum Mechanical/molecular Mechanical Fluctuating Charge Models for Condensed Phase Simulations. Mol. Phys. 1997, 91, 835–845; https://doi.org/10.1080/00268979709482774.Suche in Google Scholar
317. Cummins, P. L.; Gready, J. E. Coupled Semiempirical Molecular Orbital and Molecular Mechanics Model (QM/MM) for Organic Molecules in Aqueous Solution. J. Comp. Chem. 1997, 18, 1496–1512; https://doi.org/10.1002/(sici)1096-987x(199709)18:12<1496::aid-jcc7>3.0.co;2-e.10.1002/(SICI)1096-987X(199709)18:12<1496::AID-JCC7>3.0.CO;2-ESuche in Google Scholar
318. Li, G. S.; Martins-Costa, M. T. C.; Millot, C.; Ruiz-Lopez, M. F. AM1/TIP3P Molecular Dynamics Simulation of Imidazole Proton-relay Processes in Aqueous Solution. Chem. Phys. Lett. 1998, 297, 38–44; https://doi.org/10.1016/s0009-2614(98)01128-2.Suche in Google Scholar
319. Muller, R. P.; Warshel, A. Ab Initio Calculations of Free Energy Barriers for Chemical Reactions in Solution. J. Phys. Chem. 1995, 99, 17516–17254; https://doi.org/10.1021/j100049a009.Suche in Google Scholar
320. Stanton, R. V.; Hartsough, D. S.; Merz, K. M. Calculation of Solvation Free Energies Using a Density Functional/molecular Dynamics Coupled Potential. J. Phys. Chem. 1993, 97, 11868–11870; https://doi.org/10.1021/j100148a005.Suche in Google Scholar
321. Stanton, R. V.; Hartsough, D. S.; Merz, K. M. An Examination of a Density Functional/molecular Mechanical Coupled Potential. J. Comp. Chem. 1995, 16, 113–128; https://doi.org/10.1002/jcc.540160110.Suche in Google Scholar
322. Stanton, R. V.; Little, L. R.; Merz, K. M. An Examination of a Hartree-Fock/molecular Mechanical Coupled Potential. J. Phys. Chem. 1995, 99, 17344–17348; https://doi.org/10.1021/j100048a006.Suche in Google Scholar
323. Tuñón, I.; Martins-Costa, M. T. C.; Millot, C.; Ruiz-López, M. F. A Hybrid Density Functional-Classical Molecular Dynamics Simulation of a Water Molecule in Liquid Water. J. Mol. Mod. 1995, 1, 196–201; https://doi.org/10.1007/s008940050016.Suche in Google Scholar
324. Tuñón, I.; Martins-Costa, M. T. C.; Millot, C.; Ruiz-López, M. F. Coupled Density Functional/molecular Mechanics Monte Carlo Simulations of Ions in Water. The Bromide Ion. Chem. Phys. Lett. 1995, 241, 450–456; https://doi.org/10.1016/0009-2614(95)00615-b.Suche in Google Scholar
325. Tuñón, I.; Martins-Costa, M. T. C.; Millot, C.; Ruiz-López, M. F.; Rivail, J. L. A Coupled Density Functional-molecular Mechanics Monte Carlo Simulation Method: The Water Molecule in Liquid Water. J. Comp. Chem. 1996, 17, 19–29; https://doi.org/10.1002/(sici)1096-987x(19960115)17:1<19::aid-jcc2>3.0.co;2-3.10.1002/(SICI)1096-987X(19960115)17:1<19::AID-JCC2>3.3.CO;2-BSuche in Google Scholar
326. Tuñón, I.; Martins-Costa, M. T. C.; Millot, C.; Ruiz-López, M. F. Molecular Dynamics Simulations of Elementary Chemical Processes in Liquid Water Using Combined Density Functional and Molecular Mechanics Potentials. I. Proton Transfer in Strongly H-bonded Complexes. J. Chem. Phys. 1997, 106, 3633–3642; https://doi.org/10.1063/1.473457.Suche in Google Scholar
327. Strnad, M.; Martins-Costa, M. T. C.; Millot, C.; Tuñón, I.; Ruiz-López, M. F.; Rivail, J. L. Molecular Dynamics Simulations of Elementary Chemical Processes in Liquid Water Using Combined Density Functional and Molecular Mechanics Potentials. II. Charge Separation Processes. J. Chem. Phys. 1997, 106, 3643–3657; https://doi.org/10.1063/1.473458.Suche in Google Scholar
328. Freindorf, M.; Gao, J. Optimization of the Lennard-Jones Parameters for a Combined Ab Initio Quantum Mechanical and Molecular Mechanical Potential Using the 3-21G Basis Set. J. Comp. Chem. 1996, 17, 386–395; https://doi.org/10.1002/(sici)1096-987x(199603)17:4<386::aid-jcc1>3.0.co;2-q.10.1002/(SICI)1096-987X(199603)17:4<386::AID-JCC1>3.0.CO;2-QSuche in Google Scholar
329. Lyne, P. D.; Hodoscek, M.; Karplus, M. A Hybrid QM-MM Potential Employing Hartree-Fock or Density Functional Methods in the Quantum Region. J. Phys. Chem. A 1999, 103, 3462–3471; https://doi.org/10.1021/jp982115j.Suche in Google Scholar
330. Amara, P.; Volbeda, A.; Fontecilla-Camps, J. C.; Field, M. J. A Hybrid Density Functional Theory/Molecular Mechanics Study of Nickel−Iron Hydrogenase: Investigation of the Active Site Redox States. J. Am. Chem. Soc. 1999, 121, 4468–4477; https://doi.org/10.1021/ja983971b.Suche in Google Scholar
