Abstract
Quantum mechanics is central to our understanding of chemistry both qualitatively and quantitatively. Modern electronic structure calculations can yield energies and structures of small to medium size molecules to chemical accuracy, thereby providing a computational model for chemistry. A potential energy surface describes the energy of a molecule as a function of its geometric parameters. The features of potential energy surfaces provide the connections between quantum mechanics and the traditional chemical concepts such as structure, bonding and reactivity. This brief perspective presents an overview of tools for exploring potential energy surfaces such as optimizing equilibrium geometries, finding transition states, following reaction paths and simulating molecular dynamics.
Funding source: Division of Chemistry
Award Identifier / Grant number: CHE1856437
Acknowledgments
This work was supported by a grant from the National Science Foundation (CHE1856437).
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: National Science Foundation CHE1856437.
-
Data availability: Not applicable.
References
1. Dirac, P. A. M.; Fowler, R. H. “The Fundamental Laws Necessary for the Mathematical Treatment of a Large Part of Physics and the Whole of Chemistry are thus Completely Known, and the Difficulty Lies Only in the Fact that Application of These Laws Leads to Equations that are too Complex to be Solved” Quantum Mechanics of Many-Electron Systems. Proc. R. Soc. A 1929, 123, 714–733. https://doi.org/10.1098/rspa.1929.0094.Search in Google Scholar
2. Burke, K. Perspective on Density Functional Theory. J. Chem. Phys. 2012, 136, 150901. https://doi.org/10.1063/1.4704546.Search in Google Scholar PubMed
3. Becke, A. D. Perspective: Fifty Years of Density-Functional Theory in Chemical Physics. J. Chem. Phys. 2014, 140, 18A301. https://doi.org/10.1063/1.4869598.Search in Google Scholar PubMed
4. Jones, R. O. Density Functional Theory: Its Origins, Rise to Prominence, and Future. Rev. Mod. Phys. 2015, 87, 897–923. https://doi.org/10.1103/RevModPhys.87.897.Search in Google Scholar
5. Karton, A. Quantum Mechanical Thermochemical Predictions 100 Years After the Schrodinger Equation. In Annual Reports in Computational Chemistry; Dixon, D. A., Ed.; Elsevier: Amsterdam, Vol. 18, 2022; pp 123–166.10.1016/bs.arcc.2022.09.003Search in Google Scholar
6. Pople, J. A. Nobel Lecture: Quantum Chemical Models. Rev. Mod. Phys. 1999, 71, 1267–1274. https://doi.org/10.1103/RevModPhys.71.1267.Search in Google Scholar
7. Wales, D. J. Energy Landscapes; Cambridge University Press: Cambridge, 2003.Search in Google Scholar
8. Schlegel, H. B. Geometry Optimization. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 790–809. https://doi.org/10.1002/wcms.34.Search in Google Scholar
9. Fukui, K. The Path of Chemical-Reactions – The IRC Approach. Acc. Chem. Res. 1981, 14, 363–368. https://doi.org/10.1021/ar00072a001.Search in Google Scholar
10. Born, M.; Oppenheimer, R. Zur Quantentheorie der Molekeln. Ann. Phys. 1927, 389, 457–484. https://doi.org/10.1002/andp.19273892002.Search in Google Scholar
11. Sathyamurthy, N. Computational Fitting of Abinitio Potential-Energy Surfaces. Comput. Phys. Rep. 1985, 3, 1–70. https://doi.org/10.1016/0167-7977(85)90007-3.Search in Google Scholar
12. Truhlar, D. G.; Steckler, R.; Gordon, M. S. Potential-Energy Surfaces for Polyatomic Reaction Dynamics. Chem. Rev. 1987, 87, 217–236. https://doi.org/10.1021/cr00077a011.Search in Google Scholar
13. Schatz, G. C. The Analytical Representation of Electronic Potential-Energy Surfaces. Rev. Mod. Phys. 1989, 61, 669–688. https://doi.org/10.1103/revmodphys.61.669.Search in Google Scholar
14. Hollebeek, T.; Ho, T. S.; Rabitz, H. Constructing Multidimensional Molecular Potential Energy Surfaces from Ab Initio Data. Annu. Rev. Phys. Chem. 1999, 50, 537–570. https://doi.org/10.1146/annurev.physchem.50.1.537.Search in Google Scholar PubMed
15. Braams, B. J.; Bowman, J. M. Permutationally Invariant Potential Energy Surfaces in High Dimensionality. Int. Rev. Phys. Chem. 2009, 28, 577–606. https://doi.org/10.1080/01442350903234923.Search in Google Scholar
16. Jiang, B.; Li, J.; Guo, H. Potential Energy Surfaces from High Fidelity Fitting of Ab Initio Points: The Permutation Invariant Polynomial – Neural Network Approach. Int. Rev. Phys. Chem. 2016, 35, 479–506. https://doi.org/10.1080/0144235x.2016.1200347.Search in Google Scholar
17. Qu, C.; Yu, Q.; Bowman, J. M. Permutationally Invariant Potential Energy Surfaces. In Annual Review of Physical Chemistry; Johnson, M. A., Martinez, T. J., Eds.; Annual Reviews: Palo Alto, CA, Vol. 69, 2018; pp 151–175.10.1146/annurev-physchem-050317-021139Search in Google Scholar PubMed
18. Dawes, R.; Quintas-Sánchez, E. The Construction of Ab Initio-Based Potential Energy Surfaces. In Reviews in Computational Chemistry; Parrill, A. L., Lipkowitz, K. B., Eds.; Wiley-Blackwell: Hoboken, NJ, Vol. 31, 2019; pp 199–263.10.1002/9781119518068.ch5Search in Google Scholar
19. Shu, Y.; Varga, Z.; Jasper, A. W.; Garrett, B. C.; Espinosa-García, J.; Corchado, J. C.; Duchovic, R. J.; Volobuev, Y. L.; Lynch, G. C.; Yang, K. R.; Allison, T. C.; Wagner, A. F.; Truhlar, D. G. POTLIB: An Online Library of Potential Energy Surfaces. https://comp.chem.umn.edu/potlib/.Search in Google Scholar
20. Behler, J. Four Generations of High-Dimensional Neural Network Potentials. Chem. Rev. 2021, 121, 10037–10072. https://doi.org/10.1021/acs.chemrev.0c00868.Search in Google Scholar PubMed
21. Manzhos, S.; CarringtonJr.T. Neural Network Potential Energy Surfaces for Small Molecules and Reactions. Chem. Rev. 2021, 121, 10187–10217. https://doi.org/10.1021/acs.chemrev.0c00665.Search in Google Scholar PubMed
22. Deringer, V. L.; Bartók, A. P.; Bernstein, N.; Wilkins, D. M.; Ceriotti, M.; Csányi, G. Gaussian Process Regression for Materials and Molecules. Chem. Rev. 2021, 121, 10073–10141. https://doi.org/10.1021/acs.chemrev.1c00022.Search in Google Scholar PubMed PubMed Central
23. Kocer, E.; Ko, T. W.; Behler, J. Neural Network Potentials: A Concise Overview of Methods. Annu. Rev. Phys. Chem. 2022, 73, 163–186. https://doi.org/10.1146/annurev-physchem-082720-034254.Search in Google Scholar PubMed
24. Pulay, P. Ab Initio Calculation of Force Constants and Equilibrium Geometries in Polyatomic Molecules. I. Theory. Mol. Phys. 1969, 17, 197–204. https://doi.org/10.1080/00268976900100941.Search in Google Scholar
25. Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S. Derivative Studies in Hartree-Fock and Møller-Plesset Theories. Int. J. Quantum Chem. Quantum Chem. Symp. 1979, 13, 225–241.10.1002/qua.560160825Search in Google Scholar
26. Krishnan, R.; Schlegel, H. B.; Pople, J. A. Derivative Studies in Configuration-Interaction Theory. J. Chem. Phys. 1980, 72, 4654–4655. https://doi.org/10.1063/1.439708.Search in Google Scholar
