Home Hypothetical heterocyclic carbenes
Article
Licensed
Unlicensed Requires Authentication

Hypothetical heterocyclic carbenes

  • Brian F. Yates ORCID logo EMAIL logo
Published/Copyright: June 20, 2025

Abstract

Density functional theory is used to explore the geometries and properties of 55 heterocyclic carbenes containing N, P, As, Sb, Bi, O, S, Se, Te and Po. Planar and non-planar structures have been systematically evaluated and a variety of measures (including Wiberg bond indices, orbital occupancies, HOMO–LUMO gaps, proton affinities, J(13C–1H) coupling constants and isodesmic reaction energies) have been considered for all systems. The main conclusions are that the heavier heteroatoms can be effective π-donors towards the carbene carbon if planarity can be attained, and that the cost of attaining this planarity is actually quite low for the majority of the heterocyclic carbenes considered.


Corresponding author: Brian F. Yates, University of Tasmania, Private Bag 75, Hobart, TAS 7001, Australia, e-mail:
Article note: A collection of invited papers to celebrate the UN’s proclamation of 2025 as the International Year of Quantum Science and Technology.

Award Identifier / Grant number: DP180100904

Acknowledgments

This research was supported by the University of Tasmania high performance computing facility and a grant from the Australian Research Council.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: This study was supported by the Australian Research Council through grant number DP180100904.

  7. Data availability: Data is available in the Supplementary Material accompanying this manuscript.

References

1. Arduengo, A. J.; Harlow, R. L.; Kline, M. A Stable Crystalline Carbene. J. Am. Chem. Soc. 1991, 113, 361–363; https://doi.org/10.1021/ja00001a054.Search in Google Scholar

2. Heinemann, C.; Muller, T.; Apeloig, Y.; Schwarz, H. On the Question of Stability, Conjugation and “Aromaticity” in Imidazol-2-Ylidenes and Their Silicon Analogs. J. Am. Chem. Soc. 1996, 118, 2023–2038; https://doi.org/10.1021/ja9523294.Search in Google Scholar

3. Boehme, C.; Frenking, G. Electronic Structure of Stable Carbenes, Silylenes and Germylenes. J. Am. Chem. Soc. 1996, 118, 2039–2046; https://doi.org/10.1021/ja9527075.Search in Google Scholar

4. Melaimi, M.; Soleilhavoup, M.; Bertrand, G. Stable Cyclic Carbenes and Related Species beyond Diaminocarbenes. Angew. Chem., Int. Ed. 2010, 49, 8810–8849; https://doi.org/10.1002/anie.201000165.Search in Google Scholar PubMed PubMed Central

5. Nelson, D. J.; Nolan, S. P. N-heterocyclic Carbenes. In In N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis; Nolan, S. P., Ed.; Wiley VCH: Weinheim, 2014; pp. 1–24.10.1002/9783527671229.ch01Search in Google Scholar

6. Jahnke, M. C.; Hahn, F. E. Introduction to N-Heterocyclic Carbenes: Synthesis and Stereoelectronic Parameters. In In N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools; Díez-González, S., Ed.; Royal Society of Chemistry: Cambridge, 2017; pp. 1–45.10.1039/9781782626817-00001Search in Google Scholar

7. Bellotti, P.; Koy, M.; Hopkinson, M. N.; Glorius, F. Recent Advances in the Chemistry and Applications of N-Heterocyclic Carbenes. Nat. Rev. Chem. 2021, 5, 711–725; https://doi.org/10.1038/s41570-021-00321-1.Search in Google Scholar PubMed

8. Magill, A. M.; Cavell, K. J.; Yates, B. F. Basicity of Nucleophilic Carbenes in Aqueous and Nonaqueous Solvents – Theoretical Predictions. J. Am. Chem. Soc. 2004, 126, 8717–8724; https://doi.org/10.1021/ja038973x.Search in Google Scholar PubMed

9. Magill, A. M.; Yates, B. F. An Assessment of Theoretical Protocols for Calculation of the pKa Values of the Prototype Imidazolium Cation. Aust. J. Chem. 2004, 57, 1205–1210; https://doi.org/10.1071/ch04159.Search in Google Scholar

10. Graham, D. C. The Influence of Heteroatom Substitution on Heterocyclic Carbenes and their Complexes. PhD Thesis; University of Tasmania: Hobart, Australia, 2003.Search in Google Scholar

11. Graham, D. C.; Yates, B. F. Increased Stability of NO and NS Heterocyclic Carbenes? Aust. J. Chem. 2004, 57, 359–364; https://doi.org/10.1071/ch03248.Search in Google Scholar

12. Graham, D. C.; Cavell, K. J.; Yates, B. F. Dimerization Mechanisms of Heterocyclic Carbenes. J. Phys. Org. Chem. 2005, 18, 298–309; https://doi.org/10.1002/poc.846.Search in Google Scholar