331. Wei, D.; Salahub, D. R. A Combined Density Functional and Molecular Dynamics Simulation of a Quantum Water Molecule in Aqueous Solution. Chem. Phys. Lett. 1994, 224, 291–296; https://doi.org/10.1016/0009-2614(94)00540-0.Suche in Google Scholar
332. Anderson, J. B. Predicting Rare Events in Molecular Dynamics. Adv. Chem. Phys. 1995, 91, 381–431; https://doi.org/10.1002/9780470141502.ch5.Suche in Google Scholar
333. Martin, M. E.; Aguilar, M. A.; Chalmet, S.; Ruiz-López, M. F. An Iterative Procedure to Determine Lennard-Jones Parameters for their Use in Quantum Mechanics/Molecular Mechanics Liquid State Simulations. Chem. Phys. 2002, 284, 607–614; https://doi.org/10.1016/s0301-0104(02)00785-1.Suche in Google Scholar
334. Surján, P.; Ángyán, J. G. The Reliability of the Point Charge Model Representing Intermolecular Effects in Ab Initio Calculations. Chem. Phys. Lett. 1994, 225, 258–264; https://doi.org/10.1016/0009-2614(94)00636-9.Suche in Google Scholar
335. Chalmet, S.; Ruiz-López, M. F. New Approaches to the Description of Short-range Repulsion Interactions in Hybrid Quantum/classical Systems. Chem. Phys. Lett. 2000, 329, 154–159.10.1016/S0009-2614(00)00992-1Suche in Google Scholar
336. Théry, V.; Rinaldi, D.; Rivail, J.-L.; Maigret, B.; Ferenczy, G. G. Quantum Mechanical Computations on Very Large Molecular Systems: The Local Self-consistent Field Method. J. Comp. Chem. 1994, 15, 269–282; https://doi.org/10.1002/jcc.540150303.Suche in Google Scholar
337. Assfeld, X.; Rivail, J.-L. Quantum Chemical Computations on Parts of Large Molecules: The Ab Initio Local Self Consistent Field Method. Chem. Phys. Lett. 1996, 263, 100–106; https://doi.org/10.1016/s0009-2614(96)01165-7.Suche in Google Scholar
338. Gao, J.; Amara, P.; Alhambra, C.; Field, M. J. A Generalized Hybrid Orbital (GHO) Method for the Treatment of Boundary Atoms in Combined QM/MM Calculations. J. Phys. Chem. A 1998, 102, 4714–4721; https://doi.org/10.1021/jp9809890.Suche in Google Scholar
339. Amara, P.; Field, M. J.; Alhambra, C.; Gao, J. The Generalized Hybrid Orbital Method for Combined Quantum Mechanical/molecular Mechanical Calculations: Formulation and Tests of the Analytical Derivatives. Theoret. Chem. Acc. 2000, 104, 336–343; https://doi.org/10.1007/s002140000153.Suche in Google Scholar
340. Ruiz-López, M. F.; Rivail, J. L. Combined Quantum Mechanics and Molecular Mechanics Approaches to Chemical and Biochemical Reactivity. In Encyclopedia of Computational Chemistry; Schleyer, P. V. R., Ed.; Wiley: New York, Vol. 1, 1998; pp 437–448.10.1002/0470845015.cca028Suche in Google Scholar
341. Thole, B. T.; van Duijnen, P. T. On the Quantum Mechanical Treatment of Solvent Effects. Theor. Chim. Acta 1980, 55, 307–318; https://doi.org/10.1007/bf00549429.Suche in Google Scholar
342. De Vries, A. H.; Van Duijnen, P. T.; Juffer, A. H.; Rullmann, J. A. C.; Dijkman, J. P.; Merenga, H.; Thole, B. T. Implementation of Reaction Field Methods in Quantum Chemistry Computer Codes. J. Comp. Chem. 1995, 16, 37–55; https://doi.org/10.1002/jcc.540161113.Suche in Google Scholar
343. Van Duijnen, P. T.; de Vries, A. H. Direct Reaction Field Force Field: A Consistent Way to Connect and Combine Quantum-chemical and Classical Descriptions of Molecules. Int. J. Quantum Chem. 1996, 60, 1111–1132; https://doi.org/10.1002/(sici)1097-461x(1996)60:6<1111::aid-qua2>3.0.co;2-2.10.1002/(SICI)1097-461X(1996)60:6<1111::AID-QUA2>3.0.CO;2-2Suche in Google Scholar
344. Martins-Costa, M. T. C.; Ruiz-López, M. F. Reaching Multi-Nanosecond Timescales in Combined QM/MM Molecular Dynamics Simulations Through Parallel Horsetail Sampling. J. Comput. Chem. 2017, 38, 659–668; https://doi.org/10.1002/jcc.24723.Suche in Google Scholar
345. Martins-Costa, M. T. C.; Ruiz-López, M. F. Highly Accurate Computation of Free Energies in Complex Systems Through Horsetail QM/MM Molecular Dynamics Combined with Free-energy Perturbation Theory. Theoret. Chem. Acc. 2017, 136, 50.10.1007/s00214-017-2078-ySuche in Google Scholar
