Abstract
The literature on relativistic quantum chemistry is briefly reviewed. The meaning of the main physical terms is qualitatively discussed. The ionization potential and electron affinity of a gold atom are discussed as existing examples on high-accuracy calculations. Very accurate calculations exist for 2-electron atoms. The hyperfine structure in the HD and D2 molecules was used by Pachucki et al., to obtain an improved deuteron quadrupole moment, Q. The remaining, so far excluded, physical contributions are briefly listed. A short answer to the title question is: ‘Probably yes’. Finally, a comment is made on the possible connection, or lack of one, between parity non-conservation and the handedness of life.
Acknowledgements
Manuel Yañez and Russell Boyd are thanked for the invitation to contribute to this IYQ issue of PAC and for their patience during the evolution of the present manuscript.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Swirles, B. The Relativistic Self-Consistent Field. Proc. Roy. Soc. (London) A 1935, 152, 625.10.1098/rspa.1935.0211Suche in Google Scholar
2. Grant, I. P. Relativistic Self-Consistent Fields. Proc. Roy. Soc. (London) A 1961, 262, 555.10.1098/rspa.1961.0139Suche in Google Scholar
3. Grant, I. P. Relativistic Self-Consistent Fields. Proc. Phys. Soc. (London) 1965, 86, 523–527; https://doi.org/10.1088/0370-1328/86/3/311.Suche in Google Scholar
4. Grant, I. P. Relativistic Calculation of Atomic Structures. Adv. Phys. 1970, 19, 747–811; https://doi.org/10.1080/00018737000101191.Suche in Google Scholar
5. Pyykkö, P. The Road to Assisi. Mol. Phys. 2025, 123 (5–6), e2227296; https://doi.org/10.1080/00268976.2023.2227296.Suche in Google Scholar
6. Dirac, P. A. M. The Principles of Quantum Mechanics, 4th ed.; Clarendon Press: Oxford, 1974; p. 314. 1st Ed. 1930.Suche in Google Scholar
7. Fock, V. A. Nachala Kvantovoi Mekhaniki, 2nd ed.; Nauka: Moscow, 1976; p. 376. 1st Ed., Leningrad 1932, see pp. 176–251.Suche in Google Scholar
8. Bethe, H. A.; Salpeter, E. E. Quantum Mechanics of One- and Two-Electron Systems; Springer-Verlag: Berlin and New York, 1957; p. 370.10.1007/978-3-662-12869-5Suche in Google Scholar
9. Rose, M. E. Relativistic Electron Theory; Wiley: New York, 1961.10.1063/1.3057239Suche in Google Scholar
10. Bjorken, J. D.; Drell, S. D. Relativistic Quantum Mechanics; McGraw-Hill: New York, 1964. See Chapter 4.4.Suche in Google Scholar
11. Moss, R. E. Advanced Molecular Quantum Mechanics: An Introduction to Relativistic Quantum Mechanics and the Quantum Theory of Radiation; Chapman and Hall: London, 1973; p. 300.10.1007/978-94-009-5688-9_1Suche in Google Scholar
12. Das, T. P. Relativistic Quantum Mechanics of Electrons; Harper and Row: New York, 1974.Suche in Google Scholar
13. Lindgren, I.; Morrison, J. Atomic Many-Body Theory, 2nd ed.; Springer-Verlag: Berlin, 1986; p. 466. Chapter 14.7. ‘Relativistic Effects’.10.1007/978-3-642-61640-2Suche in Google Scholar
14. Pyykkö, P. Relativistic Theory of Atoms and Molecules A Bibliography 1916–1985, Vol. 41; Springer-Verlag: Berlin, 1986; p. 389.10.1007/978-3-642-93345-5Suche in Google Scholar
15. Johnson, W.; Mohr, P.; Sucher, J. Relativistic, Quantum Electrodynamic, and Weak Interaction Effects in Atoms (Eds.). AIP Conf. Proc. 1989, 189, 513.Suche in Google Scholar