13. Hollóczki, O.; Kelemen, Z.; Nyulászi, L. On the Organocatalytic Activity of N-Heterocyclic Carbenes: Role of Sulfur in Thiamine. J. Org. Chem. 2012, 77, 6014–6022; https://doi.org/10.1021/jo300745e.Search in Google Scholar PubMed

14. Kelemen, Z.; Hollóczki, O.; Oláh, J.; Nyulászi, L. Oxazol-2-ylidenes. A New Class of Stable Carbenes? RSC Adv. 2013, 3, 7970–7978; https://doi.org/10.1039/c3ra41177j.Search in Google Scholar

15. Ramsden, C. A.; Oziminski, W. P. A Quantitative Analysis of Factors Influencing Ease of Formation and σ-Bonding Strength of Oxa- and Thia-N-Heterocyclic Carbenes. J. Org. Chem. 2017, 82, 12485–12491; https://doi.org/10.1021/acs.joc.7b02283.Search in Google Scholar PubMed

16. Ritch, J. S. Chalcogen-Substituted Carbenes: A Density Functional Study of Structure, Stability and Donor Ability. RSC Adv. 2023, 13, 16828–16836; https://doi.org/10.1039/d3ra03324d.Search in Google Scholar PubMed PubMed Central

17. Kuhn, N.; Kratz, T. Synthesis of Imidazol-2-Ylidenes by Reduction of Imidazole-2(3H)-Thiones. Synthesis 1993, 1993, 561–562; https://doi.org/10.1055/s-1993-25902.Search in Google Scholar

18. Arduengo, A. J.; Goerlich, J. R.; Marshall, W. J. A Stable Thiazol-2-Ylidene and its Dimer. Liebigs Ann 1997, 1997, 365–374; https://doi.org/10.1002/jlac.199719970213.Search in Google Scholar

19. Hahn, F. E.; Tamm, M.; Lügger, T. Equilibrium between Isocyanide and Carbene Complexes in Coordination Compounds of 2,6-Dihydroxyphenyl Isocyanide. Angew. Chem., Int. Ed. Engl. 1994, 33, 1356–1359; https://doi.org/10.1002/anie.199413561.Search in Google Scholar

20. Fekete, A.; Nyulászi, L. Phosphorous Stabilized Carbenes: Theoretical Predictions. J. Organomet. Chem. 2002, 643-644, 278–284.10.1016/S0022-328X(01)01222-0Search in Google Scholar

21. Jacobsen, H. Bonding Aspects of P-Heterocyclic Carbene Transition Metal Complexes. A Computational Assessment. J. Organomet. Chem. 2005, 690, 6068–6078; https://doi.org/10.1016/j.jorganchem.2005.07.112.Search in Google Scholar

22. Schoeller, W. W.; Schroeder, D.; Rozhenko, A. B. On the Ligand Properties of the P- versus the N-Heterocyclic Carbene for a Grubbs Catalyst in Olefin Metathesis. J. Organomet. Chem. 2005, 690, 6079–6088; https://doi.org/10.1016/j.jorganchem.2005.08.001.Search in Google Scholar

23. Al Furaiji, K. H. M.; Iversen, K. J.; Dutton, J. L.; Wilson, D. J. D. Theoretical Investigation of Hydride Insertion into N-Heterocyclic Carbenes Containing N, P, C, O and S Heteroatoms. Chem.–Asian J. 2018, 13, 3745–3752; https://doi.org/10.1002/asia.201801285.Search in Google Scholar PubMed

24. Kapp, J.; Schade, C.; El-Nahasa, A. M.; Schleyer, P. V. R. Heavy Element π Donation Is Not Less Effective. Angew Chem. Int. Ed. Engl. 1996, 35, 2236–2238; https://doi.org/10.1002/anie.199622361.Search in Google Scholar

25. Sobel, D. The Elements of Marie Curie; 4th Estate: London, UK, 2024.Search in Google Scholar

26. Gupta, R.; Frison, G. Correlation between NMR Coupling Constants and σ-Donating Properties of N-Heterocyclic Carbenes and Their Derivatives. Chem. Eur. J. 2025, 31, e202403403; https://doi.org/10.1002/chem.202403403.Search in Google Scholar PubMed

27. Huynh, H. V. Electronic Properties of N-Heterocyclic Carbenes and Their Experimental Determination. Chem. Rev. 2018, 118, 9457–9492; https://doi.org/10.1021/acs.chemrev.8b00067.Search in Google Scholar PubMed

28. Yaqoob, M.; Abbasi, M.; Anwar, H.; Iqbal, J.; Asad, M.; Asiri, A. M.; Iqbal, M. A. Dative Behavior of N-Heterocyclic Carbenes (NHCs) with Selenium in Se-NHC Compounds. Rev. Inorg. Chem. 2022, 42, 229–238; https://doi.org/10.1515/revic-2021-0031.Search in Google Scholar

