Startseite Is relativistic quantum chemistry a good theory of everything?
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Is relativistic quantum chemistry a good theory of everything?

  • Pekka Pyykkö ORCID logo EMAIL logo
Veröffentlicht/Copyright: 19. Juni 2025
Pure and Applied Chemistry
Aus der Zeitschrift Pure and Applied Chemistry

Abstract

The literature on relativistic quantum chemistry is briefly reviewed. The meaning of the main physical terms is qualitatively discussed. The ionization potential and electron affinity of a gold atom are discussed as existing examples on high-accuracy calculations. Very accurate calculations exist for 2-electron atoms. The hyperfine structure in the HD and D2 molecules was used by Pachucki et al., to obtain an improved deuteron quadrupole moment, Q. The remaining, so far excluded, physical contributions are briefly listed. A short answer to the title question is: ‘Probably yes’. Finally, a comment is made on the possible connection, or lack of one, between parity non-conservation and the handedness of life.


Corresponding author: Pekka Pyykkö, Faculty of Science, Department of Chemistry, University of Helsinki, POB 55, 00014 Helsinki, Finland, e-mail:
Dedicated to the late Ian P. Grant, FRS (15 December 1930 – 1 March 2025). Article note: A collection of invited papers to celebrate the UN’s proclamation of 2025 as the International Year of Quantum Science and Technology.

Acknowledgements

Manuel Yañez and Russell Boyd are thanked for the invitation to contribute to this IYQ issue of PAC and for their patience during the evolution of the present manuscript.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Swirles, B. The Relativistic Self-Consistent Field. Proc. Roy. Soc. (London) A 1935, 152, 625.10.1098/rspa.1935.0211Suche in Google Scholar

2. Grant, I. P. Relativistic Self-Consistent Fields. Proc. Roy. Soc. (London) A 1961, 262, 555.10.1098/rspa.1961.0139Suche in Google Scholar

3. Grant, I. P. Relativistic Self-Consistent Fields. Proc. Phys. Soc. (London) 1965, 86, 523–527; https://doi.org/10.1088/0370-1328/86/3/311.Suche in Google Scholar

4. Grant, I. P. Relativistic Calculation of Atomic Structures. Adv. Phys. 1970, 19, 747–811; https://doi.org/10.1080/00018737000101191.Suche in Google Scholar

5. Pyykkö, P. The Road to Assisi. Mol. Phys. 2025, 123 (5–6), e2227296; https://doi.org/10.1080/00268976.2023.2227296.Suche in Google Scholar

6. Dirac, P. A. M. The Principles of Quantum Mechanics, 4th ed.; Clarendon Press: Oxford, 1974; p. 314. 1st Ed. 1930.Suche in Google Scholar

7. Fock, V. A. Nachala Kvantovoi Mekhaniki, 2nd ed.; Nauka: Moscow, 1976; p. 376. 1st Ed., Leningrad 1932, see pp. 176–251.Suche in Google Scholar

8. Bethe, H. A.; Salpeter, E. E. Quantum Mechanics of One- and Two-Electron Systems; Springer-Verlag: Berlin and New York, 1957; p. 370.10.1007/978-3-662-12869-5Suche in Google Scholar

9. Rose, M. E. Relativistic Electron Theory; Wiley: New York, 1961.10.1063/1.3057239Suche in Google Scholar

10. Bjorken, J. D.; Drell, S. D. Relativistic Quantum Mechanics; McGraw-Hill: New York, 1964. See Chapter 4.4.Suche in Google Scholar

11. Moss, R. E. Advanced Molecular Quantum Mechanics: An Introduction to Relativistic Quantum Mechanics and the Quantum Theory of Radiation; Chapman and Hall: London, 1973; p. 300.10.1007/978-94-009-5688-9_1Suche in Google Scholar

12. Das, T. P. Relativistic Quantum Mechanics of Electrons; Harper and Row: New York, 1974.Suche in Google Scholar

13. Lindgren, I.; Morrison, J. Atomic Many-Body Theory, 2nd ed.; Springer-Verlag: Berlin, 1986; p. 466. Chapter 14.7. ‘Relativistic Effects’.10.1007/978-3-642-61640-2Suche in Google Scholar

14. Pyykkö, P. Relativistic Theory of Atoms and Molecules A Bibliography 1916–1985, Vol. 41; Springer-Verlag: Berlin, 1986; p. 389.10.1007/978-3-642-93345-5Suche in Google Scholar