27. Handy, N. C.; Schaefer, H. F. On the Evaluation of Analytic Energy Derivatives for Correlated Wave-Functions. J. Chem. Phys. 1984, 81, 5031–5033. https://doi.org/10.1063/1.447489.Search in Google Scholar
28. Kállay, M.; Gauss, J.; Szalay, P. G. Analytic First Derivatives for General Coupled-Cluster and Configuration Interaction Models. J. Chem. Phys. 2003, 119, 2991–3004. https://doi.org/10.1063/1.1589003.Search in Google Scholar
29. Salter, E. A.; Trucks, G. W.; Bartlett, R. J. Analytic Energy Derivatives in Many-Body Methods. 1. 1st Derivatives. J. Chem. Phys. 1989, 90, 1752–1766. https://doi.org/10.1063/1.456069.Search in Google Scholar
30. Pulay, P. Analytical Derivative Techniques and the Calculation of Vibrational Spectra. In Modern Electronic Structure Theory; Yarkony, D. R., Ed.; World Scientific Publishing: Singapore, 1995; p. 1191.10.1142/9789812832115_0008Search in Google Scholar
31. Pulay, P. Analytical Derivatives, Forces, Force Constants, Molecular Geometries, and Related Response Properties in Electronic Structure Theory. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014, 4, 169–181. https://doi.org/10.1002/wcms.1171.Search in Google Scholar
32. Salter, E. A.; Bartlett, R. J. Analytic Energy Derivatives in Many-Body Methods. 2. 2nd Derivatives. J. Chem. Phys. 1989, 90, 1767–1773. https://doi.org/10.1063/1.456070.Search in Google Scholar
33. Koch, H.; Jensen, H. J. A.; Jorgensen, P.; Helgaker, T.; Scuseria, G. E.; Schaefer, H. F. Coupled Cluster Energy Derivatives – Analytic Hessian for the Closed-Shell Coupled Cluster Singles and Doubles Wave-Function – Theory and Applications. J. Chem. Phys. 1990, 92, 4924–4940.10.1063/1.457710Search in Google Scholar
34. Gauss, J.; Stanton, J. F. Analytic CCSD(T) Second Derivatives. Chem. Phys. Lett. 1997, 276, 70–77. https://doi.org/10.1016/s0009-2614(97)88036-0.Search in Google Scholar
35. Gauss, J.; Stanton, J. F. Analytic First and Second Derivatives for the CCSDT-N (N=1–3) Models: A First Step Towards the Efficient Calculation of CCSDT Properties. Phys. Chem. Chem. Phys. 2000, 2, 2047–2060. https://doi.org/10.1039/a909820h.Search in Google Scholar
36. Friese, D. H.; Hättig, C.; Kossmann, J. Analytic Molecular Hessian Calculations for CC2 and MP2 Combined with the Resolution of Identity Approximation. J. Chem. Theory Comput. 2013, 9, 1469–1480. https://doi.org/10.1021/ct400034t.Search in Google Scholar PubMed
37. Pulay, P. 2nd and 3rd Derivatives of Variational Energy Expressions – Application to Multiconfigurational Self-Consistent Field Wave-Functions. J. Chem. Phys. 1983, 78, 5043–5051. https://doi.org/10.1063/1.445372.Search in Google Scholar
38. Hratchian, H. P.; Schlegel, H. B. Finding Minima, Transition States, and Following Reaction Pathways on Ab Initio Potential Energy Surfaces. In Theory and Applications of Computational Chemistry: The First Forty Years; Elsevier Science BV: Amsterdam, 2005; pp 195–249.10.1016/B978-044451719-7/50053-6Search in Google Scholar
39. Maeda, S.; Harabuchi, Y. Exploring Paths of Chemical Transformations in Molecular and Periodic Systems: An Approach Utilizing Force. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 11, e1538. https://doi.org/10.1002/wcms.1538.Search in Google Scholar
40. Dewyer, A. L.; Argüelles, A. J.; Zimmerman, P. M. Methods for Exploring Reaction Space in Molecular Systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1354. https://doi.org/10.1002/wcms.1354.Search in Google Scholar
41. Pulay, P.; Fogarasi, G. Geometry Optimization in Redundant Internal Coordinates. J. Chem. Phys. 1992, 96, 2856–2860. https://doi.org/10.1063/1.462844.Search in Google Scholar
42. Baker, J.; Kessi, A.; Delley, B. The Generation and Use of Delocalized Internal Coordinates in Geometry Optimization. J. Chem. Phys. 1996, 105, 192–212. https://doi.org/10.1063/1.471864.Search in Google Scholar
43. Peng, C. Y.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. Using Redundant Internal Coordinates to Optimize Equilibrium Geometries and Transition States. J. Comput. Chem. 1996, 17, 49–56. https://doi.org/10.1002/(sici)1096-987x(19960115)17:1<49::aid-jcc5>3.3.co;2-#.10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.3.CO;2-#Search in Google Scholar
44. Hratchian, H. P.; Sonnenberg, J. L.; Frisch, M. J. Internal Coordinates for Exploring Potential Energy Surfaces Using a Generalized Coordinate Definition/Transformation Algorithm. Abstr. Pap. Am. Chem. Soc. 2011, 241.Search in Google Scholar
45. Fletcher, R.; Reeves, C. M. Function Minimization by Conjugate Gradients. Comput. J. 1964, 7, 149–154.10.1093/comjnl/7.2.149Search in Google Scholar
46. Polak, E. Computational Methods in Optimization: A Unified Approach; Academic: New York, 1971.Search in Google Scholar
47. Fletcher, R. Practical Methods of Optimization, 2nd ed.; Wiley: Chichester, 1987; p. xiv, 436.Search in Google Scholar
48. Dennis, J. E.; Schnabel, R. B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations; Prentice-Hall: Englewood Cliffs, NJ, 1983; p. xiii, 378.Search in Google Scholar
49. Broyden, C. G. On the Convergence of a Class of Double Rank Minimization Algorithms. J. Inst. Math. Appl. 1970, 6, 76–90. https://doi.org/10.1093/imamat/6.1.76.Search in Google Scholar
50. Fletcher, R. A New Approach to Variable Metric Algorithms. Comput. J. 1970, 13, 317–322. https://doi.org/10.1093/comjnl/13.3.317.Search in Google Scholar
51. Goldfarb, D. A Family of Variable Metric Methods Derived by Variational Means. Math. Comput. 1970, 24, 23–26. https://doi.org/10.1090/s0025-5718-1970-0258249-6.Search in Google Scholar
52. Shanno, D. F. Conditioning of Quasi-Newton Methods for Functional Minimization. Math. Comput. 1970, 24, 647–657. https://doi.org/10.2307/2004840.Search in Google Scholar
53. Wolfe, P. Convergence Conditions for Ascent Methods. SIAM Rev. 1969, 11, 226–235. https://doi.org/10.1137/1011036.Search in Google Scholar
54. Liu, D. C.; Nocedal, J. On the Limited Memory BFGS Method for Large-Scale Optimization. Math. Program. 1989, 45, 503–528. https://doi.org/10.1007/bf01589116.Search in Google Scholar
55. Csaszar, P.; Pulay, P. Geometry Optimization by Direct Inversion in the Iterative Subspace. J. Mol. Struct. 1984, 114, 31–34. https://doi.org/10.1016/s0022-2860(84)87198-7.Search in Google Scholar
56. Li, X. S.; Frisch, M. J. Energy-Represented Direct Inversion in the Iterative Subspace Within a Hybrid Geometry Optimization Method. J. Chem. Theory Comput. 2006, 2, 835–839. https://doi.org/10.1021/ct050275a.Search in Google Scholar
57. Denzel, A.; Kästner, J. Gaussian Process Regression for Geometry Optimization. J. Chem. Phys. 2018, 148, 094114. https://doi.org/10.1063/1.5017103.Search in Google Scholar
58. Meyer, R.; Hauser, A. W. Geometry Optimization Using Gaussian Process Regression in Internal Coordinate Systems. J. Chem. Phys. 2020, 152, 084112. https://doi.org/10.1063/1.5144603.Search in Google Scholar
