Home Physical Sciences Exploring potential energy surfaces
Article
Licensed
Unlicensed Requires Authentication

Exploring potential energy surfaces

  • H. Bernhard Schlegel ORCID logo EMAIL logo
Published/Copyright: June 3, 2025

Abstract

Quantum mechanics is central to our understanding of chemistry both qualitatively and quantitatively. Modern electronic structure calculations can yield energies and structures of small to medium size molecules to chemical accuracy, thereby providing a computational model for chemistry. A potential energy surface describes the energy of a molecule as a function of its geometric parameters. The features of potential energy surfaces provide the connections between quantum mechanics and the traditional chemical concepts such as structure, bonding and reactivity. This brief perspective presents an overview of tools for exploring potential energy surfaces such as optimizing equilibrium geometries, finding transition states, following reaction paths and simulating molecular dynamics.


Corresponding author: H. Bernhard Schlegel, Department of Chemistry, Wayne State University, Detroit, MI 48202, USA, e-mail:
Article note: A collection of invited papers to celebrate the UN’s proclamation of 2025 as the International Year of Quantum Science and Technology.

Funding source: Division of Chemistry

Award Identifier / Grant number: CHE1856437

Acknowledgments

This work was supported by a grant from the National Science Foundation (CHE1856437).

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: National Science Foundation CHE1856437.

  7. Data availability: Not applicable.

References

1. Dirac, P. A. M.; Fowler, R. H. “The Fundamental Laws Necessary for the Mathematical Treatment of a Large Part of Physics and the Whole of Chemistry are thus Completely Known, and the Difficulty Lies Only in the Fact that Application of These Laws Leads to Equations that are too Complex to be Solved” Quantum Mechanics of Many-Electron Systems. Proc. R. Soc. A 1929, 123, 714–733. https://doi.org/10.1098/rspa.1929.0094.Search in Google Scholar

2. Burke, K. Perspective on Density Functional Theory. J. Chem. Phys. 2012, 136, 150901. https://doi.org/10.1063/1.4704546.Search in Google Scholar PubMed

3. Becke, A. D. Perspective: Fifty Years of Density-Functional Theory in Chemical Physics. J. Chem. Phys. 2014, 140, 18A301. https://doi.org/10.1063/1.4869598.Search in Google Scholar PubMed

4. Jones, R. O. Density Functional Theory: Its Origins, Rise to Prominence, and Future. Rev. Mod. Phys. 2015, 87, 897–923. https://doi.org/10.1103/RevModPhys.87.897.Search in Google Scholar

5. Karton, A. Quantum Mechanical Thermochemical Predictions 100 Years After the Schrodinger Equation. In Annual Reports in Computational Chemistry; Dixon, D. A., Ed.; Elsevier: Amsterdam, Vol. 18, 2022; pp 123–166.10.1016/bs.arcc.2022.09.003Search in Google Scholar

6. Pople, J. A. Nobel Lecture: Quantum Chemical Models. Rev. Mod. Phys. 1999, 71, 1267–1274. https://doi.org/10.1103/RevModPhys.71.1267.Search in Google Scholar

7. Wales, D. J. Energy Landscapes; Cambridge University Press: Cambridge, 2003.Search in Google Scholar

8. Schlegel, H. B. Geometry Optimization. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 790–809. https://doi.org/10.1002/wcms.34.Search in Google Scholar

9. Fukui, K. The Path of Chemical-Reactions – The IRC Approach. Acc. Chem. Res. 1981, 14, 363–368. https://doi.org/10.1021/ar00072a001.Search in Google Scholar

10. Born, M.; Oppenheimer, R. Zur Quantentheorie der Molekeln. Ann. Phys. 1927, 389, 457–484. https://doi.org/10.1002/andp.19273892002.Search in Google Scholar

11. Sathyamurthy, N. Computational Fitting of Abinitio Potential-Energy Surfaces. Comput. Phys. Rep. 1985, 3, 1–70. https://doi.org/10.1016/0167-7977(85)90007-3.Search in Google Scholar

12. Truhlar, D. G.; Steckler, R.; Gordon, M. S. Potential-Energy Surfaces for Polyatomic Reaction Dynamics. Chem. Rev. 1987, 87, 217–236. https://doi.org/10.1021/cr00077a011.Search in Google Scholar

13. Schatz, G. C. The Analytical Representation of Electronic Potential-Energy Surfaces. Rev. Mod. Phys. 1989, 61, 669–688. https://doi.org/10.1103/revmodphys.61.669.Search in Google Scholar

14. Hollebeek, T.; Ho, T. S.; Rabitz, H. Constructing Multidimensional Molecular Potential Energy Surfaces from Ab Initio Data. Annu. Rev. Phys. Chem. 1999, 50, 537–570. https://doi.org/10.1146/annurev.physchem.50.1.537.Search in Google Scholar PubMed

15. Braams, B. J.; Bowman, J. M. Permutationally Invariant Potential Energy Surfaces in High Dimensionality. Int. Rev. Phys. Chem. 2009, 28, 577–606. https://doi.org/10.1080/01442350903234923.Search in Google Scholar

16. Jiang, B.; Li, J.; Guo, H. Potential Energy Surfaces from High Fidelity Fitting of Ab Initio Points: The Permutation Invariant Polynomial – Neural Network Approach. Int. Rev. Phys. Chem. 2016, 35, 479–506. https://doi.org/10.1080/0144235x.2016.1200347.Search in Google Scholar

17. Qu, C.; Yu, Q.; Bowman, J. M. Permutationally Invariant Potential Energy Surfaces. In Annual Review of Physical Chemistry; Johnson, M. A., Martinez, T. J., Eds.; Annual Reviews: Palo Alto, CA, Vol. 69, 2018; pp 151–175.10.1146/annurev-physchem-050317-021139Search in Google Scholar PubMed

18. Dawes, R.; Quintas-Sánchez, E. The Construction of Ab Initio-Based Potential Energy Surfaces. In Reviews in Computational Chemistry; Parrill, A. L., Lipkowitz, K. B., Eds.; Wiley-Blackwell: Hoboken, NJ, Vol. 31, 2019; pp 199–263.10.1002/9781119518068.ch5Search in Google Scholar

19. Shu, Y.; Varga, Z.; Jasper, A. W.; Garrett, B. C.; Espinosa-García, J.; Corchado, J. C.; Duchovic, R. J.; Volobuev, Y. L.; Lynch, G. C.; Yang, K. R.; Allison, T. C.; Wagner, A. F.; Truhlar, D. G. POTLIB: An Online Library of Potential Energy Surfaces. https://comp.chem.umn.edu/potlib/.Search in Google Scholar

20. Behler, J. Four Generations of High-Dimensional Neural Network Potentials. Chem. Rev. 2021, 121, 10037–10072. https://doi.org/10.1021/acs.chemrev.0c00868.Search in Google Scholar PubMed

21. Manzhos, S.; CarringtonJr.T. Neural Network Potential Energy Surfaces for Small Molecules and Reactions. Chem. Rev. 2021, 121, 10187–10217. https://doi.org/10.1021/acs.chemrev.0c00665.Search in Google Scholar PubMed

22. Deringer, V. L.; Bartók, A. P.; Bernstein, N.; Wilkins, D. M.; Ceriotti, M.; Csányi, G. Gaussian Process Regression for Materials and Molecules. Chem. Rev. 2021, 121, 10073–10141. https://doi.org/10.1021/acs.chemrev.1c00022.Search in Google Scholar PubMed PubMed Central

23. Kocer, E.; Ko, T. W.; Behler, J. Neural Network Potentials: A Concise Overview of Methods. Annu. Rev. Phys. Chem. 2022, 73, 163–186. https://doi.org/10.1146/annurev-physchem-082720-034254.Search in Google Scholar PubMed

24. Pulay, P. Ab Initio Calculation of Force Constants and Equilibrium Geometries in Polyatomic Molecules. I. Theory. Mol. Phys. 1969, 17, 197–204. https://doi.org/10.1080/00268976900100941.Search in Google Scholar

25. Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S. Derivative Studies in Hartree-Fock and Møller-Plesset Theories. Int. J. Quantum Chem. Quantum Chem. Symp. 1979, 13, 225–241.10.1002/qua.560160825Search in Google Scholar