29. Pruschinski, L.; Kahnert, S. R.; Herzberger, C.; Namyslo, J. C.; Schmidt, A. Studies on the Effect of Positive and Negative Charges on the 77Se NMR Shifts of Selenones and Selenyls of N-Heterocyclic Carbenes of Imidazolium-4,5-Dicarboxylates. J. Org. Chem. 2025, 9-0, 2201–2213.10.1021/acs.joc.4c02581Search in Google Scholar PubMed PubMed Central

30. Nyulászi, L.; Veszpremi, T.; Forro, A. Stabilized Carbenes Do Not Dimerize. Phys. Chem. Chem. Phys. 2000, 2, 3127–3129; https://doi.org/10.1039/b003588m.Search in Google Scholar

31. Kassaee, M. Z.; Shakib, F. A.; Momeni, M. R.; Ghambarian, M.; Musavi, S. M. Carbenes with Reduced Heteroatom Stabilization: A Computational Approach. J. Org. Chem. 2010, 75, 2539–2545; https://doi.org/10.1021/jo100022t.Search in Google Scholar PubMed

32. Rezabal, E.; Frison, G. Estimating the π Binding Energy of N-Heterocyclic Carbenes: The Role of Polarisation. J. Comp. Chem. 2015, 36, 564–572; https://doi.org/10.1002/jcc.23852.Search in Google Scholar PubMed

33. Gómez-Suárez, A.; Nelson, D. J.; Nolan, S. P. Quantifying and Understanding the Steric Properties of N-Heterocyclic Carbenes. Chem. Commun. 2017, 53, 2650–2660; https://doi.org/10.1039/c7cc00255f.Search in Google Scholar PubMed

34. Masuda, J. D.; Martin, D.; Lyon-Saunier, C.; Baceiredo, A.; Gornitzka, H.; Donnadieu, B.; Bertrand, G. Stable P-Heterocyclic Carbenes: Scope and Limitations. Chem.–Asian J. 2007, 2, 178–187; https://doi.org/10.1002/asia.200600300.Search in Google Scholar PubMed PubMed Central

35. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.02. Gaussian, Inc.: Wallingford CT, 2019. https://gaussian.com/products/ (accessed 2025-06-18).Search in Google Scholar

36. Cao, C.; Zhang, C.; Gu, J.; Mo, Y. Double-boron Heterocyclic Carbenes: A Computational Study of Diels-Alder Reactions. Phys. Chem. Chem. Phys. 2024, 26, 28082–28090; https://doi.org/10.1039/d4cp03615h.Search in Google Scholar PubMed

37. Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. A Complete Basis Set Model Chemistry. VI. Use of Density Functional Geometries and Frequencies. J. Chem. Phys. 1999, 110, 2822–2827; https://doi.org/10.1063/1.477924.Search in Google Scholar

38. Liptak, M. D.; Shields, G. C. Accurate pKa Calculations for Carboxylic Acids Using Complete Basis Set and Gaussian-N Models Combined with CPCM Continuum Solvation Methods. J. Am. Chem. Soc. 2001, 123, 7314–7319; https://doi.org/10.1021/ja010534f.Search in Google Scholar PubMed

39. Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305; https://doi.org/10.1039/b508541a.Search in Google Scholar PubMed

40. Chai, J.-D.; Head-Gordon, M. Long-range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620; https://doi.org/10.1039/b810189b.Search in Google Scholar PubMed

41. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396; https://doi.org/10.1021/jp810292n.Search in Google Scholar PubMed

42. Wiberg, K. B. Application of the Pople-Santry-Segal CNDO Method to the Cyclopropylcarbinyl and Cyclobutyl Cation and to Bicyclobutane. Tetrahedron 1968, 24, 1083–1096; https://doi.org/10.1016/0040-4020(68)88057-3.Search in Google Scholar

43. NBO Version 3.1; Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F.; Gaussian Inc.: Pittsburgh, PA, 2003.Search in Google Scholar

44. Adamo, C.; Jacquemin, D. The Calculations of Excited-State Properties with Time-Dependent Density Functional Theory. Chem. Soc. Rev. 2013, 42, 845–856; https://doi.org/10.1039/c2cs35394f.Search in Google Scholar PubMed

45. Sychrovsky, V.; Gräfenstein, J.; Cremer, D. Nuclear Magnetic Resonance Spin-Spin Coupling Constants from Coupled Perturbed Density Functional Theory. J. Chem. Phys. 2000, 113, 3530–3547.10.1063/1.1286806Search in Google Scholar

46. Del Bene, J. E.; Elguero, J. Can Changes in One-Bond Spin-Spin Coupling Constants in Acids Be Related to Gas-phase Proton Affinities of Bases? J. Phys. Chem. A 2007, 111, 6443–6448; https://doi.org/10.1021/jp072145z.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2025-0472).


Received: 2025-03-31
Accepted: 2025-06-06
Published Online: 2025-06-20
Published in Print: 2025-09-25

© 2025 IUPAC & De Gruyter

Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0472/html
Scroll to top button