59. Raggi, G.; Galván, I. F.; Ritterhoff, C. L.; Vacher, M.; Lindh, R. Restricted-Variance Molecular Geometry Optimization Based on Gradient-Enhanced Kriging. J. Chem. Theory Comput. 2020, 16, 3989–4001. https://doi.org/10.1021/acs.jctc.0c00257.Search in Google Scholar
60. Teng, C.; Huang, D.; Bao, J. L. A Spur to Molecular Geometry Optimization: Gradient-Enhanced Universal Kriging with On-the-Fly Adaptive Ab Initio Prior Mean Functions in Curvilinear Coordinates. J. Chem. Phys. 2023, 158, 024112. https://doi.org/10.1063/5.0133675.Search in Google Scholar
61. Banerjee, A.; Adams, N.; Simons, J.; Shepard, R. Search for Stationary-Points on Surface. J. Phys. Chem. 1985, 89, 52–57. https://doi.org/10.1021/j100247a015.Search in Google Scholar
62. Besalu, E.; Bofill, J. M. On the Automatic Restricted-Step Rational-Function-Optimization Method. Theor. Chem. Acc. 1998, 100, 265–274. https://doi.org/10.1007/s002140050387.Search in Google Scholar
63. Anglada, J. M.; Bofill, J. M. On the Restricted Step Method Coupled with the Augmented Hessian for the Search of Stationary Points of Any Continuous Function. Int. J. Quantum Chem. 1997, 62, 153–165. https://doi.org/10.1002/(sici)1097-461x(1997)62:2<153::aid-qua3>3.0.co;2-v.10.1002/(SICI)1097-461X(1997)62:2<153::AID-QUA3>3.0.CO;2-VSearch in Google Scholar
64. Levine, D. S.; Shuaibi, M.; Spotte-Smith, E. W. C.; Taylor, M. G.; Hasyim, M. R.; Michel, K.; Batatia, I.; Csányi, G.; Dzamba, M.; Eastman, P.; Frey, N. C.; Fu, X.; Gharakhanyan, V.; Krishnapriyan, A. S.; Rackers, J. A.; Raja, S.; Rizvi, A.; Rosen, A. S.; Ulissi, Z.; Vargas, S.; Zitnick, C. L.; Blau, S. M.; Wood, B. M. The Open Molecules 2025 (OMol25) Dataset, Evaluations, and Models. arXiv:2505.08762v1 2025. https://doi.org/10.48550/arXiv.2505.08762.Search in Google Scholar
65. Smith, J. S.; Isayev, O.; Roitberg, A. E. ANI-1, A Data Set of 20 Million Calculated Off-Equilibrium Conformations for Organic Molecules. Sci. Data 2017, 4, 170193. https://doi.org/10.1038/sdata.2017.193.Search in Google Scholar
66. Smith, J. S.; Zubatyuk, R.; Nebgen, B.; Lubbers, N.; Barros, K.; Roitberg, A. E.; Isayev, O.; Tretiak, S. The ANI-1ccx and ANI-1x Data Sets, Coupled-Cluster and Density Functional Theory Properties for Molecules. Sci. Data 2020, 7, 134. https://doi.org/10.1038/s41597-020-0473-z.Search in Google Scholar
67. Nakata, M.; Shimazaki, T. PubChemQC Project: A Large-Scale First-Principles Electronic Structure Database for Data-Driven Chemistry. J. Chem. Inf. Model. 2017, 57, 1300–1308. https://doi.org/10.1021/acs.jcim.7b00083.Search in Google Scholar PubMed
68. Keith, J. A.; Vassilev-Galindo, V.; Cheng, B. Q.; Chmiela, S.; Gastegger, M.; Mueller, K. R.; Tkatchenko, A. Combining Machine Learning and Computational Chemistry for Predictive Insights into Chemical Systems. Chem. Rev. 2021, 121, 9816–9872. https://doi.org/10.1021/acs.chemrev.1c00107.Search in Google Scholar PubMed PubMed Central
69. Komornicki, A.; Ishida, K.; Morokuma, K.; Ditchfield, R.; Conrad, M. Efficient Determination and Characterization of Transition-States Using Ab Initio Methods. Chem. Phys. Lett. 1977, 45, 595–602. https://doi.org/10.1016/0009-2614(77)80099-7.Search in Google Scholar
70. Cerjan, C. J.; Miller, W. H. On Finding Transition States. J. Chem. Phys. 1981, 75, 2800–2806. https://doi.org/10.1063/1.442352.Search in Google Scholar
71. Simons, J.; Jorgensen, P.; Taylor, H.; Ozment, J. Walking on Potential-Energy Surfaces. J. Phys. Chem. 1983, 87, 2745–2753. https://doi.org/10.1021/j100238a013.Search in Google Scholar
72. Simons, J.; Nichols, J. Strategies for Walking on Potential-Energy Surfaces Using Local Quadratic Approximations. Int. J. Quantum Chem. 1990, Suppl. 24, 263–276. https://doi.org/10.1002/qua.560382427.Search in Google Scholar
73. Samanta, A.; E, W. Atomistic Simulations of Rare Events Using Gentlest Ascent Dynamics. J. Chem. Phys. 2012, 136, 124104. https://doi.org/10.1063/1.3692803.Search in Google Scholar PubMed
74. Henkelman, G.; Jonsson, H. A Dimer Method for Finding Saddle Points on High Dimensional Potential Surfaces Using Only First Derivatives. J. Chem. Phys. 1999, 111, 7010–7022. https://doi.org/10.1063/1.480097.Search in Google Scholar
75. Kaestner, J.; Sherwood, P. Superlinearly Converging Dimer Method for Transition State Search. J. Chem. Phys. 2008, 128, 014106. https://doi.org/10.1063/1.2815812.Search in Google Scholar PubMed
76. Shang, C.; Liu, Z. P. Constrained Broyden Minimization Combined with the Dimer Method for Locating Transition State of Complex Reactions. J. Chem. Theory Comput. 2010, 6, 1136–1144. https://doi.org/10.1021/ct9005147.Search in Google Scholar
77. Rothman, M. J.; Lohr, L. L. Analysis of an Energy Minimization Method for Locating Transition-States on Potential-Energy Hypersurfaces. Chem. Phys. Lett. 1980, 70, 405–409. https://doi.org/10.1016/0009-2614(80)85361-9.Search in Google Scholar
78. Burkert, U.; Allinger, N. L. Pitfalls in the Use of the Torion Angle Driving Method for the Calculation of Conformational Interconversions. J. Comput. Chem. 1982, 3, 40–46. https://doi.org/10.1002/jcc.540030108.Search in Google Scholar
79. Quapp, W.; Hirsch, M.; Imig, O.; Heidrich, D. Searching for Saddle Points of Potential Energy Surfaces by Following a Reduced Gradient. J. Comput. Chem. 1998, 19, 1087–1100. https://doi.org/10.1002/(sici)1096-987x(19980715)19:9<1087::aid-jcc9>3.3.co;2-s.10.1002/(SICI)1096-987X(19980715)19:9<1087::AID-JCC9>3.0.CO;2-MSearch in Google Scholar
80. Crehuet, R.; Bofill, J. M.; Anglada, J. M. A New Look at the Reduced-Gradient-Following Path. Theor. Chem. Acc. 2002, 107, 130–139. https://doi.org/10.1007/s00214-001-0306-x.Search in Google Scholar
81. Quapp, W. Newton Trajectories in the Curvilinear Metric of Internal Coordinates. J. Math. Chem. 2004, 36, 365–379. https://doi.org/10.1023/b:jomc.0000044524.48281.2d.10.1023/B:JOMC.0000044524.48281.2dSearch in Google Scholar
82. Liu, Y. L.; Burger, S. K.; Ayers, P. W. Newton Trajectories for Finding Stationary Points on Molecular Potential Energy Surfaces. J. Math. Chem. 2011, 49, 1915–1927. https://doi.org/10.1007/s10910-011-9864-x.Search in Google Scholar
83. Hoffman, D. K.; Nord, R. S.; Ruedenberg, K. Gradient Extremals. Theor. Chim. Acta 1986, 69, 265–279. https://doi.org/10.1007/bf00527704.Search in Google Scholar
84. Sun, J. Q.; Ruedenberg, K. Gradient Extremals and Steepest Descent Lines on Potential-Energy Surfaces. J. Chem. Phys. 1993, 98, 9707–9714. https://doi.org/10.1063/1.464349.Search in Google Scholar
85. Jorgensen, P.; Jensen, H. J. A.; Helgaker, T. A Gradient Extremal Walking Algorithm. Theor. Chim. Acta 1988, 73, 55–65. https://doi.org/10.1007/bf00526650.Search in Google Scholar
86. Schlegel, H. B. Following Gradient Extremal Paths. Theor. Chim. Acta 1992, 83, 15–20. https://doi.org/10.1007/bf01113240.Search in Google Scholar