26. Krishnan, R.; Schlegel, H. B.; Pople, J. A. Derivative Studies in Configuration-Interaction Theory. J. Chem. Phys. 1980, 72, 4654–4655. https://doi.org/10.1063/1.439708.Search in Google Scholar

27. Handy, N. C.; Schaefer, H. F. On the Evaluation of Analytic Energy Derivatives for Correlated Wave-Functions. J. Chem. Phys. 1984, 81, 5031–5033. https://doi.org/10.1063/1.447489.Search in Google Scholar

28. Kállay, M.; Gauss, J.; Szalay, P. G. Analytic First Derivatives for General Coupled-Cluster and Configuration Interaction Models. J. Chem. Phys. 2003, 119, 2991–3004. https://doi.org/10.1063/1.1589003.Search in Google Scholar

29. Salter, E. A.; Trucks, G. W.; Bartlett, R. J. Analytic Energy Derivatives in Many-Body Methods. 1. 1st Derivatives. J. Chem. Phys. 1989, 90, 1752–1766. https://doi.org/10.1063/1.456069.Search in Google Scholar

30. Pulay, P. Analytical Derivative Techniques and the Calculation of Vibrational Spectra. In Modern Electronic Structure Theory; Yarkony, D. R., Ed.; World Scientific Publishing: Singapore, 1995; p. 1191.10.1142/9789812832115_0008Search in Google Scholar

31. Pulay, P. Analytical Derivatives, Forces, Force Constants, Molecular Geometries, and Related Response Properties in Electronic Structure Theory. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014, 4, 169–181. https://doi.org/10.1002/wcms.1171.Search in Google Scholar

32. Salter, E. A.; Bartlett, R. J. Analytic Energy Derivatives in Many-Body Methods. 2. 2nd Derivatives. J. Chem. Phys. 1989, 90, 1767–1773. https://doi.org/10.1063/1.456070.Search in Google Scholar

33. Koch, H.; Jensen, H. J. A.; Jorgensen, P.; Helgaker, T.; Scuseria, G. E.; Schaefer, H. F. Coupled Cluster Energy Derivatives – Analytic Hessian for the Closed-Shell Coupled Cluster Singles and Doubles Wave-Function – Theory and Applications. J. Chem. Phys. 1990, 92, 4924–4940.10.1063/1.457710Search in Google Scholar

34. Gauss, J.; Stanton, J. F. Analytic CCSD(T) Second Derivatives. Chem. Phys. Lett. 1997, 276, 70–77. https://doi.org/10.1016/s0009-2614(97)88036-0.Search in Google Scholar

35. Gauss, J.; Stanton, J. F. Analytic First and Second Derivatives for the CCSDT-N (N=1–3) Models: A First Step Towards the Efficient Calculation of CCSDT Properties. Phys. Chem. Chem. Phys. 2000, 2, 2047–2060. https://doi.org/10.1039/a909820h.Search in Google Scholar

36. Friese, D. H.; Hättig, C.; Kossmann, J. Analytic Molecular Hessian Calculations for CC2 and MP2 Combined with the Resolution of Identity Approximation. J. Chem. Theory Comput. 2013, 9, 1469–1480. https://doi.org/10.1021/ct400034t.Search in Google Scholar PubMed

37. Pulay, P. 2nd and 3rd Derivatives of Variational Energy Expressions – Application to Multiconfigurational Self-Consistent Field Wave-Functions. J. Chem. Phys. 1983, 78, 5043–5051. https://doi.org/10.1063/1.445372.Search in Google Scholar

38. Hratchian, H. P.; Schlegel, H. B. Finding Minima, Transition States, and Following Reaction Pathways on Ab Initio Potential Energy Surfaces. In Theory and Applications of Computational Chemistry: The First Forty Years; Elsevier Science BV: Amsterdam, 2005; pp 195–249.10.1016/B978-044451719-7/50053-6Search in Google Scholar

39. Maeda, S.; Harabuchi, Y. Exploring Paths of Chemical Transformations in Molecular and Periodic Systems: An Approach Utilizing Force. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 11, e1538. https://doi.org/10.1002/wcms.1538.Search in Google Scholar

40. Dewyer, A. L.; Argüelles, A. J.; Zimmerman, P. M. Methods for Exploring Reaction Space in Molecular Systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1354. https://doi.org/10.1002/wcms.1354.Search in Google Scholar

41. Pulay, P.; Fogarasi, G. Geometry Optimization in Redundant Internal Coordinates. J. Chem. Phys. 1992, 96, 2856–2860. https://doi.org/10.1063/1.462844.Search in Google Scholar

42. Baker, J.; Kessi, A.; Delley, B. The Generation and Use of Delocalized Internal Coordinates in Geometry Optimization. J. Chem. Phys. 1996, 105, 192–212. https://doi.org/10.1063/1.471864.Search in Google Scholar

43. Peng, C. Y.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. Using Redundant Internal Coordinates to Optimize Equilibrium Geometries and Transition States. J. Comput. Chem. 1996, 17, 49–56. https://doi.org/10.1002/(sici)1096-987x(19960115)17:1<49::aid-jcc5>3.3.co;2-#.10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.3.CO;2-#Search in Google Scholar

44. Hratchian, H. P.; Sonnenberg, J. L.; Frisch, M. J. Internal Coordinates for Exploring Potential Energy Surfaces Using a Generalized Coordinate Definition/Transformation Algorithm. Abstr. Pap. Am. Chem. Soc. 2011, 241.Search in Google Scholar

45. Fletcher, R.; Reeves, C. M. Function Minimization by Conjugate Gradients. Comput. J. 1964, 7, 149–154.10.1093/comjnl/7.2.149Search in Google Scholar

46. Polak, E. Computational Methods in Optimization: A Unified Approach; Academic: New York, 1971.Search in Google Scholar

47. Fletcher, R. Practical Methods of Optimization, 2nd ed.; Wiley: Chichester, 1987; p. xiv, 436.Search in Google Scholar

48. Dennis, J. E.; Schnabel, R. B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations; Prentice-Hall: Englewood Cliffs, NJ, 1983; p. xiii, 378.Search in Google Scholar

49. Broyden, C. G. On the Convergence of a Class of Double Rank Minimization Algorithms. J. Inst. Math. Appl. 1970, 6, 76–90. https://doi.org/10.1093/imamat/6.1.76.Search in Google Scholar

50. Fletcher, R. A New Approach to Variable Metric Algorithms. Comput. J. 1970, 13, 317–322. https://doi.org/10.1093/comjnl/13.3.317.Search in Google Scholar

51. Goldfarb, D. A Family of Variable Metric Methods Derived by Variational Means. Math. Comput. 1970, 24, 23–26. https://doi.org/10.1090/s0025-5718-1970-0258249-6.Search in Google Scholar

52. Shanno, D. F. Conditioning of Quasi-Newton Methods for Functional Minimization. Math. Comput. 1970, 24, 647–657. https://doi.org/10.2307/2004840.Search in Google Scholar

53. Wolfe, P. Convergence Conditions for Ascent Methods. SIAM Rev. 1969, 11, 226–235. https://doi.org/10.1137/1011036.Search in Google Scholar

54. Liu, D. C.; Nocedal, J. On the Limited Memory BFGS Method for Large-Scale Optimization. Math. Program. 1989, 45, 503–528. https://doi.org/10.1007/bf01589116.Search in Google Scholar

55. Csaszar, P.; Pulay, P. Geometry Optimization by Direct Inversion in the Iterative Subspace. J. Mol. Struct. 1984, 114, 31–34. https://doi.org/10.1016/s0022-2860(84)87198-7.Search in Google Scholar

56. Li, X. S.; Frisch, M. J. Energy-Represented Direct Inversion in the Iterative Subspace Within a Hybrid Geometry Optimization Method. J. Chem. Theory Comput. 2006, 2, 835–839. https://doi.org/10.1021/ct050275a.Search in Google Scholar

57. Denzel, A.; Kästner, J. Gaussian Process Regression for Geometry Optimization. J. Chem. Phys. 2018, 148, 094114. https://doi.org/10.1063/1.5017103.Search in Google Scholar