15. Johnson, W.; Mohr, P.; Sucher, J. Relativistic, Quantum Electrodynamic, and Weak Interaction Effects in Atoms (Eds.). AIP Conf. Proc. 1989, 189, 513.Suche in Google Scholar

16. Greiner, W. Relativistic Quantum Mechanics. In Wave Equations; Springer-Verlag: Berlin, 1990; p. 345. German original 1981.Suche in Google Scholar

17. Thaller, B. The Dirac Equation; Springer-Verlag: Berlin, 1992; p. 357.10.1007/978-3-662-02753-0Suche in Google Scholar

18. Labzowsky, L. N.; Klimchitskaya, G. L.; Dmitriev, Yu Yu Relativistic Effects in the Spectra of Atomic Systems; Institute of Physics Publishing: Bristol, 1993; p. 340.Suche in Google Scholar

19. Pyykkö, P. Relativistic Theory of Atoms and Molecules. II. In Lecture Notes in Chemistry; Springer-Verlag: Berlin, Vol. 60, 1993; pp. i–viii, 1–479.10.1007/978-3-642-51488-3_1Suche in Google Scholar

20. Balasubramanian, K. Relativistic Effects in Chemistry. Part A. Theory and Techniques; Wiley: New York, 1997; p. 301.Suche in Google Scholar

21. Balasubramanian, K. Relativistic Effects in Chemistry. Part B. Applications; Wiley: New York, 1997; p. 527.Suche in Google Scholar

22. Strange, P. Relativistic Quantum Mechanics with Applications in Condensed Matter and Atomic Physics; Cambridge Univ. Press, 1998; p. 594.10.1017/CBO9780511622755Suche in Google Scholar

23. Pyykkö, P. Relativistic Theory of Atoms and Molecules III. A Bibliography 1993 – 1999. In Lecture Notes in Chemistry; Springer: Berlin, Vol. 76, 2000; pp. i–x, 1–354.10.1007/978-3-642-51885-0_1Suche in Google Scholar

24. Schwerdtfeger, P. Relativistic Electronic Structure Theory. Part I. Fundamentals. (Ed.), Vol. 11; Elsevier: Amsterdam, 2002; p. xx + 926. Theoretical and Computational Chemistry.Suche in Google Scholar

25. Pilkuhn, H. Relativistic Quantum Mechanics; Springer-Verlag: Berlin, 2003; p. 239.10.1007/978-3-662-05275-4Suche in Google Scholar

26. Schwerdtfeger, P. Relativistic Electronic Structure Theory. Part 2. Applications. (Ed.), Vol. 14; Elsevier: Amsterdam, 2004; p. xv + 787. Theoretical and Computational Chemistry.Suche in Google Scholar

27. Dyall, K. G.; Faegri, K.Jr. Introduction to Relativistic Quantum Chemistry; Oxford University Press: Oxford, 2007; p. 544. Electronic online version 2020.10.1093/oso/9780195140866.001.0001Suche in Google Scholar

28. Grant, I. P. Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation; Springer: New York, 2007; p. 797.10.1007/978-0-387-35069-1Suche in Google Scholar

29. Johnson, W. R. Atomic Structure Theory; Springer: Berlin, 2008; p. 312.Suche in Google Scholar

30. Lindgren, I. Relativistic Many-Body Theory. In A New Field-Theoretical Approach; Springer: New York, 2011; p. 365.10.1007/978-1-4419-8309-1Suche in Google Scholar

31. Reiher, M.; Wolf, A. Relativistic Quantum Chemistry. The Fundamental Theory of Molecular Science, 2nd ed.; Wiley-VCH: Weinheim, 2015; p. 737. https://onlinelibrary.wiley.com/doi/book/10.1002/9783527667550.10.1002/9783527667550Suche in Google Scholar

32. Norman, P.; Ruud, K.; Saue, T. Principles and Practices of Molecular Properties: Theory, Modeling and Simulations; Wiley: Chichester, 2018; p. 468.10.1002/9781118794821Suche in Google Scholar

33. Pyykkö, P. The RTAM Electronic Bibliography, Version 17.0, on Relativistic Theory of Atoms and Molecules. J. Comp. Chem. 2013, 34, 2667; https://doi.org/10.1002/jcc.23454.Suche in Google Scholar PubMed

34. Pyykkö, P. Relativistic Quantum Chemistry. Adv. Quantum Chem. 1978, 11, 353–409.10.1016/S0065-3276(08)60241-5Suche in Google Scholar

35. Pyykkö, P.; Desclaux, J. P. Relativity and the Periodic System of Elements. Acc. Chem. Res. 1979, 12, 276–281; https://doi.org/10.1021/ar50140a002.Suche in Google Scholar