87. Halgren, T.; Lipscomb, W. N. The Synchronous-Transit Method for Determining Reaction Pathways and Locating Molecular Transition States. Chem. Phys. Lett. 1977, 49, 225–232. https://doi.org/10.1016/0009-2614(77)80574-5.Search in Google Scholar
88. Peng, C. Y.; Schlegel, H. B. Combining Synchronous Transit and Quasi-Newton Methods to Find Transition-States. Isr. J. Chem. 1993, 33, 449–454.10.1002/ijch.199300051Search in Google Scholar
89. Bofill, J. M. Updated Hessian Matrix and the Restricted Step Method for Locating Transition Structures. J. Comput. Chem. 1994, 15, 1–11. https://doi.org/10.1002/jcc.540150102.Search in Google Scholar
90. Baker, J. An Algorithm for the Location of Transition-States. J. Comput. Chem. 1986, 7, 385–395. https://doi.org/10.1002/jcc.540070402.Search in Google Scholar
91. Culot, P.; Dive, G.; Nguyen, V. H.; Ghuysen, J. M. A Quasi-Newton Algorithm for 1st-Order Saddle-Point Location. Theor. Chim. Acta 1992, 82, 189–205. https://doi.org/10.1007/bf01113251.Search in Google Scholar
92. Elber, R.; Karplus, M. A Method for Determining Reaction Paths in Large Molecules – Application to Myoglobin. Chem. Phys. Lett. 1987, 139, 375–380. https://doi.org/10.1016/0009-2614(87)80576-6.Search in Google Scholar
93. Jónsson, H.; Mills, G.; Jacobsen, W. Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions. In Classical and Quantum Dynamics in Condensed Phase Simulations; Berne, B. J.; Cicotti, G.; Coker, D. F., Eds.; World Scientific: Singapore, 1998; p. 385.10.1142/9789812839664_0016Search in Google Scholar
94. Henkelman, G.; Jonsson, H. Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points. J. Chem. Phys. 2000, 113, 9978–9985. https://doi.org/10.1063/1.1323224.Search in Google Scholar
95. Trygubenko, S. A.; Wales, D. J. A Doubly Nudged Elastic Band Method for Finding Transition States. J. Chem. Phys. 2004, 120, 2082–2094. https://doi.org/10.1063/1.1636455.Search in Google Scholar PubMed
96. E, W. N.; Ren, W. Q.; Vanden-Eijnden, E. String Method for the Study of Rare Events. Phys. Rev. B 2002, 66, 052301. https://doi.org/10.1103/PhysRevB.66.052301.Search in Google Scholar
97. Burger, S. K.; Yang, W. T. Quadratic String Method for Determining the Minimum-Energy Path Based on Multiobjective Optimization. J. Chem. Phys. 2006, 124, 054109. https://doi.org/10.1063/1.2163875.Search in Google Scholar PubMed
98. Ren, W.; Vanden-Eijnden, E. A Climbing String Method for Saddle Point Search. J. Chem. Phys. 2013, 138, 134105. https://doi.org/10.1063/1.4798344.Search in Google Scholar PubMed
99. Zimmerman, P. M. Growing String Method with Interpolation and Optimization in Internal Coordinates: Method and Examples. J. Chem. Phys. 2013, 138, 184102. https://doi.org/10.1063/1.4804162.Search in Google Scholar PubMed
100. Behn, A.; Zimmerman, P. M.; Bell, A. T.; Head-Gordon, M. Efficient Exploration of Reaction Paths via a Freezing String Method. J. Chem. Phys. 2011, 135, 224108. https://doi.org/10.1063/1.3664901.Search in Google Scholar PubMed
101. Ayala, P. Y.; Schlegel, H. B. A Combined Method for Determining Reaction Paths, Minima, and Transition State Geometries. J. Chem. Phys. 1997, 107, 375–384. https://doi.org/10.1063/1.474398.Search in Google Scholar
102. Plessow, P. Reaction Path Optimization without NEB Springs or Interpolation Algorithms. J. Chem. Theory Comput. 2013, 9, 1305–1310. https://doi.org/10.1021/ct300951j.Search in Google Scholar PubMed
103. Denzel, A.; Haasdonk, B.; Kästner, J. Gaussian Process Regression for Minimum Energy Path Optimization and Transition State Search. J. Phys. Chem. A 2019, 123, 9600–9611. https://doi.org/10.1021/acs.jpca.9b08239.Search in Google Scholar PubMed
104. Ishida, K.; Morokuma, K.; Komornicki, A. The Intrinsic Reaction Coordinate. An Ab Initio Calculation for HNC → HCN and H− + CH4 → CH4 + H−. J. Chem. Phys. 1977, 66, 2153–2156. https://doi.org/10.1063/1.434152.Search in Google Scholar
105. Page, M.; Doubleday, C.; McIver, J. W. Following Steepest Descent Reaction Paths – The Use of Higher Energy Derivatives with Abinitio Electronic-Structure Methods. J. Chem. Phys. 1990, 93, 5634–5642. https://doi.org/10.1063/1.459634.Search in Google Scholar
106. Sun, J. Q.; Ruedenberg, K. Quadratic Steepest Descent on Potential-Energy Surfaces. 2. Reaction-Path Following Without Analytic Hessians. J. Chem. Phys. 1993, 99, 5269–5275. https://doi.org/10.1063/1.465995.Search in Google Scholar
107. Baldridge, K. K.; Gordon, M. S.; Steckler, R.; Truhlar, D. G. Ab Initio Reaction Paths and Direct Dynamics Calculations. J. Phys. Chem. 1989, 93, 5107–5119. https://doi.org/10.1021/j100350a018.Search in Google Scholar
108. Gordon, M. S.; Chaban, G.; Taketsugu, T. Interfacing Electronic Structure Theory with Dynamics. J. Phys. Chem. 1996, 100, 11512–11525. https://doi.org/10.1021/jp953371o.Search in Google Scholar
109. Burger, S. K.; Yang, W. T. A Combined Explicit-Implicit Method for High Accuracy Reaction Path Integration. J. Chem. Phys. 2006, 124, 224102. https://doi.org/10.1163/1.2202830.Search in Google Scholar
110. Gonzalez, C.; Schlegel, H. B. An Improved Algorithm for Reaction-Path Following. J. Chem. Phys. 1989, 90, 2154–2161. https://doi.org/10.1063/1.456010.Search in Google Scholar
111. Gonzalez, C.; Schlegel, H. B. Improved Algorithms for Reaction-Path Following – Higher-Order Implicit Algorithms. J. Chem. Phys. 1991, 95, 5853–5860. https://doi.org/10.1063/1.461606.Search in Google Scholar
112. Hratchian, H. P.; Schlegel, H. B. Using Hessian Updating to Increase the Efficiency of a Hessian Based Predictor-Corrector Reaction Path Following Method. J. Chem. Theory Comput. 2005, 1, 61–69. https://doi.org/10.1021/ct0499783.Search in Google Scholar PubMed
113. Hratchian, H. P.; Frisch, M. J.; Schlegel, H. B. Steepest Descent Reaction Path Integration Using a First-Order Predictor-Corrector Method. J. Chem. Phys. 2010, 133, 224101. https://doi.org/10.1063/1.3514202.Search in Google Scholar PubMed
114. Miller, W. H.; Handy, N. C.; Adams, J. E. Reaction-Path Hamiltonian for Polyatomic-Molecules. J. Chem. Phys. 1980, 72, 99–112. https://doi.org/10.1063/1.438959.Search in Google Scholar
115. Kraka, E. Reaction Path Hamiltonian and the Unified Reaction Valley Approach. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 531–556. https://doi.org/10.1002/wcms.65.Search in Google Scholar
116. Zou, W. L.; Sexton, T.; Kraka, E.; Freindorf, M.; Cremer, D. A New Method for Describing the Mechanism of a Chemical Reaction Based on the Unified Reaction Valley Approach. J. Chem. Theory Comput. 2016, 12, 650–663. https://doi.org/10.1021/acs.jctc.5b01098.Search in Google Scholar PubMed
117. Kraka, E.; Zou, W. L.; Tao, Y. W.; Freindorf, M. Exploring the Mechanism of Catalysis with the Unified Reaction Valley Approach (URVA)-A Review. Catalysts 2020, 10, 691. https://doi.org/10.3390/catal10060691.Search in Google Scholar