58. Meyer, R.; Hauser, A. W. Geometry Optimization Using Gaussian Process Regression in Internal Coordinate Systems. J. Chem. Phys. 2020, 152, 084112. https://doi.org/10.1063/1.5144603.Search in Google Scholar

59. Raggi, G.; Galván, I. F.; Ritterhoff, C. L.; Vacher, M.; Lindh, R. Restricted-Variance Molecular Geometry Optimization Based on Gradient-Enhanced Kriging. J. Chem. Theory Comput. 2020, 16, 3989–4001. https://doi.org/10.1021/acs.jctc.0c00257.Search in Google Scholar

60. Teng, C.; Huang, D.; Bao, J. L. A Spur to Molecular Geometry Optimization: Gradient-Enhanced Universal Kriging with On-the-Fly Adaptive Ab Initio Prior Mean Functions in Curvilinear Coordinates. J. Chem. Phys. 2023, 158, 024112. https://doi.org/10.1063/5.0133675.Search in Google Scholar

61. Banerjee, A.; Adams, N.; Simons, J.; Shepard, R. Search for Stationary-Points on Surface. J. Phys. Chem. 1985, 89, 52–57. https://doi.org/10.1021/j100247a015.Search in Google Scholar

62. Besalu, E.; Bofill, J. M. On the Automatic Restricted-Step Rational-Function-Optimization Method. Theor. Chem. Acc. 1998, 100, 265–274. https://doi.org/10.1007/s002140050387.Search in Google Scholar

63. Anglada, J. M.; Bofill, J. M. On the Restricted Step Method Coupled with the Augmented Hessian for the Search of Stationary Points of Any Continuous Function. Int. J. Quantum Chem. 1997, 62, 153–165. https://doi.org/10.1002/(sici)1097-461x(1997)62:2<153::aid-qua3>3.0.co;2-v.10.1002/(SICI)1097-461X(1997)62:2<153::AID-QUA3>3.0.CO;2-VSearch in Google Scholar

64. Levine, D. S.; Shuaibi, M.; Spotte-Smith, E. W. C.; Taylor, M. G.; Hasyim, M. R.; Michel, K.; Batatia, I.; Csányi, G.; Dzamba, M.; Eastman, P.; Frey, N. C.; Fu, X.; Gharakhanyan, V.; Krishnapriyan, A. S.; Rackers, J. A.; Raja, S.; Rizvi, A.; Rosen, A. S.; Ulissi, Z.; Vargas, S.; Zitnick, C. L.; Blau, S. M.; Wood, B. M. The Open Molecules 2025 (OMol25) Dataset, Evaluations, and Models. arXiv:2505.08762v1 2025. https://doi.org/10.48550/arXiv.2505.08762.Search in Google Scholar

65. Smith, J. S.; Isayev, O.; Roitberg, A. E. ANI-1, A Data Set of 20 Million Calculated Off-Equilibrium Conformations for Organic Molecules. Sci. Data 2017, 4, 170193. https://doi.org/10.1038/sdata.2017.193.Search in Google Scholar

66. Smith, J. S.; Zubatyuk, R.; Nebgen, B.; Lubbers, N.; Barros, K.; Roitberg, A. E.; Isayev, O.; Tretiak, S. The ANI-1ccx and ANI-1x Data Sets, Coupled-Cluster and Density Functional Theory Properties for Molecules. Sci. Data 2020, 7, 134. https://doi.org/10.1038/s41597-020-0473-z.Search in Google Scholar

67. Nakata, M.; Shimazaki, T. PubChemQC Project: A Large-Scale First-Principles Electronic Structure Database for Data-Driven Chemistry. J. Chem. Inf. Model. 2017, 57, 1300–1308. https://doi.org/10.1021/acs.jcim.7b00083.Search in Google Scholar PubMed

68. Keith, J. A.; Vassilev-Galindo, V.; Cheng, B. Q.; Chmiela, S.; Gastegger, M.; Mueller, K. R.; Tkatchenko, A. Combining Machine Learning and Computational Chemistry for Predictive Insights into Chemical Systems. Chem. Rev. 2021, 121, 9816–9872. https://doi.org/10.1021/acs.chemrev.1c00107.Search in Google Scholar PubMed PubMed Central

69. Komornicki, A.; Ishida, K.; Morokuma, K.; Ditchfield, R.; Conrad, M. Efficient Determination and Characterization of Transition-States Using Ab Initio Methods. Chem. Phys. Lett. 1977, 45, 595–602. https://doi.org/10.1016/0009-2614(77)80099-7.Search in Google Scholar

70. Cerjan, C. J.; Miller, W. H. On Finding Transition States. J. Chem. Phys. 1981, 75, 2800–2806. https://doi.org/10.1063/1.442352.Search in Google Scholar

71. Simons, J.; Jorgensen, P.; Taylor, H.; Ozment, J. Walking on Potential-Energy Surfaces. J. Phys. Chem. 1983, 87, 2745–2753. https://doi.org/10.1021/j100238a013.Search in Google Scholar

72. Simons, J.; Nichols, J. Strategies for Walking on Potential-Energy Surfaces Using Local Quadratic Approximations. Int. J. Quantum Chem. 1990, Suppl. 24, 263–276. https://doi.org/10.1002/qua.560382427.Search in Google Scholar

73. Samanta, A.; E, W. Atomistic Simulations of Rare Events Using Gentlest Ascent Dynamics. J. Chem. Phys. 2012, 136, 124104. https://doi.org/10.1063/1.3692803.Search in Google Scholar PubMed

74. Henkelman, G.; Jonsson, H. A Dimer Method for Finding Saddle Points on High Dimensional Potential Surfaces Using Only First Derivatives. J. Chem. Phys. 1999, 111, 7010–7022. https://doi.org/10.1063/1.480097.Search in Google Scholar

75. Kaestner, J.; Sherwood, P. Superlinearly Converging Dimer Method for Transition State Search. J. Chem. Phys. 2008, 128, 014106. https://doi.org/10.1063/1.2815812.Search in Google Scholar PubMed

76. Shang, C.; Liu, Z. P. Constrained Broyden Minimization Combined with the Dimer Method for Locating Transition State of Complex Reactions. J. Chem. Theory Comput. 2010, 6, 1136–1144. https://doi.org/10.1021/ct9005147.Search in Google Scholar

77. Rothman, M. J.; Lohr, L. L. Analysis of an Energy Minimization Method for Locating Transition-States on Potential-Energy Hypersurfaces. Chem. Phys. Lett. 1980, 70, 405–409. https://doi.org/10.1016/0009-2614(80)85361-9.Search in Google Scholar

78. Burkert, U.; Allinger, N. L. Pitfalls in the Use of the Torion Angle Driving Method for the Calculation of Conformational Interconversions. J. Comput. Chem. 1982, 3, 40–46. https://doi.org/10.1002/jcc.540030108.Search in Google Scholar

79. Quapp, W.; Hirsch, M.; Imig, O.; Heidrich, D. Searching for Saddle Points of Potential Energy Surfaces by Following a Reduced Gradient. J. Comput. Chem. 1998, 19, 1087–1100. https://doi.org/10.1002/(sici)1096-987x(19980715)19:9<1087::aid-jcc9>3.3.co;2-s.10.1002/(SICI)1096-987X(19980715)19:9<1087::AID-JCC9>3.0.CO;2-MSearch in Google Scholar

80. Crehuet, R.; Bofill, J. M.; Anglada, J. M. A New Look at the Reduced-Gradient-Following Path. Theor. Chem. Acc. 2002, 107, 130–139. https://doi.org/10.1007/s00214-001-0306-x.Search in Google Scholar

81. Quapp, W. Newton Trajectories in the Curvilinear Metric of Internal Coordinates. J. Math. Chem. 2004, 36, 365–379. https://doi.org/10.1023/b:jomc.0000044524.48281.2d.10.1023/B:JOMC.0000044524.48281.2dSearch in Google Scholar

82. Liu, Y. L.; Burger, S. K.; Ayers, P. W. Newton Trajectories for Finding Stationary Points on Molecular Potential Energy Surfaces. J. Math. Chem. 2011, 49, 1915–1927. https://doi.org/10.1007/s10910-011-9864-x.Search in Google Scholar

