Abstract
To celebrate the International Year of Quantum Science and Technology (IYQ), we discuss how the concept of aromaticity emerges from the postulates of quantum mechanics. Based on this discussion, we analyze the case of cyclo [18]carbon, a molecule that was characterized for the first time in 2019 in a scanning tunneling microscope. From the very beginning, this molecule was classified as an aromatic molecule. In the present work, we challenge this classification and provide arguments to classify this molecule as a non-aromatic species.
Award Identifier / Grant number: 2021SGR623
Award Identifier / Grant number: ICREA Academia prize 2024 to M.S.
Funding source: Infrastruktura PL-Grid
Award Identifier / Grant number: PLG/2024/017801
Funding source: Ministerio de Ciencia, Innovación y Universidades
Award Identifier / Grant number: PID2023-147424NB-I00
Funding source: Narodowe Centrum Nauki
Award Identifier / Grant number: 2021/42/E/ST4/00332
Acknowledgments
M.S. thanks the financial support from the Agencia Española de Investigación (MCIN/AEI/10.13039/501100011033) for project PID2023-147424NB-I00 and from the Generalitat de Catalunya for Project 2021SGR623 and ICREA Academia prize 2024 to M.S. D.W.S. acknowledges financial support from the National Science Centre, Poland (2021/42/E/ST4/00332) and Polish high-performance computing infrastructure PLGrid (HPC Center: ACK Cyfronet AGH) for providing computer facilities and support within computational grant no. PLG/2024/017801.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: Agencia Española de Investigación (MCIN/AEI/10.13039/501100011033) project PID2023- 147424NB-I00 Generalitat de Catalunya Project 2021SGR623 and ICREA Academia prize 2024 to M.S. National Science Centre, Poland Project 2021/42/E/ST4/00332 Polish high-performance computing infrastructure PLGrid Project PLG/2024/017801.
-
Data availability: The authors confirm that the data supporting the findings of this study are available within the article.
References
1. International Year of Quantum Science and Technology. https://quantum2025.org/ (Accessed 2025-3-8).Suche in Google Scholar
2. Balaban, A. T. Is Aromaticity Outmoded? Pure & Appl. Chem. 1980, 52, 1409–1429; https://doi.org/10.1351/pac198052061409.a. Binsch, G. Aromaticity – An exercise in chemical futility? Naturwissenschaften 1973, 60, 369–374; https://doi.org/10.1007/BF00602510.b. Krygowski, T. M.; Cyrański, M. K.; Czarnocki, Z.; Häfelinger, G.; Katritzky, A. R. Aromaticity: a Theoretical Concept of Immense Practical Importance. Tetrahedron 2000, 56, 1783–1796; https://doi.org/10.1016/S0040-4020(99)00979-5.c. Lloyd, D. What is aromaticity? J. Chem. Inf. Comp. Sci. 1996, 36, 442–447; https://doi.org/10.1021/ci950158g.d. Solà, M. Why Aromaticity Is a Suspicious Concept? Why? Front. Chem. 2017, 5, 22; https://doi.org/10.3389/fchem.2017.00022.e. Hoffmann, R. The Many Guises of Aromaticity. Am. Sci. 2015, 103, 18–22; https://doi.org/10.1511/2015.112.18.f. Frenking, G.; Krapp, A. Unicorns in the world of chemical bonding models. J. Comput. Chem. 2007, 28, 15–24; https://doi.org/10.1002/jcc.20543.Suche in Google Scholar
3. Solà, M.; Bickelhaupt, F. M. Particle on a Ring Model for Teaching the Origin of the Aromatic Stabilization Energy and the Hückel and Baird Rules. J. Chem. Educ. 2022, 99, 3497–3501; https://doi.org/10.1021/acs.jchemed.2c00523.Suche in Google Scholar PubMed PubMed Central