118. Bakken, V.; Danovich, D.; Shaik, S.; Schlegel, H. B. A Single Transition State Serves Two Mechanisms: An Ab Initio Classical Trajectory Study of the Electron Transfer and Substitution Mechanisms in Reactions of Ketyl Radical Anions with Alkyl Halides. J. Am. Chem. Soc. 2001, 123, 130–134. https://doi.org/10.1021/ja002799k.Search in Google Scholar PubMed
119. Ess, D. H.; Wheeler, S. E.; Iafe, R. G.; Xu, L.; Çelebi-Ölcüm, N.; Houk, K. N. Bifurcations on Potential Energy Surfaces of Organic Reactions. Angew. Chem., Int. Ed. 2008, 47, 7592–7601. https://doi.org/10.1002/anie.200800918.Search in Google Scholar PubMed PubMed Central
120. Hong, Y. J.; Tantillo, D. J. A Potential Energy Surface Bifurcation in Terpene Biosynthesis. Nat. Chem. 2009, 1, 384–389. https://doi.org/10.1038/nchem.287.Search in Google Scholar PubMed
121. Pham, H. V.; Houk, K. N. Diels-Alder Reactions of Allene with Benzene and Butadiene: Concerted, Stepwise, and Ambimodal Transition States. J. Org. Chem. 2014, 79, 8968–8976. https://doi.org/10.1021/jo502041f.Search in Google Scholar PubMed PubMed Central
122. Hare, S. R.; Tantillo, D. J. Post-Transition State Bifurcations Gain Momentum – Current State of the Field. Pure Appl. Chem. 2017, 89, 679–698. https://doi.org/10.1515/pac-2017-0104.Search in Google Scholar
123. Jamieson, C. S.; Sengupta, A.; Houk, K. N. Cycloadditions of Cyclopentadiene and Cycloheptatriene with Tropones: All Endo- 6+4 Cycloadditions are Ambimodal. J. Am. Chem. Soc. 2021, 143, 3918–3926. https://doi.org/10.1021/jacs.0c13401.Search in Google Scholar PubMed
124. Zhou, Q. Y.; Thogersen, M. K.; Rezayee, N. M.; Jorgensen, K. A.; Houk, K. N. Ambimodal Bispericyclic 6+4/4+6 Transition State Competes with Diradical Pathways in the Cycloheptatriene Dimerization: Dynamics and Experimental Characterization of Thermal Dimers. J. Am. Chem. Soc. 2022, 144, 22251–22261. https://doi.org/10.1021/jacs.2c10407.Search in Google Scholar PubMed
125. Bofill, J. M.; Quapp, W. Analysis of the Valley-Ridge Inflection Points Through the Partitioning Technique of the Hessian Eigenvalue Equation. J. Math. Chem. 2013, 51, 1099–1115. https://doi.org/10.1007/s10910-012-0134-3.Search in Google Scholar
126. Lee, S.; Goodman, J. M. Rapid Route-Finding for Bifurcating Organic Reactions. J. Am. Chem. Soc. 2020, 142, 9210–9219. https://doi.org/10.1021/jacs.9b13449.Search in Google Scholar PubMed
127. Bharadwaz, P.; Maldonado-Domínguez, M.; Srnec, M. Bifurcating Reactions: Distribution of Products from Energy Distribution in a Shared Reactive Mode. Chem. Sci. 2021, 12, 12682–12694. https://doi.org/10.1039/d1sc02826j.Search in Google Scholar PubMed PubMed Central
128. Carpenter, B. K. Prediction of Kinetic Product Ratios: Investigation of a Dynamically Controlled Case. J. Phys. Chem. A 2023, 127, 224–239. https://doi.org/10.1021/acs.jpca.2c08301.Search in Google Scholar PubMed PubMed Central
129. Kuan, K. Y.; Hsu, C. P. Predicting Selectivity with a Bifurcating Surface: Inaccurate Model or Inaccurate Statistics of Dynamics? J. Phys. Chem. A 2024, 128, 6798–6805. https://doi.org/10.1021/acs.jpca.4c04039.Search in Google Scholar PubMed PubMed Central
130. Murakami, T.; Kikuma, Y.; Hayashi, D.; Ibuki, S.; Nakagawa, S.; Ueno, H.; Takayanagi, T. Molecular Dynamics Simulation Study of Post-Transition State Bifurcation: A Case Study on the Ambimodal Transition State of dipolar/Diels-Alder Cycloaddition. J. Phys. Org. Chem. 2024, 37, e4611. https://doi.org/10.1002/poc.4611.Search in Google Scholar
131. Shin, W.; Hou, Y. N.; Wang, X.; Yang, Z. J. Interplay Between Energy and Entropy Mediates Ambimodal Selectivity of Cycloadditions. J. Chem. Theory Comput. 2024, 20, 10942–10951. https://doi.org/10.1021/acs.jctc.4c01138.Search in Google Scholar PubMed PubMed Central
132. Baker, J.; Gill, P. M. W. An Algorithm for the Location of Branching Points on Reaction Paths. J. Comput. Chem. 1988, 9, 465–475. https://doi.org/10.1002/jcc.540090505.Search in Google Scholar
133. Ito, T.; Harabuchi, Y.; Maeda, S. AFIR Explorations of Transition States of Extended Unsaturated Systems: Automatic Location of Ambimodal Transition States. Phys. Chem. Chem. Phys. 2020, 22, 13942–13950. https://doi.org/10.1039/d0cp02379e.Search in Google Scholar PubMed
134. Chuang, H. H.; Tantillo, D. J.; Hsu, C. P. Construction of Two-Dimensional Potential Energy Surfaces of Reactions with Post-Transition-State Bifurcations. J. Chem. Theory Comput. 2020, 16, 4050–4060. https://doi.org/10.1021/acs.jctc.0c00172.Search in Google Scholar PubMed
135. Maeda, S.; Harabuchi, Y.; Ono, Y.; Taketsugu, T.; Morokuma, K. Intrinsic Reaction Coordinate: Calculation, Bifurcation, and Automated Search. Int. J. Quantum Chem. 2015, 115, 258–269. https://doi.org/10.1002/qua.24757.Search in Google Scholar
136. Aarabi, M.; Pandey, A.; Poirier, B. “On-the-Fly” Crystal: How to Reliably and Automatically Characterize and Construct Potential Energy Surfaces. J. Comput. Chem. 2024, 45, 1261–1278. https://doi.org/10.1002/jcc.27324.Search in Google Scholar PubMed
137. Simm, G. N.; Vaucher, A. C.; Reiher, M. Exploration of Reaction Pathways and Chemical Transformation Networks. J. Phys. Chem. A 2019, 123, 385–399. https://doi.org/10.1021/acs.jpca.8b10007.Search in Google Scholar PubMed
138. Unsleber, J. P.; Reiher, M. The Exploration of Chemical Reaction Networks. In Annual Review of Physical Chemistry; Johnson, M. A., Martinez, T. J., Eds.; Annual Reviews: Palo Alto, CA, Vol. 71, 2020; pp 121–142.10.1146/annurev-physchem-071119-040123Search in Google Scholar PubMed
139. Habershon, S. Sampling Reactive Pathways with Random Walks in Chemical Space: Applications to Molecular Dissociation and Catalysis. J. Chem. Phys. 2015, 143, 094106. https://doi.org/10.1063/1.4929992.Search in Google Scholar PubMed
140. Habershon, S. Automated Prediction of Catalytic Mechanism and Rate Law Using Graph-Based Reaction Path Sampling. J. Chem. Theory Comput. 2016, 12, 1786–1798. https://doi.org/10.1021/acs.jctc.6b00005.Search in Google Scholar PubMed
141. Gao, C. W.; Allen, J. W.; Green, W. H.; West, R. H. Reaction Mechanism Generator: Automatic Construction of Chemical Kinetic Mechanisms. Comput. Phys. Commun. 2016, 203, 212–225. https://doi.org/10.1016/j.cpc.2016.02.013.Search in Google Scholar
142. Grambow, C. A.; Pattanaik, L.; Green, W. H. Reactants, Products, and Transition States of Elementary Chemical Reactions Based on Quantum Chemistry. Sci. Data 2020, 7, 137. https://doi.org/10.1038/s41597-020-0460-4.Search in Google Scholar PubMed PubMed Central
143. Wang, L. P.; McGibbon, R. T.; Pande, V. S.; Martinez, T. J. Automated Discovery and Refinement of Reactive Molecular Dynamics Pathways. J. Chem. Theory Comput. 2016, 12, 638–649. https://doi.org/10.1021/acs.jctc.5b00830.Search in Google Scholar PubMed
144. Meuwly, M. Machine Learning for Chemical Reactions. Chem. Rev. 2021, 121, 10218–10239. https://doi.org/10.1021/acs.chemrev.1c00033.Search in Google Scholar PubMed