83. Hoffman, D. K.; Nord, R. S.; Ruedenberg, K. Gradient Extremals. Theor. Chim. Acta 1986, 69, 265–279. https://doi.org/10.1007/bf00527704.Search in Google Scholar

84. Sun, J. Q.; Ruedenberg, K. Gradient Extremals and Steepest Descent Lines on Potential-Energy Surfaces. J. Chem. Phys. 1993, 98, 9707–9714. https://doi.org/10.1063/1.464349.Search in Google Scholar

85. Jorgensen, P.; Jensen, H. J. A.; Helgaker, T. A Gradient Extremal Walking Algorithm. Theor. Chim. Acta 1988, 73, 55–65. https://doi.org/10.1007/bf00526650.Search in Google Scholar

86. Schlegel, H. B. Following Gradient Extremal Paths. Theor. Chim. Acta 1992, 83, 15–20. https://doi.org/10.1007/bf01113240.Search in Google Scholar

87. Halgren, T.; Lipscomb, W. N. The Synchronous-Transit Method for Determining Reaction Pathways and Locating Molecular Transition States. Chem. Phys. Lett. 1977, 49, 225–232. https://doi.org/10.1016/0009-2614(77)80574-5.Search in Google Scholar

88. Peng, C. Y.; Schlegel, H. B. Combining Synchronous Transit and Quasi-Newton Methods to Find Transition-States. Isr. J. Chem. 1993, 33, 449–454.10.1002/ijch.199300051Search in Google Scholar

89. Bofill, J. M. Updated Hessian Matrix and the Restricted Step Method for Locating Transition Structures. J. Comput. Chem. 1994, 15, 1–11. https://doi.org/10.1002/jcc.540150102.Search in Google Scholar

90. Baker, J. An Algorithm for the Location of Transition-States. J. Comput. Chem. 1986, 7, 385–395. https://doi.org/10.1002/jcc.540070402.Search in Google Scholar

91. Culot, P.; Dive, G.; Nguyen, V. H.; Ghuysen, J. M. A Quasi-Newton Algorithm for 1st-Order Saddle-Point Location. Theor. Chim. Acta 1992, 82, 189–205. https://doi.org/10.1007/bf01113251.Search in Google Scholar

92. Elber, R.; Karplus, M. A Method for Determining Reaction Paths in Large Molecules – Application to Myoglobin. Chem. Phys. Lett. 1987, 139, 375–380. https://doi.org/10.1016/0009-2614(87)80576-6.Search in Google Scholar

93. Jónsson, H.; Mills, G.; Jacobsen, W. Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions. In Classical and Quantum Dynamics in Condensed Phase Simulations; Berne, B. J.; Cicotti, G.; Coker, D. F., Eds.; World Scientific: Singapore, 1998; p. 385.10.1142/9789812839664_0016Search in Google Scholar

94. Henkelman, G.; Jonsson, H. Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points. J. Chem. Phys. 2000, 113, 9978–9985. https://doi.org/10.1063/1.1323224.Search in Google Scholar

95. Trygubenko, S. A.; Wales, D. J. A Doubly Nudged Elastic Band Method for Finding Transition States. J. Chem. Phys. 2004, 120, 2082–2094. https://doi.org/10.1063/1.1636455.Search in Google Scholar PubMed

96. E, W. N.; Ren, W. Q.; Vanden-Eijnden, E. String Method for the Study of Rare Events. Phys. Rev. B 2002, 66, 052301. https://doi.org/10.1103/PhysRevB.66.052301.Search in Google Scholar

97. Burger, S. K.; Yang, W. T. Quadratic String Method for Determining the Minimum-Energy Path Based on Multiobjective Optimization. J. Chem. Phys. 2006, 124, 054109. https://doi.org/10.1063/1.2163875.Search in Google Scholar PubMed

98. Ren, W.; Vanden-Eijnden, E. A Climbing String Method for Saddle Point Search. J. Chem. Phys. 2013, 138, 134105. https://doi.org/10.1063/1.4798344.Search in Google Scholar PubMed

99. Zimmerman, P. M. Growing String Method with Interpolation and Optimization in Internal Coordinates: Method and Examples. J. Chem. Phys. 2013, 138, 184102. https://doi.org/10.1063/1.4804162.Search in Google Scholar PubMed

100. Behn, A.; Zimmerman, P. M.; Bell, A. T.; Head-Gordon, M. Efficient Exploration of Reaction Paths via a Freezing String Method. J. Chem. Phys. 2011, 135, 224108. https://doi.org/10.1063/1.3664901.Search in Google Scholar PubMed

101. Ayala, P. Y.; Schlegel, H. B. A Combined Method for Determining Reaction Paths, Minima, and Transition State Geometries. J. Chem. Phys. 1997, 107, 375–384. https://doi.org/10.1063/1.474398.Search in Google Scholar

102. Plessow, P. Reaction Path Optimization without NEB Springs or Interpolation Algorithms. J. Chem. Theory Comput. 2013, 9, 1305–1310. https://doi.org/10.1021/ct300951j.Search in Google Scholar PubMed

103. Denzel, A.; Haasdonk, B.; Kästner, J. Gaussian Process Regression for Minimum Energy Path Optimization and Transition State Search. J. Phys. Chem. A 2019, 123, 9600–9611. https://doi.org/10.1021/acs.jpca.9b08239.Search in Google Scholar PubMed

104. Ishida, K.; Morokuma, K.; Komornicki, A. The Intrinsic Reaction Coordinate. An Ab Initio Calculation for HNC → HCN and H− + CH4 → CH4 + H−. J. Chem. Phys. 1977, 66, 2153–2156. https://doi.org/10.1063/1.434152.Search in Google Scholar

105. Page, M.; Doubleday, C.; McIver, J. W. Following Steepest Descent Reaction Paths – The Use of Higher Energy Derivatives with Abinitio Electronic-Structure Methods. J. Chem. Phys. 1990, 93, 5634–5642. https://doi.org/10.1063/1.459634.Search in Google Scholar

106. Sun, J. Q.; Ruedenberg, K. Quadratic Steepest Descent on Potential-Energy Surfaces. 2. Reaction-Path Following Without Analytic Hessians. J. Chem. Phys. 1993, 99, 5269–5275. https://doi.org/10.1063/1.465995.Search in Google Scholar

107. Baldridge, K. K.; Gordon, M. S.; Steckler, R.; Truhlar, D. G. Ab Initio Reaction Paths and Direct Dynamics Calculations. J. Phys. Chem. 1989, 93, 5107–5119. https://doi.org/10.1021/j100350a018.Search in Google Scholar

108. Gordon, M. S.; Chaban, G.; Taketsugu, T. Interfacing Electronic Structure Theory with Dynamics. J. Phys. Chem. 1996, 100, 11512–11525. https://doi.org/10.1021/jp953371o.Search in Google Scholar

109. Burger, S. K.; Yang, W. T. A Combined Explicit-Implicit Method for High Accuracy Reaction Path Integration. J. Chem. Phys. 2006, 124, 224102. https://doi.org/10.1163/1.2202830.Search in Google Scholar

110. Gonzalez, C.; Schlegel, H. B. An Improved Algorithm for Reaction-Path Following. J. Chem. Phys. 1989, 90, 2154–2161. https://doi.org/10.1063/1.456010.Search in Google Scholar

111. Gonzalez, C.; Schlegel, H. B. Improved Algorithms for Reaction-Path Following – Higher-Order Implicit Algorithms. J. Chem. Phys. 1991, 95, 5853–5860. https://doi.org/10.1063/1.461606.Search in Google Scholar

112. Hratchian, H. P.; Schlegel, H. B. Using Hessian Updating to Increase the Efficiency of a Hessian Based Predictor-Corrector Reaction Path Following Method. J. Chem. Theory Comput. 2005, 1, 61–69. https://doi.org/10.1021/ct0499783.Search in Google Scholar PubMed

113. Hratchian, H. P.; Frisch, M. J.; Schlegel, H. B. Steepest Descent Reaction Path Integration Using a First-Order Predictor-Corrector Method. J. Chem. Phys. 2010, 133, 224101. https://doi.org/10.1063/1.3514202.Search in Google Scholar PubMed