4. Hückel, E. Quanstentheoretische Beiträge zum Benzolproblem II. Quantentheorie der induzierten Polaritäten. Z. Physik 1931, 72, 310–337; https://doi.org/10.1007/BF01341953.a. Hückel, E. Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. III. Z. Physik 1932, 76, 628–648; https://doi.org/10.1007/BF01341936.b. Hückel, E. The theory of unsaturated and aromatic compounds. Z. Elektrochemie 1937, 43 (752-788), 827–849; https://doi.org/10.1002/bbpc.19370431016.c. Doering, W. V. E.; Detert, F. L. Cycloheptatrienylium oxide. J. Am. Chem. Soc. 1951, 73, 876–877; https://doi.org/10.1021/ja01146a537.Suche in Google Scholar
5. Baird, N. C. Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3ππ* state of cyclic hydrocarbons. J. Am. Chem. Soc. 1972, 94, 4941–4948; https://doi.org/10.1021/ja00769a025.a. Ottosson, H. Organic photochemistry: Exciting excited-state aromaticity. Nat. Chem. 2012, 4, 969–971; https://doi.org/10.1038/nchem.1518.b. Karas, L. J.; Wu, J. I. Baird’s rules at the tipping point. Nat. Chem. 2022, 14, 723–725; https://doi.org/10.1038/s41557-022-00988-z.Suche in Google Scholar
6. Solà, M. Aromaticity rules. Nat. Chem. 2022, 14, 585–590; https://doi.org/10.1038/s41557-022-00961-w.Suche in Google Scholar PubMed
7. Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion. Chem. Rev. 2005, 105, 3842–3888; https://doi.org/10.1021/cr030088+.10.1021/cr030088+Suche in Google Scholar PubMed
8. Solà, M.; Boldyrev, A. I.; Cyrański, M. K.; Krygowski, T. M.; Merino, G. Descriptors of Aromaticity: Energetic Criteria In Aromaticity and Antiaromaticity: Concepts and Applications; Wiley & Sons: Chichester, 2023; pp. 111–130.a. Cyrański, M. K. Energetic Aspects of Cyclic π-electron Delocalization: Evaluation of the Methods of Estimating Aromatic Stabilization Energies. Chem. Rev. 2005, 105, 3773–3811; https://doi.org/10.1021/cr0300845.Suche in Google Scholar PubMed
9. Cyrański, M. K.; Schleyer, P. v. R.; Krygowski, T. M.; Jiao, H.; Hohlneicher, G. Facts and artifacts about aromatic stability estimation. Tetrahedron 2003, 59, 1657–1665; https://doi.org/10.1016/S0040-4020(03)00137-6.a. Cyrański, M. K.; Krygowski, T. M.; Katritzky, A. R.; Schleyer, P. v. R. To what extent can aromaticity be defined uniquely? J. Org. Chem. 2002, 67, 1333–1338; https://doi.org/10.1021/jo016255s.Suche in Google Scholar
10. Solà, M.; Boldyrev, A. I.; Cyrański, M. K.; Krygowski, T. M.; Merino, G. Descriptors of Aromaticity: Electronic Criteria In Aromaticity and Antiaromaticity: Concepts and Applications; Wiley & Sons: Chichester, 2023; pp. 145–192.10.1002/9781119085928Suche in Google Scholar
11. Giambiagi, M.; de Giambiagi, M. S.; Mundim, K. C. Definition of a multicenter bond index. Struct. Chem. 1990, 1, 423–427; https://doi.org/10.1007/BF00671228.Suche in Google Scholar
12. Bader, R. F. W.; Streitwieser, A.; Neuhaus, A.; Laidig, K. E.; Speers, P. Electron delocalization and the Fermi hole. J. Am. Chem. Soc. 1996, 118, 4959–4965; https://doi.org/10.1021/ja953563x.a. Fradera, X.; Austen, M. A.; Bader, R. F. W. The Lewis model and beyond. J. Phys. Chem. A 1999, 103, 304–314; https://doi.org/10.1021/jp983362q.b. Fradera, X.; Poater, J.; Simon, S.; Duran, M.; Solà, M. Electron-pairing analysis from localization and delocalization indices in the framework of the atoms-in-molecules theory. Theor. Chem. Acc. 2002, 108, 214–224; https://doi.org/10.1007/s00214-002-0375-5.Suche in Google Scholar