346. Chandler, D.; Andersen, H. C. Optimized Cluster Expansions for Classical Fluids. II. Theory of Molecular Liquids. J. Chem. Phys. 1972, 57, 1930–1937; https://doi.org/10.1063/1.1678513.Suche in Google Scholar
347. Ten-no, S.; Hirata, F.; Kato, S. A Hybrid Approach for the Solvent Effect on the Electronic Structure of a Solute Based on the RISM and Hartree-Fock Equations. Chem. Phys. Lett. 1993, 214, 391–396; https://doi.org/10.1016/0009-2614(93)85655-8.Suche in Google Scholar
348. Maw, S.; Sato, H.; Ten-no, S.; Hirata, F. Ab Initio Study of Water: Self-consistent Determination of Electronic Structure and Liquid State Properties. Chem. Phys. Lett. 1997, 276, 20–25; https://doi.org/10.1016/s0009-2614(97)88029-3.Suche in Google Scholar
349. Naka, K.; Sato, H.; Morita, A.; Hirata, F.; Kato, S. RISM-SCF Study of the Free-energy Profile of the Menshutkin-type Reaction NH3+CH3Cl→NH3CH3++Cl− in Aqueous Solution. Theoret. Chem. Acc. 1999, 102, 165–169; https://doi.org/10.1007/s002140050487.Suche in Google Scholar
350. Sato, H. A Modern Solvation Theory: Quantum Chemistry and Statistical Chemistry. Phys. Chem. Chem. Phys. 2013, 15, 7450–7465; https://doi.org/10.1039/c3cp50247c.Suche in Google Scholar
351. Sánchez, M. L.; Aguilar, M. A.; Olivares del Valle, F. J. Study of Solvent Effects by Means of Averaged Solvent Electrostatic Potentials Obtained from Molecular Dynamics Data. J. Comput. Chem. 1997, 18, 313–322; https://doi.org/10.1002/(sici)1096-987x(199702)18:3<313::aid-jcc2>3.0.co;2-x.10.1002/(SICI)1096-987X(199702)18:3<313::AID-JCC2>3.3.CO;2-0Suche in Google Scholar
352. Sánchez, M. L.; Martín, M. E.; Aguilar, M. A.; Olivares del Valle, F. J. Solvent Effects on the 1(n,p*) Transition of Formaldehyde in Liquid Water. A QM/MM Study Using the Mean Field Approximation. Chem. Phys. Lett. 1999, 310, 195–200.10.1016/S0009-2614(99)00735-6Suche in Google Scholar
353. Muñoz-Losa, A.; Fdez-Galván, I.; Martín, M. E.; Aguilar, M. A. Theoretical Study of Liquid Hydrogen Fluoride. Application of the Averaged Solvent Electrostatic Potential/Molecular Dynamics Method. J. Phys. Chem. B 2003, 107, 5043–5047; https://doi.org/10.1021/jp022422w.Suche in Google Scholar
354. Coutinho, K.; Georg, H. C.; Fonseca, T. L.; Ludwig, V.; Canuto, S. An Efficient Statistically Converged Average Configuration for Solvent Effects. Chem. Phys. Lett. 2007, 437, 148–152; https://doi.org/10.1016/j.cplett.2007.02.012.Suche in Google Scholar
355. Coutinho, K.; Rivelino, R.; Georg, H. C.; Canuto, S. The Sequential QM/MM Method and its Applications to Solvent Effects in Electronic and Structural Properties of Solutes. In Solvation Effects on Molecules and Biomolecules; Canuto, S., Ed.; Springer: Dordrecht, 2008; pp. 159–189.10.1007/978-1-4020-8270-2_7Suche in Google Scholar
356. Fdez Galván, I.; Martín, M. E.; Aguilar, M. A. A New Method to Locate Saddle Points for Reactions in Solution by Using the Free‐energy Gradient Method and the Mean Field Approximation. J. Comput. Chem. 2004, 25, 1227–1233; https://doi.org/10.1002/jcc.20048.Suche in Google Scholar
357. Georg, H. C.; Canuto, S. Electronic Properties of Water in Liquid Environment. A Sequential QM/MM Study Using the Free Energy Gradient Method. J. Phys. Chem. B 2012, 116, 11247–11254; https://doi.org/10.1021/jp304201b.Suche in Google Scholar
358. Okuyama‐Yoshida, N.; Nagaoka, M.; Yamabe, T. Transition‐state Optimization on Free Energy Surface: Toward Solution Chemical Reaction Ergodography. Int. J. Quantum Chem. 1998, 70, 95–103; https://doi.org/10.1002/(sici)1097-461x(1998)70:1<95::aid-qua7>3.0.co;2-0.10.1002/(SICI)1097-461X(1998)70:1<95::AID-QUA7>3.0.CO;2-0Suche in Google Scholar
359. Okuyama-Yoshida, N.; Kataoka, K.; Nagaoka, M.; Yamabe, T. Structure Optimization Via Free Energy Gradient Method: Application to Glycine Zwitterion in Aqueous Solution. J. Chem. Phys. 2000, 113, 3519–3524; https://doi.org/10.1063/1.1287785.Suche in Google Scholar
360. Kitamura, Y.; Takenaka, N.; Koyano, Y.; Nagaoka, M. Free Energy Gradient Method and its Recent Related Developments: Free Energy Optimization and Vibrational Frequency Analysis in Solution. In Quantum Modeling of Complex Molecular Systems; Rivail, J.-L.; Ruiz-López, M.; Assfeld, X., Eds.; Springer: Cham Heidelberg New York Dordrecht London, Vol. 21, 2015; pp. 219–252; https://doi.org/10.1007/978-3-319-21626-3_8.Suche in Google Scholar