114. Miller, W. H.; Handy, N. C.; Adams, J. E. Reaction-Path Hamiltonian for Polyatomic-Molecules. J. Chem. Phys. 1980, 72, 99–112. https://doi.org/10.1063/1.438959.Search in Google Scholar

115. Kraka, E. Reaction Path Hamiltonian and the Unified Reaction Valley Approach. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 531–556. https://doi.org/10.1002/wcms.65.Search in Google Scholar

116. Zou, W. L.; Sexton, T.; Kraka, E.; Freindorf, M.; Cremer, D. A New Method for Describing the Mechanism of a Chemical Reaction Based on the Unified Reaction Valley Approach. J. Chem. Theory Comput. 2016, 12, 650–663. https://doi.org/10.1021/acs.jctc.5b01098.Search in Google Scholar PubMed

117. Kraka, E.; Zou, W. L.; Tao, Y. W.; Freindorf, M. Exploring the Mechanism of Catalysis with the Unified Reaction Valley Approach (URVA)-A Review. Catalysts 2020, 10, 691. https://doi.org/10.3390/catal10060691.Search in Google Scholar

118. Bakken, V.; Danovich, D.; Shaik, S.; Schlegel, H. B. A Single Transition State Serves Two Mechanisms: An Ab Initio Classical Trajectory Study of the Electron Transfer and Substitution Mechanisms in Reactions of Ketyl Radical Anions with Alkyl Halides. J. Am. Chem. Soc. 2001, 123, 130–134. https://doi.org/10.1021/ja002799k.Search in Google Scholar PubMed

119. Ess, D. H.; Wheeler, S. E.; Iafe, R. G.; Xu, L.; Çelebi-Ölcüm, N.; Houk, K. N. Bifurcations on Potential Energy Surfaces of Organic Reactions. Angew. Chem., Int. Ed. 2008, 47, 7592–7601. https://doi.org/10.1002/anie.200800918.Search in Google Scholar PubMed PubMed Central

120. Hong, Y. J.; Tantillo, D. J. A Potential Energy Surface Bifurcation in Terpene Biosynthesis. Nat. Chem. 2009, 1, 384–389. https://doi.org/10.1038/nchem.287.Search in Google Scholar PubMed

121. Pham, H. V.; Houk, K. N. Diels-Alder Reactions of Allene with Benzene and Butadiene: Concerted, Stepwise, and Ambimodal Transition States. J. Org. Chem. 2014, 79, 8968–8976. https://doi.org/10.1021/jo502041f.Search in Google Scholar PubMed PubMed Central

122. Hare, S. R.; Tantillo, D. J. Post-Transition State Bifurcations Gain Momentum – Current State of the Field. Pure Appl. Chem. 2017, 89, 679–698. https://doi.org/10.1515/pac-2017-0104.Search in Google Scholar

123. Jamieson, C. S.; Sengupta, A.; Houk, K. N. Cycloadditions of Cyclopentadiene and Cycloheptatriene with Tropones: All Endo- 6+4 Cycloadditions are Ambimodal. J. Am. Chem. Soc. 2021, 143, 3918–3926. https://doi.org/10.1021/jacs.0c13401.Search in Google Scholar PubMed

124. Zhou, Q. Y.; Thogersen, M. K.; Rezayee, N. M.; Jorgensen, K. A.; Houk, K. N. Ambimodal Bispericyclic 6+4/4+6 Transition State Competes with Diradical Pathways in the Cycloheptatriene Dimerization: Dynamics and Experimental Characterization of Thermal Dimers. J. Am. Chem. Soc. 2022, 144, 22251–22261. https://doi.org/10.1021/jacs.2c10407.Search in Google Scholar PubMed

125. Bofill, J. M.; Quapp, W. Analysis of the Valley-Ridge Inflection Points Through the Partitioning Technique of the Hessian Eigenvalue Equation. J. Math. Chem. 2013, 51, 1099–1115. https://doi.org/10.1007/s10910-012-0134-3.Search in Google Scholar

126. Lee, S.; Goodman, J. M. Rapid Route-Finding for Bifurcating Organic Reactions. J. Am. Chem. Soc. 2020, 142, 9210–9219. https://doi.org/10.1021/jacs.9b13449.Search in Google Scholar PubMed

127. Bharadwaz, P.; Maldonado-Domínguez, M.; Srnec, M. Bifurcating Reactions: Distribution of Products from Energy Distribution in a Shared Reactive Mode. Chem. Sci. 2021, 12, 12682–12694. https://doi.org/10.1039/d1sc02826j.Search in Google Scholar PubMed PubMed Central

128. Carpenter, B. K. Prediction of Kinetic Product Ratios: Investigation of a Dynamically Controlled Case. J. Phys. Chem. A 2023, 127, 224–239. https://doi.org/10.1021/acs.jpca.2c08301.Search in Google Scholar PubMed PubMed Central

129. Kuan, K. Y.; Hsu, C. P. Predicting Selectivity with a Bifurcating Surface: Inaccurate Model or Inaccurate Statistics of Dynamics? J. Phys. Chem. A 2024, 128, 6798–6805. https://doi.org/10.1021/acs.jpca.4c04039.Search in Google Scholar PubMed PubMed Central

130. Murakami, T.; Kikuma, Y.; Hayashi, D.; Ibuki, S.; Nakagawa, S.; Ueno, H.; Takayanagi, T. Molecular Dynamics Simulation Study of Post-Transition State Bifurcation: A Case Study on the Ambimodal Transition State of dipolar/Diels-Alder Cycloaddition. J. Phys. Org. Chem. 2024, 37, e4611. https://doi.org/10.1002/poc.4611.Search in Google Scholar

131. Shin, W.; Hou, Y. N.; Wang, X.; Yang, Z. J. Interplay Between Energy and Entropy Mediates Ambimodal Selectivity of Cycloadditions. J. Chem. Theory Comput. 2024, 20, 10942–10951. https://doi.org/10.1021/acs.jctc.4c01138.Search in Google Scholar PubMed PubMed Central

132. Baker, J.; Gill, P. M. W. An Algorithm for the Location of Branching Points on Reaction Paths. J. Comput. Chem. 1988, 9, 465–475. https://doi.org/10.1002/jcc.540090505.Search in Google Scholar

133. Ito, T.; Harabuchi, Y.; Maeda, S. AFIR Explorations of Transition States of Extended Unsaturated Systems: Automatic Location of Ambimodal Transition States. Phys. Chem. Chem. Phys. 2020, 22, 13942–13950. https://doi.org/10.1039/d0cp02379e.Search in Google Scholar PubMed

134. Chuang, H. H.; Tantillo, D. J.; Hsu, C. P. Construction of Two-Dimensional Potential Energy Surfaces of Reactions with Post-Transition-State Bifurcations. J. Chem. Theory Comput. 2020, 16, 4050–4060. https://doi.org/10.1021/acs.jctc.0c00172.Search in Google Scholar PubMed

135. Maeda, S.; Harabuchi, Y.; Ono, Y.; Taketsugu, T.; Morokuma, K. Intrinsic Reaction Coordinate: Calculation, Bifurcation, and Automated Search. Int. J. Quantum Chem. 2015, 115, 258–269. https://doi.org/10.1002/qua.24757.Search in Google Scholar

136. Aarabi, M.; Pandey, A.; Poirier, B. “On-the-Fly” Crystal: How to Reliably and Automatically Characterize and Construct Potential Energy Surfaces. J. Comput. Chem. 2024, 45, 1261–1278. https://doi.org/10.1002/jcc.27324.Search in Google Scholar PubMed

137. Simm, G. N.; Vaucher, A. C.; Reiher, M. Exploration of Reaction Pathways and Chemical Transformation Networks. J. Phys. Chem. A 2019, 123, 385–399. https://doi.org/10.1021/acs.jpca.8b10007.Search in Google Scholar PubMed

138. Unsleber, J. P.; Reiher, M. The Exploration of Chemical Reaction Networks. In Annual Review of Physical Chemistry; Johnson, M. A., Martinez, T. J., Eds.; Annual Reviews: Palo Alto, CA, Vol. 71, 2020; pp 121–142.10.1146/annurev-physchem-071119-040123Search in Google Scholar PubMed