36. Pyykkö, P. Relativistic Effects in Structural Chemistry. Chem. Rev. 1988, 88, 563–594. See Table IV; https://doi.org/10.1021/cr00085a006.Suche in Google Scholar

37. Pyykkö, P. Relativistic Effects in Chemistry: More Common Than You Thought. Ann. Rev. Phys. Chem. 2012, 63, 45–64; https://doi.org/10.1146/annurev-physchem-032511-143755.Suche in Google Scholar PubMed

38. Pašteka, L. F.; Eliav, E.; Borschevsky, A.; Kaldor, U.; Schwerdtfeger, P. Relativistic Coupled Cluster Calculations with Variational Quantum Electrodynamics Resolve the Discrepancy between Experiment and Theory Concerning the Electron Affinity and Ionization Potential of Gold. Phys. Rev. Lett. 2017, 118, 023002; https://doi.org/10.1103/physrevlett.118.023002.Suche in Google Scholar

39. Saue, T. Does Chemistry Need More Physics? 2025. arXiv:2504.19003.Suche in Google Scholar

40. Pyykkö, P.; Tokman, M.; Labzowsky, L. N. Estimated Valence-Level Lamb Shifts for Group 1 and Group 11 Metal Atoms. Phys. Rev. A 1998, 57, R689–R692; https://doi.org/10.1103/physreva.57.r689.Suche in Google Scholar

41. Labzowsky, L.; Goidenko, I.; Tokman, M.; Pyykkö, P. Calculated Self-Energy Contributions for an Ns Valence Electron Using the Multiple-Commutator Method. Phys. Rev. A 1999, 59, 2707–2711; https://doi.org/10.1103/physreva.59.2707.Suche in Google Scholar

42. Margócsy, Á.; Mátyus, E. QED Corrections to the Correlated Relativistic Energy: One-Photon Processes. J. Chem. Phys. 2024, 160, 204103. arXiv:2312.13887; https://doi.org/10.1063/5.0193250.Suche in Google Scholar PubMed

43. Yerokhin, V. A.; Patkóš, V.; Pachucki, K. QED Calculations of Energy Levels of Heliumlike Ions with 5 ≤ Z ≤ 30. Phys. Rev. A 2022, 106, 022815; https://doi.org/10.1103/physreva.106.022815.Suche in Google Scholar

44. Dinneen, T. P.; Berrah-Mansour, N.; Berry, H. G.; Young, L.; Pardo, R. C. Precision Measurements of Relativistic and QED Effects in Helium-like Boron. Phys. Rev. Lett. 1991, 66, 2859–2862; https://doi.org/10.1103/physrevlett.66.2859.Suche in Google Scholar PubMed

45. Curdt, W.; Landi, E.; Wilhelm, K.; Feldman, U. Wavelength Measurements of Heliumlike Transitions in Ne8+, Na9+, Mg10+, and Si12+ Emitted by Solar Flare Plasmas. Phys. Rev. A 2000, 62, 022502.Suche in Google Scholar

46. Puchalski, M.; Komasa, J.; Pachucki, K. Hyperfine Structure of the First Rotational Level in H2, D2 and HD Molecules and the Deuteron Quadrupole Moment. Phys. Rev. Lett. 2020, 125, 253001; https://doi.org/10.1103/physrevlett.125.253001.Suche in Google Scholar

47. Filin, A. A.; Möller, D.; Baru, V.; Epelbaum, E.; Krebs, H.; Reinert, P. High-accuracy Calculation of the Deuteron Charge and Quadrupole Form Factors in Chiral Effective Field Theory. Phys. Rev. C 2021, 103, 024313. arXiv:2009.08911; https://doi.org/10.1103/physrevc.103.024313.Suche in Google Scholar

48. Weil-Ktorza, O.; Naveh-Tassa, S.; Fridmann-Sirkis, Y.; Despotović, D.; Cherukuri, K. P.; Corlett, T.; Levy, Y.; Metanis, N.; Longo, L. M. Functional Ambidexterity of an Ancient Nucleic Acid-Binding Domain. Ang. Chem. Int. Ed. 2025, 64, e202505188; https://doi.org/10.1002/anie.202505188.Suche in Google Scholar PubMed PubMed Central


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2025-0460).


Received: 2025-03-14
Accepted: 2025-06-12
Published Online: 2025-06-19

© 2025 IUPAC & De Gruyter

Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0460/html
Button zum nach oben scrollen