13. Bultinck, P.; Ponec, R.; Van Damme, S. Multicenter bond indices as a new measure of aromaticity in polycyclic aromatic hydrocarbons. J. Phys. Org. Chem. 2005, 18, 706–718; https://doi.org/10.1002/poc.922.Suche in Google Scholar
14. Savin, A.; Nesper, R.; Wengert, S.; Fassler, T. F. ELF: The electron localization function. Angew. Chem., Int. Ed. Engl. 1997, 36, 1809–1832; https://doi.org/10.1002/anie.199718081.a. Feixas, F.; Matito, E.; Duran, M.; Solà, M.; Silvi, B. Electron Localization Function at the Correlated Level: A Natural Orbital Formulation. J. Chem. Theory Comput. 2010, 6, 2736–2742; https://doi.org/10.1021/ct1003548.b. Poater, J.; Duran, M.; Solà, M.; Silvi, B. Theoretical Evaluation of Electron Delocalization in Aromatic Molecules by Means of Atoms in Molecules (AIM) and Electron Localization Function (ELF) Topological Approaches. Chem. Rev. 2005, 105, 3911–3947; https://doi.org/10.1021/cr030085x.Suche in Google Scholar
15. Santos, J. C.; Andres, J.; Aizman, A.; Fuentealba, P. An Aromaticity Scale Based on the Topological Analysis of the Electron Localization Function Including σ and π contributions. J, Chem. Theor. Comput. 2005, 1, 83–86; https://doi.org/10.1021/ct0499276.a. Santos, J. C.; Tiznado, W.; Contreras, R.; Fuentealba, P. Sigma-pi separation of the electron localization function and aromaticity. J. Chem. Phys. 2004, 120, 1670–1673; https://doi.org/10.1063/1.1635799.Suche in Google Scholar PubMed
16. Szczepanik, D. W. A new perspective on quantifying electron localization and delocalization in molecular systems. Comput. Theor. Chem. 2016, 1080, 33–37; https://doi.org/10.1016/j.comptc.2016.02.003.a. Szczepanik, D. W.; Andrzejak, M.; Dominikowska, J.; Pawełek, B.; Krygowski, T. M.; Szatylowicz, H.; Solà, M. The electron density of delocalized bonds (EDDB) applied for quantifying aromaticity. Phys. Chem. Chem. Phys. 2017, 19, 28970–28981; https://doi.org/10.1039/C7CP06114E.b. Szczepanik, D. W.; Andrzejak, M.; Dyduch, K.; Żak, E.; Makowski, M.; Mazur, G.; Mrozek, J. A uniform approach to the description of multicenter bonding. Phys. Chem. Chem. Phys. 2014, 16, 20514–20523; https://doi.org/10.1039/C4CP02932A.Suche in Google Scholar
17. Poater, J.; Fradera, X.; Duran, M.; Solà, M. The Delocalization Index as an Electronic Aromaticity Criterion. Application to a Series of Planar Polycyclic Aromatic Hydrocarbons. Chem. Eur. J. 2003, 9, 400–406; https://doi.org/10.1002/chem.200390041.Suche in Google Scholar PubMed
18. Matito, E.; Duran, M.; Solà, M. The aromatic fluctuation index (FLU): A new aromaticity index based on electron delocalization. J. Chem. Phys. 2005, 122, 014109; https://doi.org/10.1063/1.1824895.a. Matito, E.; Duran, M.; Solà, M. Erratum: “The aromatic fluctuation index (FLU): A new aromaticity index based on electron delocalization”. [J. Chem Phys. 122, 014109 (2005)]. J. Chem. Phys. 2006, 125; https://doi.org/10.1063/1.2222352.b. Matito, E.; Salvador, P.; Duran, M.; Solà, M. Aromaticity Measures from Fuzzy-Atom Bond Orders. The Aromatic Fluctuation (FLU) and the para-Delocalization (PDI) Indexes. J. Phys. Chem. A2006, 110, https://doi.org/10.1021/jp057387i.Suche in Google Scholar PubMed
19. Matta, C. F.; Hernández-Trujillo, J. Bonding in Polycyclic Aromatic Hydrocarbons in Terms of the Electron Density and of Electron Delocalization. J. Phys. Chem. A 2003, 107, 7496–7504; https://doi.org/10.1021/jp034952d.a. Matta, C. F.; Hernández-Trujillo, J. Erratum to ′′Bonding in Polycyclic Aromatic Hydrocarbons in Terms of the Electron Density and of Electron Delocalization. J. Phys. Chem. A 2005, 109, 10798; https://doi.org/10.1021/jp055864r.Suche in Google Scholar