139. Habershon, S. Sampling Reactive Pathways with Random Walks in Chemical Space: Applications to Molecular Dissociation and Catalysis. J. Chem. Phys. 2015, 143, 094106. https://doi.org/10.1063/1.4929992.Search in Google Scholar PubMed

140. Habershon, S. Automated Prediction of Catalytic Mechanism and Rate Law Using Graph-Based Reaction Path Sampling. J. Chem. Theory Comput. 2016, 12, 1786–1798. https://doi.org/10.1021/acs.jctc.6b00005.Search in Google Scholar PubMed

141. Gao, C. W.; Allen, J. W.; Green, W. H.; West, R. H. Reaction Mechanism Generator: Automatic Construction of Chemical Kinetic Mechanisms. Comput. Phys. Commun. 2016, 203, 212–225. https://doi.org/10.1016/j.cpc.2016.02.013.Search in Google Scholar

142. Grambow, C. A.; Pattanaik, L.; Green, W. H. Reactants, Products, and Transition States of Elementary Chemical Reactions Based on Quantum Chemistry. Sci. Data 2020, 7, 137. https://doi.org/10.1038/s41597-020-0460-4.Search in Google Scholar PubMed PubMed Central

143. Wang, L. P.; McGibbon, R. T.; Pande, V. S.; Martinez, T. J. Automated Discovery and Refinement of Reactive Molecular Dynamics Pathways. J. Chem. Theory Comput. 2016, 12, 638–649. https://doi.org/10.1021/acs.jctc.5b00830.Search in Google Scholar PubMed

144. Meuwly, M. Machine Learning for Chemical Reactions. Chem. Rev. 2021, 121, 10218–10239. https://doi.org/10.1021/acs.chemrev.1c00033.Search in Google Scholar PubMed

145. Zener, C. Non-Adiabatic Crossing of Energy Levels. Proc. R. Soc. A 1932, 137, 696–702.10.1098/rspa.1932.0165Search in Google Scholar

146. Teller, E. The Crossing of Potential Surfaces. J. Phys. Chem. 1937, 41, 109–116. https://doi.org/10.1021/j150379a010.Search in Google Scholar

147. Matsika, S. Electronic Structure Methods for the Description of Nonadiabatic Effects and Conical Intersections. Chem. Rev. 2021, 121, 9407–9449. https://doi.org/10.1021/acs.chemrev.1c00074.Search in Google Scholar

148. Keal, T. W.; Koslowski, A.; Thiel, W. Comparison of Algorithms for Conical Intersection Optimisation Using Semiempirical Methods. Theor. Chem. Acc. 2007, 118, 837–844. https://doi.org/10.1007/s00214-007-0331-5.Search in Google Scholar

149. Levine, B. G.; Coe, J. D.; Martinez, T. J. Optimizing Conical Intersections Without Derivative Coupling Vectors: Application to Multistate Multireference Second-Order Perturbation Theory (MS-CASPT2). J. Phys. Chem. B 2008, 112, 405–413. https://doi.org/10.1021/jp0761618.Search in Google Scholar

150. Ciminelli, C.; Granucci, G.; Persico, M. The Photoisomerization Mechanism of Azobenzene: A Semiclassical Simulation of Nonadiabatic Dynamics. Chem. Eur. J. 2004, 10, 2327–2341. https://doi.org/10.1002/chem.200305415.Search in Google Scholar

151. Sicilia, F.; Blancafort, L.; Bearpark, M. J.; Robb, M. A. New Algorithms for Optimizing and Linking Conical Intersection Points. J. Chem. Theory Comput. 2008, 4, 257–266. https://doi.org/10.1021/ct7002435.Search in Google Scholar

152. Bearpark, M. J.; Robb, M. A.; Schlegel, H. B. A Direct Method for the Location of the Lowest Energy Point on a Potential Surface Crossing. Chem. Phys. Lett. 1994, 223, 269–274.10.1016/0009-2614(94)00433-1Search in Google Scholar

153. Ruiz-Barragan, S.; Robb, M. A.; Blancafort, L. Conical Intersection Optimization Based on a Double Newton-Raphson Algorithm Using Composed Steps. J. Chem. Theory Comput. 2013, 9, 1433–1442. https://doi.org/10.1021/ct301059t.Search in Google Scholar

154. Harabuchi, Y.; Taketsugu, T.; Maeda, S. Combined Gradient Projection/Single Component Artificial Force Induced Reaction (GP/SC-AFIR) Method for an Efficient Search of Minimum Energy Conical Intersection (MECI) Geometries. Chem. Phys. Lett. 2017, 674, 141–145. https://doi.org/10.1016/j.cplett.2017.02.069.Search in Google Scholar

155. Anglada, J. M.; Bofill, J. M. A Reduced-Restricted-Quasi-Newton-Raphson Method for Locating and Optimizing Energy Crossing Points Between Two Potential Energy Surfaces. J. Comput. Chem. 1997, 18, 992–1003. https://doi.org/10.1002/(sici)1096-987x(199706)18:8<992::aid-jcc3>3.0.co;2-l.10.1002/(SICI)1096-987X(199706)18:8<992::AID-JCC3>3.0.CO;2-LSearch in Google Scholar

156. Koga, N.; Morokuma, K. Determination of the Lowest Energy Point on the Crossing Seam Between 2 Potential Surfaces Using the Energy Gradient. Chem. Phys. Lett. 1985, 119, 371–374. https://doi.org/10.1016/0009-2614(85)80436-x.Search in Google Scholar

157. Manaa, M. R.; Yarkony, D. R. On the Intersection of 2 Potential-Energy Surfaces of the Same Symmetry – Systematic Characterization Using a Lagrange Multiplier Constrained Procedure. J. Chem. Phys. 1993, 99, 5251–5256. https://doi.org/10.1063/1.465993.Search in Google Scholar

158. García, J. S.; Maskri, R.; Mitrushchenkov, A.; Joubert-Doriol, L. Optimizing Conical Intersections Without Explicit Use of Non-Adiabatic Couplings. J. Chem. Theory Comput. 2024, 20, 5643–5654. https://doi.org/10.1021/acs.jctc.4c00326.Search in Google Scholar PubMed

159. Ragazos, I. N.; Robb, M. A.; Bernardi, F.; Olivucci, M. Optimization and Characterization of the Lowest Energy Point on a Conical Intersection Using an MC-SCF Lagrangian. Chem. Phys. Lett. 1992, 197, 217–223. https://doi.org/10.1016/0009-2614(92)85758-3.Search in Google Scholar

160. Farazdel, A.; Dupuis, M. On the Determination of the Minimum on the Crossing Seam of 2 Potential-Energy Surfaces. J. Comput. Chem. 1991, 12, 276–282. https://doi.org/10.1002/jcc.540120219.Search in Google Scholar

161. Yarkony, D. R. On the Characterization of Regions of Avoided Surface Crossings Using an Analytic Gradient Based Method. J. Chem. Phys. 1990, 92, 2457–2463. https://doi.org/10.1063/1.457988.Search in Google Scholar

162. Pandey, A.; Poirier, B.; Liang, R. B. Development of Parallel On-the-Fly Crystal Algorithm for Global Exploration of Conical Intersection Seam Space. J. Chem. Theory Comput. 2024, 20, 4778–4789. https://doi.org/10.1021/acs.jctc.4c00292.Search in Google Scholar PubMed

163. Pieri, E.; Lahana, D.; Chang, A. M.; Aldaz, C. R.; Thompson, K. C.; Martínez, T. J. The Non-Adiabatic Nanoreactor: Towards the Automated Discovery of Photochemistry. Chem. Sci. 2021, 12, 7294–7307. https://doi.org/10.1039/d1sc00775k.Search in Google Scholar PubMed PubMed Central

164. Ben-Nun, M.; Quenneville, J.; Martínez, T. J. Ab Initio Multiple Spawning: Photochemistry from First Principles Quantum Molecular Dynamics. J. Phys. Chem. A 2000, 104, 5161–5175. https://doi.org/10.1021/jp994174i.Search in Google Scholar