361. Bistafa, C.; Kitamura, Y.; Martins-Costa, M. T. C.; Nagaoka, M.; Ruiz-López, M. F. A Cost-Effective Method for Free-Energy Minimization in Complex Systems with Elaborated Ab Initio Potentials. J. Chem. Theor. Comp. 2018, 14, 3262–3271; https://doi.org/10.1021/acs.jctc.8b00271.Suche in Google Scholar
362. Bistafa, C.; Kitamura, Y.; Martins-Costa, M. T. C.; Nagaoka, M.; Ruiz-López, M. F. Vibrational Spectroscopy in Solution Through Perturbative Ab Initio Molecular Dynamics Simulations. J. Chem. Theor. Comput. 2019, 15, 4615–4622; https://doi.org/10.1021/acs.jctc.9b00362.Suche in Google Scholar
363. Chalmet, S.; Rinaldi, D.; Ruiz-López, M. F. A QM/MM/Continuum Model for Computations in Solution: Comparison with QM/MM Molecular Dynamics Simulations. Int. J. Quantum Chem. 2001, 84, 559–564.10.1002/qua.1410Suche in Google Scholar
364. Cui, Q. Combining Implicit Solvation Models with Hybrid Quantum Mechanical/molecular Mechanical Methods: A Critical Test with Glycine. J. Chem. Phys. 2002, 117, 4720–4728; https://doi.org/10.1063/1.1499481.Suche in Google Scholar
365. Woo, T. K.; Margl, P. M.; Blöchl, P. E.; Ziegler, T. A Combined Car−Parrinello QM/MM Implementation for Ab Initio Molecular Dynamics Simulations of Extended Systems: Application to Transition Metal Catalysis. J. Phys. Chem. B 1997, 101, 7877–7880; https://doi.org/10.1021/jp9717296.Suche in Google Scholar
366. Woo, T. K.; Blöchl, P. E.; Ziegler, T. Towards Solvation Simulations with a Combined Ab Initio Molecular Dynamics and Molecular Mechanics Approach. J. Mol. Struct.: THEOCHEM 2000, 506, 313–334.10.1016/S0166-1280(00)00424-3Suche in Google Scholar
367. Eichinger, M.; Tavan, P.; Hutter, J.; Parrinello, M. A Hybrid Method for Solutes in Complex Solvents : Density Functional Theory Combined with Empirical Force Fields. J. Chem. Phys. 1999, 110, 10452–10466; https://doi.org/10.1063/1.479049.Suche in Google Scholar
368. Laio, A.; VandeVondele, J.; Rothlisberger, U. A Hamiltonian Electrostatic Coupling Scheme for Hybrid Car–Parrinello Molecular Dynamics Simulations. J. Chem. Phys. 2002, 116, 6941–6947; https://doi.org/10.1063/1.1462041.Suche in Google Scholar
369. Laio, A.; VandeVondele, J.; Rothlisberger, U. D-RESP: Dynamically Generated Electrostatic Potential Derived Charges from Quantum Mechanics/molecular Mechanics Simulations. J. Phys. Chem. B 2002, 106, 7300–7307; https://doi.org/10.1021/jp0143138.Suche in Google Scholar
370. Colombo, M. C.; Guidoni, L.; Laio, A.; Magistrato, A.; Maurer, P.; Piana, S.; Röhrig, U.; Spiegel, K.; Sulpizi, M.; VandeVondele, J.; Zumstein, M.; Röthlisberger, U. Hybrid QM/MM Car-Parrinello Simulations of Catalytic and Enzymatic Reactions. Chimia 2002, 56, 13–19. https://doi.org/10.2533/000942902777680865.Suche in Google Scholar
371. Rothlisberger, U.; Carloni, P.; Doclo, K.; Parrinello, M. A Comparative Study of Galactose Oxidase and Active Site Analogs Based on QM/MM Car Parrinello Simulations. J. Biol. Inorg. Chem. 2000, 5, 236–250; https://doi.org/10.1007/s007750050368.Suche in Google Scholar PubMed
372. Guidoni, L.; Maurer, P.; Piana, S.; Rothlisberger, U. Hybrid Car-Parrinello/molecular Mechanics Modelling of Transition Metal Complexes: Structure, Dynamics and Reactivity. Quant. Struct.-Act. Relat. 2002, 21, 119–127; https://doi.org/10.1002/1521-3838(200207)21:2<119::aid-qsar119>3.0.co;2-b.10.1002/1521-3838(200207)21:2<119::AID-QSAR119>3.0.CO;2-BSuche in Google Scholar
373. Moret, M. E.; Tavernelli, I.; Rothlisberger, U. Combined QM/MM and Classical Molecular Dynamics Study of Ru(bpy)32+ in Water. J. Phys. Chem. B 2009, 113, 7737–7744; https://doi.org/10.1021/jp900147r.Suche in Google Scholar
374. Liberatore, E.; Meli, R.; Rothlisberger, U. A Versatile Multiple Time Step Scheme for Efficient Ab Initio Molecular Dynamics Simulations. J. Chem. Theor. Comput. 2018, 14, 2834–2842; https://doi.org/10.1021/acs.jctc.7b01189.Suche in Google Scholar
375. Humbel, S.; Sieber, S.; Morokuma, K. The IMOMO Method: Integration of Different Levels of Molecular Orbital Approximations for Geometry Optimization of Large Systems: Test for n-butane Conformation and SN2 Reaction: RCl+Cl-. J. Chem. Phys. 1996, 105, 1959–1967; https://doi.org/10.1063/1.472065.Suche in Google Scholar