20. Shanbogh, P. P.; Sundaram, N. G. Fullerenes revisited. Reson. 2015, 20, 123–135; https://doi.org/10.1007/s12045-015-0160-0.Suche in Google Scholar
21. Diederich, F.; Rubin, Y.; Knobler, C. B.; Whetten, R. L.; Schriver, K. E.; Houk, K. N.; Li, Y. All-Carbon Molecules: Evidence for the Generation of Cyclo[18]carbon from a Stable Organic Precursor. Science 1989, 245, 1088–1090; https://doi.org/10.1126/science.245.4922.1088.Suche in Google Scholar PubMed
22. Diederich, F.; Rubin, Y. Synthetic Approaches toward Molecular and Polymeric Carbon Allotropes. Angew Chem. Int. Ed. Engl. 1992, 31, 1101–1123; https://doi.org/10.1002/anie.199211013.a. Diederich, F.; Kivala, M. All-carbon scaffolds by rational design. Adv. Mater. 2010, 22, 803–812; https://doi.org/10.1002/adma.200902623.b. Anderson, H. L.; Patrick, C. W.; Scriven, L. M.; Woltering, S. L. A. Short History of Cyclocarbons. Bull. Chem. Soc. Jpn. 2020, 94, 798–811; https://doi.org/10.1246/bcsj.20200345.c. Pooja; Yadav, S.; Pawar, R. Chemistry of Cyclo[18]Carbon (C18): A Review. Chem. Rec. 2024, 24, e202400055; https://doi.org/10.1002/tcr.202400055.Suche in Google Scholar
23. Parasuk, V.; Almlof, J.; Feyereisen, M. W. The [18] all-carbon molecule: cumulene or polyacetylene? J. Am. Chem. Soc. 1991, 113, 1049–1050; https://doi.org/10.1021/ja00003a052.a. Neiss, C.; Trushin, E.; Görling, A. The Nature of One-Dimensional Carbon: Polyynic versus Cumulenic. ChemPhysChem 2014, 15, 2497–2502; https://doi.org/10.1002/cphc.201402266.b. Hutter, J.; Luethi, H. P.; Diederich, F. Structures and vibrational frequencies of the carbon molecules C2-C18 calculated by density functional theory. J. Am. Chem. Soc. 1994, 116, 750–756; https://doi.org/10.1021/ja00081a041.Suche in Google Scholar
24. Torelli, T.; Mitas, L. Electron Correlation in C4N+2 Carbon Rings: Aromatic versus Dimerized Structures. Phys. Rev. Lett. 2000, 85, 1702–1705; https://doi.org/10.1103/PhysRevLett.85.1702.a. Plattner, D. A.; Houk, K. N. C18 Is a Polyyne. J. Am. Chem. Soc. 1995, 117, 4405–4406; https://doi.org/10.1021/ja00120a026.Suche in Google Scholar PubMed
25. Arulmozhiraja, S.; Ohno, T. CCSD calculations on C14, C18, and C22 carbon clusters. J. Chem. Phys. 2008, 128, 114301; https://doi.org/10.1063/1.2838200.Suche in Google Scholar PubMed
26. Baryshnikov, G. V.; Valiev, R. R.; Nasibullin, R. T.; Sundholm, D.; Kurten, T.; Ågren, H. Aromaticity of Even-Number Cyclo[n]carbons (n = 6–100). J. Phys. Chem. A 2020, 124, 10849–10855; https://doi.org/10.1021/acs.jpca.0c09692.Suche in Google Scholar PubMed PubMed Central
27. Stasyuk, A. J.; Stasyuk, O. A.; Solà, M.; Voityuk, A. A. Cyclo[18]carbon: the smallest all-carbon electron acceptor. Chem. Commun. 2020, 56, 352–355; https://doi.org/10.1039/C9CC08399E.a. Stasyuk, A. J.; Stasyuk, O. A.; Solà, M.; Voityuk, A. A. Correction: Cyclo[18]carbon: the smallest all-carbon electron acceptor. Chem. Commun. 2020, 56, 1302; https://doi.org/10.1039/D0CC90021D.Suche in Google Scholar PubMed
28. Liu, Z.; Lu, T.; Chen, Q. An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Bonding character, electron delocalization, and aromaticity. Carbon 2020, 165, 468–475; https://doi.org/10.1016/j.carbon.2020.04.099.Suche in Google Scholar