165. Bunker, D. L. Classical Trajectory Methods. Math. Comput. Phys. 1971, 10, 287–325. https://doi.org/10.1016/b978-0-12-460810-8.50012-9.Search in Google Scholar

166. Raff, L. M.; Thompson, D. L. The Classical Trajectory Approach to Reactive Scattering. In Theory of Chemical Reaction Dynamics; Baer, M., Ed.; CRC Press: Boca Raton, 1985.Search in Google Scholar

167. Sewell, T. D.; Thompson, D. L. Classical Trajectory Methods for Polyatomic Molecules. Int. J. Mod. Phys. B 1997, 11, 1067–1112. https://doi.org/10.1142/s0217979297000551.Search in Google Scholar

168. Sun, L. P.; Hase, W. L. Born-Oppenheimer Direct Dynamics Classical Trajectory Simulations. In Reviews in Computational Chemistry; Lipkowitz, K. B., Larter, R., Cundari, T. R., Boyd, D. B., Eds.; Wiley Blackwell: Hoboken, NJ, Vol. 19, 2003; pp 79–146.10.1002/0471466638.ch3Search in Google Scholar

169. Pratihar, S.; Ma, X. Y.; Homayoon, Z.; Barnes, G. L.; Hase, W. L. Direct Chemical Dynamics Simulations. J. Am. Chem. Soc. 2017, 139, 3570–3590. https://doi.org/10.1021/jacs.6b12017.Search in Google Scholar PubMed

170. Verlet, L. Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 1967, 159, 98–103. https://doi.org/10.1103/physrev.159.98.Search in Google Scholar

171. Yoshida, H. Construction of Higher-Order Symplectic Integrators. Phys. Lett. A 1990, 150, 262–268. https://doi.org/10.1016/0375-9601(90)90092-3.Search in Google Scholar

172. Odell, A.; Delin, A.; Johansson, B.; Bock, N.; Challacombe, M.; Niklasson, A. M. N. Higher-Order Symplectic Integration in Born-Oppenheimer Molecular Dynamics. J. Chem. Phys. 2009, 131, 244106. https://doi.org/10.1063/1.3268338.Search in Google Scholar PubMed

173. Millam, J. M.; Bakken, V.; Chen, W.; Hase, W. L.; Schlegel, H. B. Ab Initio Classical Trajectories on the Born-Oppenheimer Surface: Hessian-Based Integrators Using Fifth-Order Polynomial and Rational Function Fits. J. Chem. Phys. 1999, 111, 3800–3805. https://doi.org/10.1063/1.480037.Search in Google Scholar

174. Bakken, V.; Millam, J. M.; Schlegel, H. B. Ab Initio Classical Trajectories on the Born-Oppenheimer Surface: Updating Methods for Hessian-Based Integrators. J. Chem. Phys. 1999, 111, 8773–8777. https://doi.org/10.1063/1.480224.Search in Google Scholar

175. Wu, H.; Rahman, M.; Wang, J.; Louderaj, U.; Hase, W. L.; Zhuang, Y. Higher-Accuracy Schemes for Approximating the Hessian from Electronic Structure Calculations in Chemical Dynamics Simulations. J. Chem. Phys. 2010, 133, 074101. https://doi.org/10.1063/1.3407922.Search in Google Scholar PubMed

176. Niklasson, A. M. N. Extended Lagrangian Born-Oppenheimer Molecular Dynamics: From Density Functional Theory to Charge Relaxation Models. Eur. J. Phys. B 2021, 94, 164. https://doi.org/10.1140/epjb/s10051-021-00151-6.Search in Google Scholar

177. Tuckerman, M. E. Ab Initio Molecular Dynamics: Basic Concepts, Current Trends and Novel Applications. J. Phys. Condens. Matter 2002, 14, R1297–R1355. https://doi.org/10.1088/0953-8984/14/50/202.Search in Google Scholar

178. Hutter, J. Car-Parrinello Molecular Dynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 604–612. https://doi.org/10.1002/wcms.90.Search in Google Scholar

179. Car, R.; Parrinello, M. Unified Approach for Molecular-Dynamics and Density-Functional Theory. Phys. Rev. Lett. 1985, 55, 2471–2474. https://doi.org/10.1103/PhysRevLett.55.2471.Search in Google Scholar PubMed

180. Schlegel, H. B.; Millam, J. M.; Iyengar, S. S.; Voth, G. A.; Daniels, A. D.; Scuseria, G. E.; Frisch, M. J. Ab Initio Molecular Dynamics: Propagating the Density Matrix with Gaussian Orbitals. J. Chem. Phys. 2001, 114, 9758–9763. https://doi.org/10.1063/1.1372182.Search in Google Scholar

181. Iyengar, S. S.; Schlegel, H. B.; Millam, J. M.; Voth, G. A.; Scuseria, G. E.; Frisch, M. J. Ab Initio Molecular Dynamics: Propagating the Density Matrix with Gaussian Orbitals. II. Generalizations Based on Mass-Weighting, Idempotency, Energy Conservation and Choice of Initial Conditions. J. Chem. Phys. 2001, 115, 10291–10302. https://doi.org/10.1063/1.1416876.Search in Google Scholar

182. Schlegel, H. B.; Iyengar, S. S.; Li, X. S.; Millam, J. M.; Voth, G. A.; Scuseria, G. E.; Frisch, M. J. Ab Initio Molecular Dynamics: Propagating the Density Matrix with Gaussian Orbitals. III. Comparison with Born-Oppenheimer Dynamics. J. Chem. Phys. 2002, 117, 8694–8704. https://doi.org/10.1063/1.1514582.Search in Google Scholar

183. Bettens, R. P. A.; Collins, M. A. Learning to Interpolate Molecular Potential Energy Surfaces with Confidence: A Bayesian Approach. J. Chem. Phys. 1999, 111, 816–826. https://doi.org/10.1063/1.479368.Search in Google Scholar

184. Behler, J. Representing Potential Energy Surfaces by High-Dimensional Neural Network Potentials. J. Phys. Condens. Matter 2014, 26, 183001. https://doi.org/10.1088/0953-8984/26/18/183001.Search in Google Scholar PubMed

185. Manzhos, S.; Dawes, R.; Carrington, T. Neural Network-Based Approaches for Building High Dimensional and Quantum Dynamics-Friendly Potential Energy Surfaces. Int. J. Quantum Chem. 2015, 115, 1012–1020. https://doi.org/10.1002/qua.24795.Search in Google Scholar

186. Yang, Y. N.; Zhang, S. H.; Ranasinghe, K. D.; Isayev, O.; Roitberg, A. E. Machine Learning of Reactive Potentials. Annu. Rev. Phys. Chem. 2024, 75, 371–395. https://doi.org/10.1146/annurev-physchem-062123-024417.Search in Google Scholar PubMed

187. Habershon, S.; Manolopoulos, D. E.; Markland, T. E.; Miller, T. F. Ring-Polymer Molecular Dynamics: Quantum Effects in Chemical Dynamics from Classical Trajectories in an Extended Phase Space. In Annual Review of Physical Chemistry; Johnson, M. A., Martinez, T. J., Eds.; Annual Reviews: Palo Alto, CA, Vol. 64, 2013; pp 387–413.10.1146/annurev-physchem-040412-110122Search in Google Scholar PubMed

188. Marx, D.; Tuckerman, M. E.; Martyna, G. J. Quantum Dynamics via Adiabatic Ab Initio Centroid Molecular Dynamics. Comput. Phys. Commun. 1999, 118, 166–184. https://doi.org/10.1016/s0010-4655(99)00208-8.Search in Google Scholar

189. Shiga, M.; Nakayama, A. Ab Initio Path Integral Ring Polymer Molecular Dynamics: Vibrational Spectra of Molecules. Chem. Phys. Lett. 2008, 451, 175–181. https://doi.org/10.1016/j.cplett.2007.11.091.Search in Google Scholar

190. Spura, T.; Elgabarty, H.; Kühne, T. D. “On-the-Fly” Coupled Cluster Path-Integral Molecular Dynamics: Impact of Nuclear Quantum Effects on the Protonated Water Dimer. Phys. Chem. Chem. Phys. 2015, 17, 14355–14359. https://doi.org/10.1039/c4cp05192k.Search in Google Scholar PubMed