376. Matsubara, T.; Maseras, F.; Koga, N.; Morokuma, K. Application of the New ‘‘integrated MO+MM’’ (IMOMM) Method to the Organometallic Reaction Pt(PR3)2+H2 (R=H, Me, t-Bu, and Ph). J. Phys. Chem. 1996, 100, 2573–2580; https://doi.org/10.1021/jp951762x.Suche in Google Scholar
377. Matsubara, T.; Sieber, S.; Morokuma, K. A Test of the New ‘‘integrated MO+MM’’ (IMOMM) Method for the Conformational Energy of Ethane and n-butane. Int. J. Quantum Chem. 1996, 60, 1101–1109; https://doi.org/10.1002/(sici)1097-461x(1996)60:6<1101::aid-qua1>3.0.co;2-3.10.1002/(SICI)1097-461X(1996)60:6<1101::AID-QUA1>3.0.CO;2-3Suche in Google Scholar
378. Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.; Sieber, S.; Morokuma, K. ONIOM: A Multilayered Integrated MO+MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels-Alder Reactions and Pt(P(t-Bu)3)2+H2 Oxidative Addition. J. Phys. Chem. 1996, 100, 19357–19363; https://doi.org/10.1021/jp962071j.Suche in Google Scholar
379. Svensson, M.; Humbel, S.; Morokuma, K. Energetics Using the Single Point IMOMO (integrated Molecular Orbital Plus Molecular Orbital) Calculations: Choices of Computational Levels and Model System. J. Chem. Phys. 1996, 105, 3654–3661; https://doi.org/10.1063/1.472235.Suche in Google Scholar
380. Svensson, M.; Matsubara, T.; Morokuma, K. Theoretical Study of Pd(II)- and Ni(II)-catalyzed Alternating Copolymerization of Carbon Monoxide with Ethylene. Organometallics 1996, 15, 5568–5576; https://doi.org/10.1021/om960535u.Suche in Google Scholar
381. Maseras, F.; Morokuma, K. IMOMM: A New Integrated Ab Initio + Molecular Mechanics Geometry Optimization Scheme of Equilibrium Structures and Transition States. J. Comp. Chem. 1995, 16, 1170–1179; https://doi.org/10.1002/jcc.540160911.Suche in Google Scholar
382. Chung, L. W.; Sameera, W. M. C.; Ramozzi, R.; Page, A. J.; Hatanaka, M.; Petrova, G. P.; Harris, T. V.; Li, X.; Ke, Z.; Liu, F.; Li, H.-B.; Ding, L.; Morokuma, K. The ONIOM Method and Its Applications. Chem. Rev. 2015, 115, 5678–5796. https://doi.org/10.1021/cr5004419.Suche in Google Scholar PubMed
383. Woo, T. K.; Cavallo, L.; Ziegler, T. Implementation of the IMOMM Methodology for Performing Combined QM/MM Molecular Dynamics Simulations and Frequency Calculations. Theoret. Chem. Acc. 1998, 100, 307–313; https://doi.org/10.1007/s002140050391.Suche in Google Scholar
384. Rega, N.; Iyengar, S. S.; Voth, G. A.; Schlegel, H. B.; Vreven, T.; Frisch, M. J. Hybrid Ab-Initio/Empirical Molecular Dynamics: Combining the ONIOM Scheme with the Atom-Centered Density Matrix Propagation (ADMP) Approach. J. Phys. Chem. B 2004, 108, 4210–4220; https://doi.org/10.1021/jp0370829.Suche in Google Scholar
385. Rega, N.; Iyengar, S. S.; Voth, G. A.; Schlegel, H. B.; Vreven, T.; Frisch, M. J. Hybrid ab-initio/empirical Molecular Dynamics: Combining the ONIOM Scheme with the Atom-centered Density Matrix Propagation (ADMP) Approach. J. Phys. Chem. B 2004, 108, 4210–4220; https://doi.org/10.1021/jp0370829.Suche in Google Scholar
386. Matsubara, T.; Dupuis, M.; Aida, M. The ONIOM Molecular Dynamics Method for Biochemical Applications: Cytidine Deaminase. Chem. Phys. Lett. 2007, 437, 138–142; https://doi.org/10.1016/j.cplett.2007.01.085.Suche in Google Scholar
387. Sumner, I.; Iyengar, S. S. Combining Quantum Wavepacket Ab Initio Molecular Dynamics with QM/MM and QM/QM Techniques: Implementation Blending ONIOM and Empirical Valence Bond Theory. J. Chem. Phys. 2008, 129, 054109; https://doi.org/10.1063/1.2956496.Suche in Google Scholar PubMed
388. Gao, J. Hybrid Quantum and Molecular Mechanical Simulations: An Alternative Avenue to Solvent Effects in Organic Chemistry. Acc. Chem. Res. 1996, 29, 298–305; https://doi.org/10.1021/ar950140r.Suche in Google Scholar
389. Gao, J.; Thompson, M. A. Combined Quantum Mechanical and Molecular Mechanical Methods, Vol. 712; ACS Publications: Washington, DC, 1998.10.1021/bk-1998-0712Suche in Google Scholar
390. Sherwood, P. Hybrid Quantum Mechanics/molecular Mechanics Approaches. In Modern Methods and Algorithms of Quantum Chemistry; Grotendorst, J., Ed.; NIC-Directors: Jülich, Germany, 2000; pp. 285–305.Suche in Google Scholar