145. Zener, C. Non-Adiabatic Crossing of Energy Levels. Proc. R. Soc. A 1932, 137, 696–702.10.1098/rspa.1932.0165Search in Google Scholar
146. Teller, E. The Crossing of Potential Surfaces. J. Phys. Chem. 1937, 41, 109–116. https://doi.org/10.1021/j150379a010.Search in Google Scholar
147. Matsika, S. Electronic Structure Methods for the Description of Nonadiabatic Effects and Conical Intersections. Chem. Rev. 2021, 121, 9407–9449. https://doi.org/10.1021/acs.chemrev.1c00074.Search in Google Scholar
148. Keal, T. W.; Koslowski, A.; Thiel, W. Comparison of Algorithms for Conical Intersection Optimisation Using Semiempirical Methods. Theor. Chem. Acc. 2007, 118, 837–844. https://doi.org/10.1007/s00214-007-0331-5.Search in Google Scholar
149. Levine, B. G.; Coe, J. D.; Martinez, T. J. Optimizing Conical Intersections Without Derivative Coupling Vectors: Application to Multistate Multireference Second-Order Perturbation Theory (MS-CASPT2). J. Phys. Chem. B 2008, 112, 405–413. https://doi.org/10.1021/jp0761618.Search in Google Scholar
150. Ciminelli, C.; Granucci, G.; Persico, M. The Photoisomerization Mechanism of Azobenzene: A Semiclassical Simulation of Nonadiabatic Dynamics. Chem. Eur. J. 2004, 10, 2327–2341. https://doi.org/10.1002/chem.200305415.Search in Google Scholar
151. Sicilia, F.; Blancafort, L.; Bearpark, M. J.; Robb, M. A. New Algorithms for Optimizing and Linking Conical Intersection Points. J. Chem. Theory Comput. 2008, 4, 257–266. https://doi.org/10.1021/ct7002435.Search in Google Scholar
152. Bearpark, M. J.; Robb, M. A.; Schlegel, H. B. A Direct Method for the Location of the Lowest Energy Point on a Potential Surface Crossing. Chem. Phys. Lett. 1994, 223, 269–274.10.1016/0009-2614(94)00433-1Search in Google Scholar
153. Ruiz-Barragan, S.; Robb, M. A.; Blancafort, L. Conical Intersection Optimization Based on a Double Newton-Raphson Algorithm Using Composed Steps. J. Chem. Theory Comput. 2013, 9, 1433–1442. https://doi.org/10.1021/ct301059t.Search in Google Scholar
154. Harabuchi, Y.; Taketsugu, T.; Maeda, S. Combined Gradient Projection/Single Component Artificial Force Induced Reaction (GP/SC-AFIR) Method for an Efficient Search of Minimum Energy Conical Intersection (MECI) Geometries. Chem. Phys. Lett. 2017, 674, 141–145. https://doi.org/10.1016/j.cplett.2017.02.069.Search in Google Scholar
155. Anglada, J. M.; Bofill, J. M. A Reduced-Restricted-Quasi-Newton-Raphson Method for Locating and Optimizing Energy Crossing Points Between Two Potential Energy Surfaces. J. Comput. Chem. 1997, 18, 992–1003. https://doi.org/10.1002/(sici)1096-987x(199706)18:8<992::aid-jcc3>3.0.co;2-l.10.1002/(SICI)1096-987X(199706)18:8<992::AID-JCC3>3.0.CO;2-LSearch in Google Scholar
156. Koga, N.; Morokuma, K. Determination of the Lowest Energy Point on the Crossing Seam Between 2 Potential Surfaces Using the Energy Gradient. Chem. Phys. Lett. 1985, 119, 371–374. https://doi.org/10.1016/0009-2614(85)80436-x.Search in Google Scholar
157. Manaa, M. R.; Yarkony, D. R. On the Intersection of 2 Potential-Energy Surfaces of the Same Symmetry – Systematic Characterization Using a Lagrange Multiplier Constrained Procedure. J. Chem. Phys. 1993, 99, 5251–5256. https://doi.org/10.1063/1.465993.Search in Google Scholar
158. García, J. S.; Maskri, R.; Mitrushchenkov, A.; Joubert-Doriol, L. Optimizing Conical Intersections Without Explicit Use of Non-Adiabatic Couplings. J. Chem. Theory Comput. 2024, 20, 5643–5654. https://doi.org/10.1021/acs.jctc.4c00326.Search in Google Scholar PubMed
159. Ragazos, I. N.; Robb, M. A.; Bernardi, F.; Olivucci, M. Optimization and Characterization of the Lowest Energy Point on a Conical Intersection Using an MC-SCF Lagrangian. Chem. Phys. Lett. 1992, 197, 217–223. https://doi.org/10.1016/0009-2614(92)85758-3.Search in Google Scholar
160. Farazdel, A.; Dupuis, M. On the Determination of the Minimum on the Crossing Seam of 2 Potential-Energy Surfaces. J. Comput. Chem. 1991, 12, 276–282. https://doi.org/10.1002/jcc.540120219.Search in Google Scholar
161. Yarkony, D. R. On the Characterization of Regions of Avoided Surface Crossings Using an Analytic Gradient Based Method. J. Chem. Phys. 1990, 92, 2457–2463. https://doi.org/10.1063/1.457988.Search in Google Scholar
162. Pandey, A.; Poirier, B.; Liang, R. B. Development of Parallel On-the-Fly Crystal Algorithm for Global Exploration of Conical Intersection Seam Space. J. Chem. Theory Comput. 2024, 20, 4778–4789. https://doi.org/10.1021/acs.jctc.4c00292.Search in Google Scholar PubMed
163. Pieri, E.; Lahana, D.; Chang, A. M.; Aldaz, C. R.; Thompson, K. C.; Martínez, T. J. The Non-Adiabatic Nanoreactor: Towards the Automated Discovery of Photochemistry. Chem. Sci. 2021, 12, 7294–7307. https://doi.org/10.1039/d1sc00775k.Search in Google Scholar PubMed PubMed Central
164. Ben-Nun, M.; Quenneville, J.; Martínez, T. J. Ab Initio Multiple Spawning: Photochemistry from First Principles Quantum Molecular Dynamics. J. Phys. Chem. A 2000, 104, 5161–5175. https://doi.org/10.1021/jp994174i.Search in Google Scholar
165. Bunker, D. L. Classical Trajectory Methods. Math. Comput. Phys. 1971, 10, 287–325. https://doi.org/10.1016/b978-0-12-460810-8.50012-9.Search in Google Scholar
166. Raff, L. M.; Thompson, D. L. The Classical Trajectory Approach to Reactive Scattering. In Theory of Chemical Reaction Dynamics; Baer, M., Ed.; CRC Press: Boca Raton, 1985.Search in Google Scholar
167. Sewell, T. D.; Thompson, D. L. Classical Trajectory Methods for Polyatomic Molecules. Int. J. Mod. Phys. B 1997, 11, 1067–1112. https://doi.org/10.1142/s0217979297000551.Search in Google Scholar
168. Sun, L. P.; Hase, W. L. Born-Oppenheimer Direct Dynamics Classical Trajectory Simulations. In Reviews in Computational Chemistry; Lipkowitz, K. B., Larter, R., Cundari, T. R., Boyd, D. B., Eds.; Wiley Blackwell: Hoboken, NJ, Vol. 19, 2003; pp 79–146.10.1002/0471466638.ch3Search in Google Scholar
169. Pratihar, S.; Ma, X. Y.; Homayoon, Z.; Barnes, G. L.; Hase, W. L. Direct Chemical Dynamics Simulations. J. Am. Chem. Soc. 2017, 139, 3570–3590. https://doi.org/10.1021/jacs.6b12017.Search in Google Scholar PubMed
170. Verlet, L. Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 1967, 159, 98–103. https://doi.org/10.1103/physrev.159.98.Search in Google Scholar
171. Yoshida, H. Construction of Higher-Order Symplectic Integrators. Phys. Lett. A 1990, 150, 262–268. https://doi.org/10.1016/0375-9601(90)90092-3.Search in Google Scholar
172. Odell, A.; Delin, A.; Johansson, B.; Bock, N.; Challacombe, M.; Niklasson, A. M. N. Higher-Order Symplectic Integration in Born-Oppenheimer Molecular Dynamics. J. Chem. Phys. 2009, 131, 244106. https://doi.org/10.1063/1.3268338.Search in Google Scholar PubMed