191. Buxton, S. J.; Habershon, S. Accelerated Path-Integral Simulations Using Ring-Polymer Interpolation. J. Chem. Phys. 2017, 147, 224107. https://doi.org/10.1063/1.5006465.Search in Google Scholar PubMed

192. Karandashev, K.; Vanícek, J. A Combined On-the-Fly/Interpolation Procedure for Evaluating Energy Values Needed in Molecular Simulations. J. Chem. Phys. 2019, 151, 174116. https://doi.org/10.1063/1.5124469.Search in Google Scholar PubMed

193. Zheng, J. J.; Frisch, M. J. Re-Integration with Anchor Points Algorithm for Ab Initio Molecular Dynamics. J. Chem. Phys. 2021, 155, 074106. https://doi.org/10.1063/5.0051079.Search in Google Scholar PubMed

194. Jakowski, J.; Sumner, I.; Iyengar, S. S. Computational Improvements to Quantum Wave Packet Ab Initio Molecular Dynamics Using a Potential-Adapted, Time-Dependent Deterministic Sampling Technique. J. Chem. Theory Comput. 2006, 2, 1203–1219. https://doi.org/10.1021/ct600131g.Search in Google Scholar PubMed

195. Iyengar, S. S.; Sumner, I.; Jakowski, J. Hydrogen Tunneling in an Enzyme Active Site: A Quantum Wavepacket Dynamical Perspective. J. Phys. Chem. B 2008, 112, 7601–7613. https://doi.org/10.1021/jp7103215.Search in Google Scholar PubMed

196. Li, X. H.; Iyengar, S. S. Quantum Wavepacket Ab Initio Molecular Dynamics: Generalizations Using an Extended Lagrangian Treatment of Diabatic States Coupled through Multireference Electronic Structure. J. Chem. Phys. 2010, 133, 184105. https://doi.org/10.1063/1.3504167.Search in Google Scholar PubMed

197. Li, J. J.; Li, X. H.; Iyengar, S. S. Vibrational Properties of Hydrogen-Bonded Systems Using the Multireference Generalization to the “On-the-Fly” Electronic Structure within Quantum Wavepacket Ab Initio Molecular Dynamics (QWAIMD). J. Chem. Theory Comput. 2014, 10, 2265–2280. https://doi.org/10.1021/ct5002347.Search in Google Scholar PubMed

198. DeGregorio, N.; Iyengar, S. S. Efficient and Adaptive Methods for Computing Accurate Potential Surfaces for Quantum Nuclear Effects: Applications to Hydrogen-Transfer Reactions. J. Chem. Theory Comput. 2018, 14, 30–47. https://doi.org/10.1021/acs.jctc.7b00927.Search in Google Scholar PubMed

199. Pavosevic, F.; Culpitt, T.; Hammes-Schiffer, S. Multicomponent Quantum Chemistry: Integrating Electronic and Nuclear Quantum Effects via the Nuclear-Electronic Orbital Method. Chem. Rev. 2020, 120, 4222–4253. https://doi.org/10.1021/acs.chemrev.9b00798.Search in Google Scholar PubMed

200. Tao, Z.; Yu, Q.; Roy, S.; Hammes-Schiffer, S. Direct Dynamics with Nuclear-Electronic Orbital Density Functional Theory. Acc. Chem. Res. 2021, 54, 4131–4141. https://doi.org/10.1021/acs.accounts.1c00516.Search in Google Scholar PubMed

201. Barbatti, M. Nonadiabatic Dynamics with Trajectory Surface Hopping Method. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 620–633. https://doi.org/10.1002/wcms.64.Search in Google Scholar

202. Curchod, B. F. E.; Rothlisberger, U.; Tavernelli, I. Trajectory-Based Nonadiabatic Dynamics with Time-Dependent Density Functional Theory. ChemPhysChem 2013, 14, 1314–1340. https://doi.org/10.1002/cphc.201200941.Search in Google Scholar PubMed

203. Tapavicza, E.; Bellchambers, G. D.; Vincent, J. C.; Furche, F. Ab Initio Non-Adiabatic Molecular Dynamics. Phys. Chem. Chem. Phys. 2013, 15, 18336–18348. https://doi.org/10.1039/c3cp51514a.Search in Google Scholar PubMed

204. Curchod, B. F. E.; Martínez, T. J. Ab Initio Nonadiabatic Quantum Molecular Dynamics. Chem. Rev. 2018, 118, 3305–3336. https://doi.org/10.1021/acs.chemrev.7b00423.Search in Google Scholar PubMed

205. Crespo-Otero, R.; Barbatti, M. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum-Classical Dynamics. Chem. Rev. 2018, 118, 7026–7068. https://doi.org/10.1021/acs.chemrev.7b00577.Search in Google Scholar PubMed

206. Agostini, F.; Curchod, B. F. E. Different Flavors of Nonadiabatic Molecular Dynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2019, 9, e1417. https://doi.org/10.1002/wcms.1417.Search in Google Scholar

207. Conti, I.; Cerullo, G.; Nenov, A.; Garavelli, M. Ultrafast Spectroscopy of Photoactive Molecular Systems from First Principles: Where we Stand Today and where we are Going. J. Am. Chem. Soc. 2020, 142, 16117–16139. https://doi.org/10.1021/jacs.0c04952.Search in Google Scholar PubMed PubMed Central

208. Mai, S. B.; González, L. Molecular Photochemistry: Recent Developments in Theory. Angew. Chem., Int. Ed. 2020, 59, 16832–16846. https://doi.org/10.1002/anie.201916381.Search in Google Scholar PubMed PubMed Central

209. Tully, J. C. Molecular-Dynamics with Electronic-Transitions. J. Chem. Phys. 1990, 93, 1061–1071. https://doi.org/10.1063/1.459170.Search in Google Scholar

210. Jasper, A. W.; Stechmann, S. N.; Truhlar, D. G. Fewest-Switches with Time Uncertainty: A Modified Trajectory Surface-Hopping Algorithm with Better Accuracy for Classically Forbidden Electronic Transitions. J. Chem. Phys. 2002, 116, 5424–5431. https://doi.org/10.1063/1.1453404.Search in Google Scholar

211. Zhu, C. Y.; Nangia, S.; Jasper, A. W.; Truhlar, D. G. Coherent Switching with Decay of Mixing: An Improved Treatment of Electronic Coherence for Non-Born-Oppenheimer Trajectories. J. Chem. Phys. 2004, 121, 7658–7670. https://doi.org/10.1063/1.1793991.Search in Google Scholar PubMed

212. Li, X. S.; Tully, J. C.; Schlegel, H. B.; Frisch, M. J. Ab Initio Ehrenfest Dynamics. J. Chem. Phys. 2005, 123, 084106. https://doi.org/10.1063/1.2008258.Search in Google Scholar PubMed

213. Suchan, J.; Liang, F.; Durden, A. S.; Levine, B. G. Prediction Challenge: First Principles Simulation of the Ultrafast Electron Diffraction Spectrum of Cyclobutanone. J. Chem. Phys. 2024, 160, 134310. https://doi.org/10.1063/5.0198333.Search in Google Scholar PubMed

214. Makhov, D. V.; Symonds, C.; Fernandez-Alberti, S.; Shalashilin, D. V. Ab Initio Quantum Direct Dynamics Simulations of Ultrafast Photochemistry with Multiconfigurational Ehrenfest Approach. Chem. Phys. 2017, 493, 200–218. https://doi.org/10.1016/j.chemphys.2017.04.003.Search in Google Scholar

215. Richings, G. W.; Polyak, I.; Spinlove, K. E.; Worth, G. A.; Burghardt, I.; Lasorne, B. Quantum Dynamics Simulations Using Gaussian Wavepackets: The vMCG Method. Int. Rev. Phys. Chem. 2015, 34, 269–308. https://doi.org/10.1080/0144235x.2015.1051354.Search in Google Scholar

Received: 2025-04-19
Accepted: 2025-05-22
Published Online: 2025-06-03
Published in Print: 2025-09-25

© 2025 IUPAC & De Gruyter

Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0486/html
Scroll to top button