391. Lin, H.; Truhlar, D. G. QM/MM: What Have we Learned, Where are we, and Where do we go from Here? Theoret. Chem. Acc. 2007, 117, 185–199; https://doi.org/10.1007/s00214-006-0143-z.Suche in Google Scholar
392. Liu, M. Y.; Wang, Y. J.; Chen, Y. K.; Field, M. J.; Gao, J. L. QM/MM Through the 1990s: The First Twenty Years of Method Development and Applications. Isr. J. Chem. 2014, 54, 1250–1263; https://doi.org/10.1002/ijch.201400036.Suche in Google Scholar PubMed PubMed Central
393. Rivail, J.-L.; Ruiz-López, M. F.; Assfeld, X. Quantum Modeling of Complex Molecular Systems, Vol. 21; Springer: Cham Heidelberg New York Dordrecht London, 2015.10.1007/978-3-319-21626-3Suche in Google Scholar
394. van Duin, A. C.; Dasgupta, S.; Lorant, F.; Goddard, W. A. ReaxFF: A Reactive Force Field for Hydrocarbons. J. Phys. Chem. A 2001, 105, 9396–9409; https://doi.org/10.1021/jp004368u.Suche in Google Scholar
395. Leven, I.; Hao, H.; Das, A. K.; Head-Gordon, T. A Reactive Force Field with Coarse-grained Electrons for Liquid Water. J. Phys. Chem. Lett. 2020, 11, 9240–9247; https://doi.org/10.1021/acs.jpclett.0c02516.Suche in Google Scholar PubMed
396. van Duin, A. Reactive Force Fields: Concepts of ReaxFF. In Computational Methods in Catalysis and Materials Science: An Introduction for Scientists and Engineers; van Santen, R. A., Sautet, P., Eds.; Wiley‐VCH Verlag GmbH & Co. KGaA: Weinheim, 2009; pp 167–181.10.1002/9783527625482.ch9Suche in Google Scholar
397. Hariharan, S.; Kinge, S.; Visscher, L. Modeling Heterogeneous Catalysis Using Quantum Computers: An Academic and Industry Perspective. J. Chem. Inf. Model. 2025, 65, 472–511; https://doi.org/10.1021/acs.jcim.4c01212.Suche in Google Scholar PubMed PubMed Central
398. Ruiz-López, M. F.; Francisco, J. S.; Martins-Costa, M. T. C.; Anglada, J. M. Molecular Reactions at Aqueous Interfaces. Nat. Rev. Chem. 2020, 4, 459–475; https://doi.org/10.1038/s41570-020-0203-2.Suche in Google Scholar PubMed
399. Qiu, L.; Cooks, R. G. Spontaneous Oxidation in Aqueous Microdroplets: Water Radical Cation as Primary Oxidizing Agent. Angew. Chem. Int. Ed. 2024, 136, e202400118; https://doi.org/10.1002/anie.202400118.Suche in Google Scholar PubMed
400. Mofidfar, M.; Mehrgardi, M. A.; Zare, R. N. Water Microdroplets Surrounded by Alcohol Vapor Cause Spontaneous Oxidation of Alcohols to Organic Peroxides. J. Am. Chem. Soc. 2024, 146, 18498–18503; https://doi.org/10.1021/jacs.4c04092.Suche in Google Scholar PubMed
401. Winterton, N. The Green Solvent: A Critical Perspective. Clean Technol. Environ. Policy 2021, 23, 2499–2522; https://doi.org/10.1007/s10098-021-02188-8.Suche in Google Scholar PubMed PubMed Central
402. Comptes Rendus. Chimie. Special Issue “French Network on Solvation (GDR 2035 SolvATE)”; F. Ingrosso, Ed. https://comptes-rendus.academie-sciences.fr/chimie/item/CRCHIM_2024__27_S5/ (accessed 2025-04-02).Suche in Google Scholar
403. Kirchner, B. Theory of Complicated Liquids: Investigation of Liquids, Solvents and Solvent Effects with Modern Theoretical Methods. Phys. Rep. 2007, 440, 1–111; https://doi.org/10.1016/j.physrep.2006.11.005.Suche in Google Scholar
404. Kirchner, B. Ionic Liquids from Theoretical Investigations. In Ionic Liquids; Kirchner, B., Ed.; Springer: Berlin, Heidelberg, Vol. 290, 2009; pp. 213–262; https://doi.org/10.1007/128_2008_36.Suche in Google Scholar PubMed
405. Bernales, V. S.; Marenich, A. V.; Contreras, R.; Cramer, C. J.; Truhlar, D. G. Quantum Mechanical Continuum Solvation Models for Ionic Liquids. J. Phys. Chem. B 2012, 116, 9122–9129; https://doi.org/10.1021/jp304365v.Suche in Google Scholar PubMed
406. Zahn, S.; Kirchner, B.; Mollenhauer, D. Charge Spreading in Deep Eutectic Solvents. ChemPhysChem 2016, 17, 3354–3358; https://doi.org/10.1002/cphc.201600348.Suche in Google Scholar PubMed
407. Ingrosso, F.; Ruiz-Lopez, M. F. Modeling Solvation in Supercritical CO2. ChemPhysChem 2017, 18, 2560–2572; https://doi.org/10.1002/cphc.201700434.Suche in Google Scholar PubMed
408. Perkin, S.; Kirchner, B.; Fayer, M. D. Preface: Special Topic on Chemical Physics of Ionic Liquids. J. Chem. Phys. 2018, 148, 193501; https://doi.org/10.1063/1.5039492.Suche in Google Scholar PubMed