16. Greiner, W. Relativistic Quantum Mechanics. In Wave Equations; Springer-Verlag: Berlin, 1990; p. 345. German original 1981.Suche in Google Scholar
17. Thaller, B. The Dirac Equation; Springer-Verlag: Berlin, 1992; p. 357.10.1007/978-3-662-02753-0Suche in Google Scholar
18. Labzowsky, L. N.; Klimchitskaya, G. L.; Dmitriev, Yu Yu Relativistic Effects in the Spectra of Atomic Systems; Institute of Physics Publishing: Bristol, 1993; p. 340.Suche in Google Scholar
19. Pyykkö, P. Relativistic Theory of Atoms and Molecules. II. In Lecture Notes in Chemistry; Springer-Verlag: Berlin, Vol. 60, 1993; pp. i–viii, 1–479.10.1007/978-3-642-51488-3_1Suche in Google Scholar
20. Balasubramanian, K. Relativistic Effects in Chemistry. Part A. Theory and Techniques; Wiley: New York, 1997; p. 301.Suche in Google Scholar
21. Balasubramanian, K. Relativistic Effects in Chemistry. Part B. Applications; Wiley: New York, 1997; p. 527.Suche in Google Scholar
22. Strange, P. Relativistic Quantum Mechanics with Applications in Condensed Matter and Atomic Physics; Cambridge Univ. Press, 1998; p. 594.10.1017/CBO9780511622755Suche in Google Scholar
23. Pyykkö, P. Relativistic Theory of Atoms and Molecules III. A Bibliography 1993 – 1999. In Lecture Notes in Chemistry; Springer: Berlin, Vol. 76, 2000; pp. i–x, 1–354.10.1007/978-3-642-51885-0_1Suche in Google Scholar
24. Schwerdtfeger, P. Relativistic Electronic Structure Theory. Part I. Fundamentals. (Ed.), Vol. 11; Elsevier: Amsterdam, 2002; p. xx + 926. Theoretical and Computational Chemistry.Suche in Google Scholar
25. Pilkuhn, H. Relativistic Quantum Mechanics; Springer-Verlag: Berlin, 2003; p. 239.10.1007/978-3-662-05275-4Suche in Google Scholar
26. Schwerdtfeger, P. Relativistic Electronic Structure Theory. Part 2. Applications. (Ed.), Vol. 14; Elsevier: Amsterdam, 2004; p. xv + 787. Theoretical and Computational Chemistry.Suche in Google Scholar
27. Dyall, K. G.; Faegri, K.Jr. Introduction to Relativistic Quantum Chemistry; Oxford University Press: Oxford, 2007; p. 544. Electronic online version 2020.10.1093/oso/9780195140866.001.0001Suche in Google Scholar
28. Grant, I. P. Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation; Springer: New York, 2007; p. 797.10.1007/978-0-387-35069-1Suche in Google Scholar
29. Johnson, W. R. Atomic Structure Theory; Springer: Berlin, 2008; p. 312.Suche in Google Scholar
30. Lindgren, I. Relativistic Many-Body Theory. In A New Field-Theoretical Approach; Springer: New York, 2011; p. 365.10.1007/978-1-4419-8309-1Suche in Google Scholar
31. Reiher, M.; Wolf, A. Relativistic Quantum Chemistry. The Fundamental Theory of Molecular Science, 2nd ed.; Wiley-VCH: Weinheim, 2015; p. 737. https://onlinelibrary.wiley.com/doi/book/10.1002/9783527667550.10.1002/9783527667550Suche in Google Scholar
32. Norman, P.; Ruud, K.; Saue, T. Principles and Practices of Molecular Properties: Theory, Modeling and Simulations; Wiley: Chichester, 2018; p. 468.10.1002/9781118794821Suche in Google Scholar
33. Pyykkö, P. The RTAM Electronic Bibliography, Version 17.0, on Relativistic Theory of Atoms and Molecules. J. Comp. Chem. 2013, 34, 2667; https://doi.org/10.1002/jcc.23454.Suche in Google Scholar PubMed
34. Pyykkö, P. Relativistic Quantum Chemistry. Adv. Quantum Chem. 1978, 11, 353–409.10.1016/S0065-3276(08)60241-5Suche in Google Scholar