173. Millam, J. M.; Bakken, V.; Chen, W.; Hase, W. L.; Schlegel, H. B. Ab Initio Classical Trajectories on the Born-Oppenheimer Surface: Hessian-Based Integrators Using Fifth-Order Polynomial and Rational Function Fits. J. Chem. Phys. 1999, 111, 3800–3805. https://doi.org/10.1063/1.480037.Search in Google Scholar
174. Bakken, V.; Millam, J. M.; Schlegel, H. B. Ab Initio Classical Trajectories on the Born-Oppenheimer Surface: Updating Methods for Hessian-Based Integrators. J. Chem. Phys. 1999, 111, 8773–8777. https://doi.org/10.1063/1.480224.Search in Google Scholar
175. Wu, H.; Rahman, M.; Wang, J.; Louderaj, U.; Hase, W. L.; Zhuang, Y. Higher-Accuracy Schemes for Approximating the Hessian from Electronic Structure Calculations in Chemical Dynamics Simulations. J. Chem. Phys. 2010, 133, 074101. https://doi.org/10.1063/1.3407922.Search in Google Scholar PubMed
176. Niklasson, A. M. N. Extended Lagrangian Born-Oppenheimer Molecular Dynamics: From Density Functional Theory to Charge Relaxation Models. Eur. J. Phys. B 2021, 94, 164. https://doi.org/10.1140/epjb/s10051-021-00151-6.Search in Google Scholar
177. Tuckerman, M. E. Ab Initio Molecular Dynamics: Basic Concepts, Current Trends and Novel Applications. J. Phys. Condens. Matter 2002, 14, R1297–R1355. https://doi.org/10.1088/0953-8984/14/50/202.Search in Google Scholar
178. Hutter, J. Car-Parrinello Molecular Dynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 604–612. https://doi.org/10.1002/wcms.90.Search in Google Scholar
179. Car, R.; Parrinello, M. Unified Approach for Molecular-Dynamics and Density-Functional Theory. Phys. Rev. Lett. 1985, 55, 2471–2474. https://doi.org/10.1103/PhysRevLett.55.2471.Search in Google Scholar PubMed
180. Schlegel, H. B.; Millam, J. M.; Iyengar, S. S.; Voth, G. A.; Daniels, A. D.; Scuseria, G. E.; Frisch, M. J. Ab Initio Molecular Dynamics: Propagating the Density Matrix with Gaussian Orbitals. J. Chem. Phys. 2001, 114, 9758–9763. https://doi.org/10.1063/1.1372182.Search in Google Scholar
181. Iyengar, S. S.; Schlegel, H. B.; Millam, J. M.; Voth, G. A.; Scuseria, G. E.; Frisch, M. J. Ab Initio Molecular Dynamics: Propagating the Density Matrix with Gaussian Orbitals. II. Generalizations Based on Mass-Weighting, Idempotency, Energy Conservation and Choice of Initial Conditions. J. Chem. Phys. 2001, 115, 10291–10302. https://doi.org/10.1063/1.1416876.Search in Google Scholar
182. Schlegel, H. B.; Iyengar, S. S.; Li, X. S.; Millam, J. M.; Voth, G. A.; Scuseria, G. E.; Frisch, M. J. Ab Initio Molecular Dynamics: Propagating the Density Matrix with Gaussian Orbitals. III. Comparison with Born-Oppenheimer Dynamics. J. Chem. Phys. 2002, 117, 8694–8704. https://doi.org/10.1063/1.1514582.Search in Google Scholar
183. Bettens, R. P. A.; Collins, M. A. Learning to Interpolate Molecular Potential Energy Surfaces with Confidence: A Bayesian Approach. J. Chem. Phys. 1999, 111, 816–826. https://doi.org/10.1063/1.479368.Search in Google Scholar
184. Behler, J. Representing Potential Energy Surfaces by High-Dimensional Neural Network Potentials. J. Phys. Condens. Matter 2014, 26, 183001. https://doi.org/10.1088/0953-8984/26/18/183001.Search in Google Scholar PubMed
185. Manzhos, S.; Dawes, R.; Carrington, T. Neural Network-Based Approaches for Building High Dimensional and Quantum Dynamics-Friendly Potential Energy Surfaces. Int. J. Quantum Chem. 2015, 115, 1012–1020. https://doi.org/10.1002/qua.24795.Search in Google Scholar
186. Yang, Y. N.; Zhang, S. H.; Ranasinghe, K. D.; Isayev, O.; Roitberg, A. E. Machine Learning of Reactive Potentials. Annu. Rev. Phys. Chem. 2024, 75, 371–395. https://doi.org/10.1146/annurev-physchem-062123-024417.Search in Google Scholar PubMed
187. Habershon, S.; Manolopoulos, D. E.; Markland, T. E.; Miller, T. F. Ring-Polymer Molecular Dynamics: Quantum Effects in Chemical Dynamics from Classical Trajectories in an Extended Phase Space. In Annual Review of Physical Chemistry; Johnson, M. A., Martinez, T. J., Eds.; Annual Reviews: Palo Alto, CA, Vol. 64, 2013; pp 387–413.10.1146/annurev-physchem-040412-110122Search in Google Scholar PubMed
188. Marx, D.; Tuckerman, M. E.; Martyna, G. J. Quantum Dynamics via Adiabatic Ab Initio Centroid Molecular Dynamics. Comput. Phys. Commun. 1999, 118, 166–184. https://doi.org/10.1016/s0010-4655(99)00208-8.Search in Google Scholar
189. Shiga, M.; Nakayama, A. Ab Initio Path Integral Ring Polymer Molecular Dynamics: Vibrational Spectra of Molecules. Chem. Phys. Lett. 2008, 451, 175–181. https://doi.org/10.1016/j.cplett.2007.11.091.Search in Google Scholar
190. Spura, T.; Elgabarty, H.; Kühne, T. D. “On-the-Fly” Coupled Cluster Path-Integral Molecular Dynamics: Impact of Nuclear Quantum Effects on the Protonated Water Dimer. Phys. Chem. Chem. Phys. 2015, 17, 14355–14359. https://doi.org/10.1039/c4cp05192k.Search in Google Scholar PubMed
191. Buxton, S. J.; Habershon, S. Accelerated Path-Integral Simulations Using Ring-Polymer Interpolation. J. Chem. Phys. 2017, 147, 224107. https://doi.org/10.1063/1.5006465.Search in Google Scholar PubMed
192. Karandashev, K.; Vanícek, J. A Combined On-the-Fly/Interpolation Procedure for Evaluating Energy Values Needed in Molecular Simulations. J. Chem. Phys. 2019, 151, 174116. https://doi.org/10.1063/1.5124469.Search in Google Scholar PubMed
193. Zheng, J. J.; Frisch, M. J. Re-Integration with Anchor Points Algorithm for Ab Initio Molecular Dynamics. J. Chem. Phys. 2021, 155, 074106. https://doi.org/10.1063/5.0051079.Search in Google Scholar PubMed
194. Jakowski, J.; Sumner, I.; Iyengar, S. S. Computational Improvements to Quantum Wave Packet Ab Initio Molecular Dynamics Using a Potential-Adapted, Time-Dependent Deterministic Sampling Technique. J. Chem. Theory Comput. 2006, 2, 1203–1219. https://doi.org/10.1021/ct600131g.Search in Google Scholar PubMed
195. Iyengar, S. S.; Sumner, I.; Jakowski, J. Hydrogen Tunneling in an Enzyme Active Site: A Quantum Wavepacket Dynamical Perspective. J. Phys. Chem. B 2008, 112, 7601–7613. https://doi.org/10.1021/jp7103215.Search in Google Scholar PubMed
196. Li, X. H.; Iyengar, S. S. Quantum Wavepacket Ab Initio Molecular Dynamics: Generalizations Using an Extended Lagrangian Treatment of Diabatic States Coupled through Multireference Electronic Structure. J. Chem. Phys. 2010, 133, 184105. https://doi.org/10.1063/1.3504167.Search in Google Scholar PubMed
197. Li, J. J.; Li, X. H.; Iyengar, S. S. Vibrational Properties of Hydrogen-Bonded Systems Using the Multireference Generalization to the “On-the-Fly” Electronic Structure within Quantum Wavepacket Ab Initio Molecular Dynamics (QWAIMD). J. Chem. Theory Comput. 2014, 10, 2265–2280. https://doi.org/10.1021/ct5002347.Search in Google Scholar PubMed
198. DeGregorio, N.; Iyengar, S. S. Efficient and Adaptive Methods for Computing Accurate Potential Surfaces for Quantum Nuclear Effects: Applications to Hydrogen-Transfer Reactions. J. Chem. Theory Comput. 2018, 14, 30–47. https://doi.org/10.1021/acs.jctc.7b00927.Search in Google Scholar PubMed