409. Glossman-Mitnik, D.; Maciejewska, M. Solvents, Ionic Liquids and Solvent Effects; IntechOpen: London, 2020.10.5772/intechopen.82039Suche in Google Scholar
410. Botu, V.; Ramprasad, R. Adaptive Machine Learning Framework to Accelerate Ab Initio Molecular Dynamics. Int. J. Quantum Chem. 2015, 115, 1074–1083; https://doi.org/10.1002/qua.24836.Suche in Google Scholar
411. Behler, J.; Parrinello, M. Generalized Neural-network Representation of High-dimensional Potential-energy Surfaces. Phys. Rev. Lett. 2007, 98, 146401; https://doi.org/10.1103/physrevlett.98.146401.Suche in Google Scholar
412. Gastegger, M.; Behler, J.; Marquetand, P. Machine Learning Molecular Dynamics for the Simulation of Infrared Spectra. Chem. Sci. 2017, 8, 6924–6935; https://doi.org/10.1039/c7sc02267k.Suche in Google Scholar PubMed PubMed Central
413. Shen, L.; Yang, W. Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks. J. Chem. Theor. Comput. 2018, 14, 1442–1455; https://doi.org/10.1021/acs.jctc.7b01195.Suche in Google Scholar PubMed PubMed Central
414. Unke, O. T.; Chmiela, S.; Sauceda, H. E.; Gastegger, M.; Poltavsky, I.; Schutt, K. T.; Tkatchenko, A.; Müller, K.-R. Machine Learning Force Fields. Chem. Rev. 2021, 121, 10142–10186; https://doi.org/10.1021/acs.chemrev.0c01111.Suche in Google Scholar PubMed PubMed Central
415. Zeng, J.; Zhang, D.; Lu, D.; Mo, P.; Li, Z.; Chen, Y.; Rynik, M.; Huang, L. a.; Li, Z.; Shi, S.; Wang, Y.; Ye, H.; Tuo, P.; Yang, J.; Ding, Y.; Li, Y.; Tisi, D.; Zeng, Q.; Bao, H.; Xia, Y.; Huang, J.; Muraoka, K.; Wang, Y.; Chang, J.; Yuan, F.; Bore, S. L.; Cai, C.; Lin, Y.; Wang, B.; Xu, J.; Zhu, J.-X.; Luo, C.; Zhang, Y.; Goodall, R. E. A.; Liang, W.; Singh, A. K.; Yao, S.; Zhang, J.; Wentzcovitch, R.; Han, J.; Liu, J.; Jia, W.; York, D. M.; E, W.; Car, R.; Zhang, L.; Wang, H. DeePMD-kit v2: A Software Package for Deep Potential Models. J. Chem. Phys. 2023, 159, 054801. https://doi.org/10.1063/5.0155600.Suche in Google Scholar PubMed PubMed Central
416. Gomez, A.; de la Puente, M.; David, R.; Laage, D. Neural Network Potentials for Exploring Condensed Phase Chemical Reactivity. CR Chim. 2024, 27, 1–17. https://doi.org/10.5802/crchim.315.Suche in Google Scholar
417. Shao, Y. H.; Gan, Z. T.; Epifanovsky, E.; Gilbert, A. T. B.; Wormit, M.; Kussmann, J.; Lange, A. W.; Behn, A.; Deng, J.; Feng, X. T.; Ghosh, D.; Goldey, M.; Horn, P. R.; Jacobson, L. D.; Kaliman, I.; Khaliullin, R. Z.; Kus, T.; Landau, A.; Liu, J.; Proynov, E. I.; Rhee, Y. M.; Richard, R. M.; Rohrdanz, M. A.; Steele, R. P.; Sundstrom, E. J.; Woodcock, H. L.; Zimmerman, P. M.; Zuev, D.; Albrecht, B.; Alguire, E.; Austin, B.; Beran, G. J. O.; Bernard, Y. A.; Berquist, E.; Brandhorst, K.; Bravaya, K. B.; Brown, S. T.; Casanova, D.; Chang, C. M.; Chen, Y. Q.; Chien, S. H.; Closser, K. D.; Crittenden, D. L.; Diedenhofen, M.; DiStasio, R. A.; Do, H.; Dutoi, A. D.; Edgar, R. G.; Fatehi, S.; Fusti-Molnar, L.; Ghysels, A.; Golubeva-Zadorozhnaya, A.; Gomes, J.; Hanson-Heine, M. W. D.; Harbach, P. H. P.; Hauser, A. W.; Hohenstein, E. G.; Holden, Z. C.; Jagau, T. C.; Ji, H. J.; Kaduk, B.; Khistyaev, K.; Kim, J.; Kim, J.; King, R. A.; Klunzinger, P.; Kosenkov, D.; Kowalczyk, T.; Krauter, C. M.; Lao, K. U.; Laurent, A. D.; Lawler, K. V.; Levchenko, S. V.; Lin, C. Y.; Liu, F.; Livshits, E.; Lochan, R. C.; Luenser, A.; Manohar, P.; Manzer, S. F.; Mao, S. P.; Mardirossian, N.; Marenich, A. V.; Maurer, S. A.; Mayhall, N. J.; Neuscamman, E.; Oana, C. M.; Olivares-Amaya, R.; O’Neill, D. P.; Parkhill, J. A.; Perrine, T. M.; Peverati, R.; Prociuk, A.; Rehn, D. R.; Rosta, E.; Russ, N. J.; Sharada, S. M.; Sharma, S.; Small, D. W.; Sodt, A.; Stein, T.; Stück, D.; Su, Y. C.; Thom, A. J. W.; Tsuchimochi, T.; Vanovschi, V.; Vogt, L.; Vydrov, O.; Wang, T.; Watson, M. A.; Wenzel, J.; White, A.; Williams, C. F.; Yang, J.; Yeganeh, S.; Yost, S. R.; You, Z. Q.; Zhang, I. Y.; Zhang, X.; Zhao, Y.; Brooks, B. R.; Chan, G. K. L.; Chipman, D. M.; Cramer, C. J.; Goddard, W. A.; Gordon, M. S.; Hehre, W. J.; Klamt, A.; Schaefer, H. F.; Schmidt, M. W.; Sherrill, C. D.; Truhlar, D. G.; Warshel, A.; Xu, X.; Aspuru-Guzik, A.; Baer, R.; Bell, A. T.; Besley, N. A.; Chai, J. D.; Dreuw, A.; Dunietz, B. D.; Furlani, T. R.; Gwaltney, S. R.; Hsu, C. P.; Jung, Y. S.; Kong, J.; Lambrecht, D. S.; Liang, W. Z.; Ochsenfeld, C.; Rassolov, V. A.; Slipchenko, L. V.; Subotnik, J. E.; Van Voorhis, T.; Herbert, J. M.; Krylov, A. I.; Gill, P. M. W.; Head-Gordon, M. Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package. Mol. Phys. 2015, 113, 184–215. https://doi.org/10.1080/00268976.2014.952696.Suche in Google Scholar