35. Pyykkö, P.; Desclaux, J. P. Relativity and the Periodic System of Elements. Acc. Chem. Res. 1979, 12, 276–281; https://doi.org/10.1021/ar50140a002.Suche in Google Scholar
36. Pyykkö, P. Relativistic Effects in Structural Chemistry. Chem. Rev. 1988, 88, 563–594. See Table IV; https://doi.org/10.1021/cr00085a006.Suche in Google Scholar
37. Pyykkö, P. Relativistic Effects in Chemistry: More Common Than You Thought. Ann. Rev. Phys. Chem. 2012, 63, 45–64; https://doi.org/10.1146/annurev-physchem-032511-143755.Suche in Google Scholar PubMed
38. Pašteka, L. F.; Eliav, E.; Borschevsky, A.; Kaldor, U.; Schwerdtfeger, P. Relativistic Coupled Cluster Calculations with Variational Quantum Electrodynamics Resolve the Discrepancy between Experiment and Theory Concerning the Electron Affinity and Ionization Potential of Gold. Phys. Rev. Lett. 2017, 118, 023002; https://doi.org/10.1103/physrevlett.118.023002.Suche in Google Scholar
39. Saue, T. Does Chemistry Need More Physics? 2025. arXiv:2504.19003.Suche in Google Scholar
40. Pyykkö, P.; Tokman, M.; Labzowsky, L. N. Estimated Valence-Level Lamb Shifts for Group 1 and Group 11 Metal Atoms. Phys. Rev. A 1998, 57, R689–R692; https://doi.org/10.1103/physreva.57.r689.Suche in Google Scholar
41. Labzowsky, L.; Goidenko, I.; Tokman, M.; Pyykkö, P. Calculated Self-Energy Contributions for an Ns Valence Electron Using the Multiple-Commutator Method. Phys. Rev. A 1999, 59, 2707–2711; https://doi.org/10.1103/physreva.59.2707.Suche in Google Scholar
42. Margócsy, Á.; Mátyus, E. QED Corrections to the Correlated Relativistic Energy: One-Photon Processes. J. Chem. Phys. 2024, 160, 204103. arXiv:2312.13887; https://doi.org/10.1063/5.0193250.Suche in Google Scholar PubMed
43. Yerokhin, V. A.; Patkóš, V.; Pachucki, K. QED Calculations of Energy Levels of Heliumlike Ions with 5 ≤ Z ≤ 30. Phys. Rev. A 2022, 106, 022815; https://doi.org/10.1103/physreva.106.022815.Suche in Google Scholar
44. Dinneen, T. P.; Berrah-Mansour, N.; Berry, H. G.; Young, L.; Pardo, R. C. Precision Measurements of Relativistic and QED Effects in Helium-like Boron. Phys. Rev. Lett. 1991, 66, 2859–2862; https://doi.org/10.1103/physrevlett.66.2859.Suche in Google Scholar PubMed
45. Curdt, W.; Landi, E.; Wilhelm, K.; Feldman, U. Wavelength Measurements of Heliumlike Transitions in Ne8+, Na9+, Mg10+, and Si12+ Emitted by Solar Flare Plasmas. Phys. Rev. A 2000, 62, 022502.Suche in Google Scholar
46. Puchalski, M.; Komasa, J.; Pachucki, K. Hyperfine Structure of the First Rotational Level in H2, D2 and HD Molecules and the Deuteron Quadrupole Moment. Phys. Rev. Lett. 2020, 125, 253001; https://doi.org/10.1103/physrevlett.125.253001.Suche in Google Scholar
47. Filin, A. A.; Möller, D.; Baru, V.; Epelbaum, E.; Krebs, H.; Reinert, P. High-accuracy Calculation of the Deuteron Charge and Quadrupole Form Factors in Chiral Effective Field Theory. Phys. Rev. C 2021, 103, 024313. arXiv:2009.08911; https://doi.org/10.1103/physrevc.103.024313.Suche in Google Scholar
48. Weil-Ktorza, O.; Naveh-Tassa, S.; Fridmann-Sirkis, Y.; Despotović, D.; Cherukuri, K. P.; Corlett, T.; Levy, Y.; Metanis, N.; Longo, L. M. Functional Ambidexterity of an Ancient Nucleic Acid-Binding Domain. Ang. Chem. Int. Ed. 2025, 64, e202505188; https://doi.org/10.1002/anie.202505188.Suche in Google Scholar PubMed PubMed Central
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/pac-2025-0460).
© 2025 IUPAC & De Gruyter