199. Pavosevic, F.; Culpitt, T.; Hammes-Schiffer, S. Multicomponent Quantum Chemistry: Integrating Electronic and Nuclear Quantum Effects via the Nuclear-Electronic Orbital Method. Chem. Rev. 2020, 120, 4222–4253. https://doi.org/10.1021/acs.chemrev.9b00798.Search in Google Scholar PubMed
200. Tao, Z.; Yu, Q.; Roy, S.; Hammes-Schiffer, S. Direct Dynamics with Nuclear-Electronic Orbital Density Functional Theory. Acc. Chem. Res. 2021, 54, 4131–4141. https://doi.org/10.1021/acs.accounts.1c00516.Search in Google Scholar PubMed
201. Barbatti, M. Nonadiabatic Dynamics with Trajectory Surface Hopping Method. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 620–633. https://doi.org/10.1002/wcms.64.Search in Google Scholar
202. Curchod, B. F. E.; Rothlisberger, U.; Tavernelli, I. Trajectory-Based Nonadiabatic Dynamics with Time-Dependent Density Functional Theory. ChemPhysChem 2013, 14, 1314–1340. https://doi.org/10.1002/cphc.201200941.Search in Google Scholar PubMed
203. Tapavicza, E.; Bellchambers, G. D.; Vincent, J. C.; Furche, F. Ab Initio Non-Adiabatic Molecular Dynamics. Phys. Chem. Chem. Phys. 2013, 15, 18336–18348. https://doi.org/10.1039/c3cp51514a.Search in Google Scholar PubMed
204. Curchod, B. F. E.; Martínez, T. J. Ab Initio Nonadiabatic Quantum Molecular Dynamics. Chem. Rev. 2018, 118, 3305–3336. https://doi.org/10.1021/acs.chemrev.7b00423.Search in Google Scholar PubMed
205. Crespo-Otero, R.; Barbatti, M. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum-Classical Dynamics. Chem. Rev. 2018, 118, 7026–7068. https://doi.org/10.1021/acs.chemrev.7b00577.Search in Google Scholar PubMed
206. Agostini, F.; Curchod, B. F. E. Different Flavors of Nonadiabatic Molecular Dynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2019, 9, e1417. https://doi.org/10.1002/wcms.1417.Search in Google Scholar
207. Conti, I.; Cerullo, G.; Nenov, A.; Garavelli, M. Ultrafast Spectroscopy of Photoactive Molecular Systems from First Principles: Where we Stand Today and where we are Going. J. Am. Chem. Soc. 2020, 142, 16117–16139. https://doi.org/10.1021/jacs.0c04952.Search in Google Scholar PubMed PubMed Central
208. Mai, S. B.; González, L. Molecular Photochemistry: Recent Developments in Theory. Angew. Chem., Int. Ed. 2020, 59, 16832–16846. https://doi.org/10.1002/anie.201916381.Search in Google Scholar PubMed PubMed Central
209. Tully, J. C. Molecular-Dynamics with Electronic-Transitions. J. Chem. Phys. 1990, 93, 1061–1071. https://doi.org/10.1063/1.459170.Search in Google Scholar
210. Jasper, A. W.; Stechmann, S. N.; Truhlar, D. G. Fewest-Switches with Time Uncertainty: A Modified Trajectory Surface-Hopping Algorithm with Better Accuracy for Classically Forbidden Electronic Transitions. J. Chem. Phys. 2002, 116, 5424–5431. https://doi.org/10.1063/1.1453404.Search in Google Scholar
211. Zhu, C. Y.; Nangia, S.; Jasper, A. W.; Truhlar, D. G. Coherent Switching with Decay of Mixing: An Improved Treatment of Electronic Coherence for Non-Born-Oppenheimer Trajectories. J. Chem. Phys. 2004, 121, 7658–7670. https://doi.org/10.1063/1.1793991.Search in Google Scholar PubMed
212. Li, X. S.; Tully, J. C.; Schlegel, H. B.; Frisch, M. J. Ab Initio Ehrenfest Dynamics. J. Chem. Phys. 2005, 123, 084106. https://doi.org/10.1063/1.2008258.Search in Google Scholar PubMed
213. Suchan, J.; Liang, F.; Durden, A. S.; Levine, B. G. Prediction Challenge: First Principles Simulation of the Ultrafast Electron Diffraction Spectrum of Cyclobutanone. J. Chem. Phys. 2024, 160, 134310. https://doi.org/10.1063/5.0198333.Search in Google Scholar PubMed
214. Makhov, D. V.; Symonds, C.; Fernandez-Alberti, S.; Shalashilin, D. V. Ab Initio Quantum Direct Dynamics Simulations of Ultrafast Photochemistry with Multiconfigurational Ehrenfest Approach. Chem. Phys. 2017, 493, 200–218. https://doi.org/10.1016/j.chemphys.2017.04.003.Search in Google Scholar
215. Richings, G. W.; Polyak, I.; Spinlove, K. E.; Worth, G. A.; Burghardt, I.; Lasorne, B. Quantum Dynamics Simulations Using Gaussian Wavepackets: The vMCG Method. Int. Rev. Phys. Chem. 2015, 34, 269–308. https://doi.org/10.1080/0144235x.2015.1051354.Search in Google Scholar
© 2025 IUPAC & De Gruyter
Articles in the same Issue
- Frontmatter
- IUPAC Technical Report
- Acid dissociation constants in selected dipolar non-hydrogen-bond-donor solvents (IUPAC Technical Report)
- Preface
- Introduction to the Special Issue of “The International Year of Quantum”
- Review Articles
- Quantum chemistry of molecules in solution. A brief historical perspective
- From Hückel to Clar: a block-localized description of aromatic systems
- Exploring potential energy surfaces
- Unlocking the chemistry facilitated by enzymes that process nucleic acids using quantum mechanical and combined quantum mechanics–molecular mechanics techniques
- Hypothetical heterocyclic carbenes
- Is relativistic quantum chemistry a good theory of everything?
- When theory came first: a review of theoretical chemical predictions ahead of experiments
- Research Articles
- Exploring reaction dynamics involving post-transition state bifurcations based on quantum mechanical ambimodal transition states
- Molecular aromaticity: a quantum phenomenon
- Using topology for understanding your computational results
- The role of ion-pair on the olefin polymerization reactivity of zirconium bis(phenoxy-imine) catalyst: quantum mechanical study and its beyond
- Theoretical insights on the structure and stability of the [C2, H3, P, O] isomeric family
Articles in the same Issue
- Frontmatter
- IUPAC Technical Report
- Acid dissociation constants in selected dipolar non-hydrogen-bond-donor solvents (IUPAC Technical Report)
- Preface
- Introduction to the Special Issue of “The International Year of Quantum”
- Review Articles
- Quantum chemistry of molecules in solution. A brief historical perspective
- From Hückel to Clar: a block-localized description of aromatic systems
- Exploring potential energy surfaces
- Unlocking the chemistry facilitated by enzymes that process nucleic acids using quantum mechanical and combined quantum mechanics–molecular mechanics techniques
- Hypothetical heterocyclic carbenes
- Is relativistic quantum chemistry a good theory of everything?
- When theory came first: a review of theoretical chemical predictions ahead of experiments
- Research Articles
- Exploring reaction dynamics involving post-transition state bifurcations based on quantum mechanical ambimodal transition states
- Molecular aromaticity: a quantum phenomenon
- Using topology for understanding your computational results
- The role of ion-pair on the olefin polymerization reactivity of zirconium bis(phenoxy-imine) catalyst: quantum mechanical study and its beyond
- Theoretical insights on the structure and stability of the [C2, H3, P, O] isomeric family