418. Cao, Y. D.; Romero, J.; Olson, J. P.; Degroote, M.; Johnson, P. D.; Kieferová, M.; Kivlichan, I. D.; Menke, T.; Peropadre, B.; Sawaya, N. P. D.; Sim, S.; Veis, L.; Aspuru-Guzik, A. Quantum Chemistry in the Age of Quantum Computing. Chem. Rev. 2019, 119, 10856–10915. https://doi.org/10.1021/acs.chemrev.8b00803.Suche in Google Scholar PubMed
419. Motta, M.; Rice, J. E. Emerging Quantum Computing Algorithms for Quantum Chemistry. WIRes Comput. Mol. Sci. 2022, 12, e1580; https://doi.org/10.1002/wcms.1580.Suche in Google Scholar
420. Kassal, I.; Whitfield, J. D.; Perdomo-Ortiz, A.; Yung, M.-H.; Aspuru-Guzik, A. Simulating Chemistry Using Quantum Computers. Annu. Rev. Phys. Chem. 2011, 62, 185–207; https://doi.org/10.1146/annurev-physchem-032210-103512.Suche in Google Scholar PubMed
421. Castaldo, D.; Jahangiri, S.; Delgado, A.; Corni, S. Quantum Simulation of Molecules in Solution. J. Chem. Theor. Comput. 2022, 18, 7457–7469; https://doi.org/10.1021/acs.jctc.2c00974.Suche in Google Scholar PubMed PubMed Central
422. Fedorov, D. A.; Otten, M. J.; Gray, S. K.; Alexeev, Y. Ab Initio Molecular Dynamics on Quantum Computers. J. Chem. Phys. 2021, 154, 164103; https://doi.org/10.1063/5.0046930.Suche in Google Scholar PubMed
© 2025 IUPAC & De Gruyter
Artikel in diesem Heft
- Frontmatter
- IUPAC Technical Report
- Acid dissociation constants in selected dipolar non-hydrogen-bond-donor solvents (IUPAC Technical Report)
- Preface
- Introduction to the Special Issue of “The International Year of Quantum”
- Review Articles
- Quantum chemistry of molecules in solution. A brief historical perspective
- From Hückel to Clar: a block-localized description of aromatic systems
- Exploring potential energy surfaces
- Unlocking the chemistry facilitated by enzymes that process nucleic acids using quantum mechanical and combined quantum mechanics–molecular mechanics techniques
- Hypothetical heterocyclic carbenes
- Is relativistic quantum chemistry a good theory of everything?
- When theory came first: a review of theoretical chemical predictions ahead of experiments
- Research Articles
- Exploring reaction dynamics involving post-transition state bifurcations based on quantum mechanical ambimodal transition states
- Molecular aromaticity: a quantum phenomenon
- Using topology for understanding your computational results
- The role of ion-pair on the olefin polymerization reactivity of zirconium bis(phenoxy-imine) catalyst: quantum mechanical study and its beyond
- Theoretical insights on the structure and stability of the [C2, H3, P, O] isomeric family
Artikel in diesem Heft
- Frontmatter
- IUPAC Technical Report
- Acid dissociation constants in selected dipolar non-hydrogen-bond-donor solvents (IUPAC Technical Report)
- Preface
- Introduction to the Special Issue of “The International Year of Quantum”
- Review Articles
- Quantum chemistry of molecules in solution. A brief historical perspective
- From Hückel to Clar: a block-localized description of aromatic systems
- Exploring potential energy surfaces
- Unlocking the chemistry facilitated by enzymes that process nucleic acids using quantum mechanical and combined quantum mechanics–molecular mechanics techniques
- Hypothetical heterocyclic carbenes
- Is relativistic quantum chemistry a good theory of everything?
- When theory came first: a review of theoretical chemical predictions ahead of experiments
- Research Articles
- Exploring reaction dynamics involving post-transition state bifurcations based on quantum mechanical ambimodal transition states
- Molecular aromaticity: a quantum phenomenon
- Using topology for understanding your computational results
- The role of ion-pair on the olefin polymerization reactivity of zirconium bis(phenoxy-imine) catalyst: quantum mechanical study and its beyond
- Theoretical insights on the structure and stability of the [C2, H3, P, O] isomeric family