29. Kaiser, K.; Scriven, L. M.; Schulz, F.; Gawel, P.; Gross, L.; Anderson, H. L. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 2019, 365, 1299–1301; https://doi.org/10.1126/science.aay1914.Suche in Google Scholar PubMed
30. Baryshnikov, G. V.; Valiev, R. R.; Kuklin, A. V.; Sundholm, D.; Ågren, H. Cyclo[18]carbon: Insight into Electronic Structure, Aromaticity, and Surface Coupling. J. Phys. Chem. Lett. 2019, 10, 6701–6705; https://doi.org/10.1021/acs.jpclett.9b02815.Suche in Google Scholar PubMed
31. Dai, C.; Chen, D.; Zhu, J. Achieving Adaptive Aromaticity in Cyclo[10]carbon by Screening Cyclo[n]carbon (n=8−24). Chem.–Asian J. 2020, 15, 2187–2191; https://doi.org/10.1002/asia.202000528.a. Charistos, N. D.; Muñoz-Castro, A. Induced magnetic field in sp-hybridized carbon rings: analysis of double aromaticity and antiaromaticity in cyclo[2N]carbon allotropes. Phys. Chem. Chem. Phys. 2020, 22, 9240–9249; https://doi.org/10.1039/D0CP01252A.b. Fowler, P. W.; Mizoguchi, N.; Bean, D. E.; Havenith, R. W. A. Double Aromaticity and Ring Currents in All-Carbon Rings. Chem. Eur. J. 2009, 15, 6964–6972; https://doi.org/10.1002/chem.200900322.c. Pan, C.; Liu, Z. Intermolecular Interaction, Electronic Structure and Aromaticity of Possible Dimers of Cyclo[18]Carbon (C18). ChemPhysChem 2025, e202400912; https://doi.org/10.1002/cphc.202400912.Suche in Google Scholar PubMed
32. Kozáková, S.; Alharzali, N.; Černušák, I. Cyclo[n]carbons and catenanes from different perspectives: disentangling the molecular thread. Phys. Chem. Chem. Phys. 2023, 25, 29386–29403; https://doi.org/10.1039/D3CP03887D.Suche in Google Scholar
33. Baranac-Stojanović, M. (Anti)aromaticity of cyclo[2n]carbons (n = 3 – 12). Chem.–Asian J. 2025, e202500295; https://doi.org/10.1002/asia.202500295.Suche in Google Scholar PubMed
34. Szczepanik, D. W.; Solà, M.; Andrzejak, M.; Pawelek, B.; Dominikowska, J.; Kukułka, M.; Dyduch, K.; Krygowski, T. M.; Szatylowicz, H. The Role of the Long-Range Exchange Corrections in the Description of Electron Delocalization in Aromatic Species. J. Comput. Chem. 2017, 38, 1640–1654; https://doi.org/10.1002/jcc.24805.Suche in Google Scholar PubMed
35. Pereira, Z. S.; da Silva, E. Z. Spontaneous Symmetry Breaking in Cyclo[18]Carbon. J. Phys. Chem. A 2020, 124, 1152–1157; https://doi.org/10.1021/acs.jpca.9b11822.Suche in Google Scholar PubMed
36. Jirásek, M.; Rickhaus, M.; Tejerina, L.; Anderson, H. L. Experimental and Theoretical Evidence for Aromatic Stabilization Energy in Large Macrocycles. J. Am. Chem. Soc. 2021, 143, 2403–2412; https://doi.org/10.1021/jacs.0c12845.Suche in Google Scholar PubMed
37. Van Nyvel, L.; Alonso, M.; Solà, M. Effect of size, charge, and spin state on Hückel and Baird aromaticity in [N]annulenes. Chem. Sci. 2025, 16, 5613–5622; https://doi.org/10.1039/D4SC08225G.Suche in Google Scholar PubMed PubMed Central
38. McNaught, A. D.; Wilkinson, A. The IUPAC compendium of chemical terminology; Blackwell Scientific Publications: Oxford, 1997. Online version (2019-) created by Chalk, S. J. https://doi.org/10.1351/goldbook.A00442/ (accessed 2025-3-8).Suche in Google Scholar
© 2025 IUPAC & De Gruyter
Artikel in diesem Heft
- Frontmatter
- IUPAC Technical Report
- Acid dissociation constants in selected dipolar non-hydrogen-bond-donor solvents (IUPAC Technical Report)
- Preface
- Introduction to the Special Issue of “The International Year of Quantum”
- Review Articles
- Quantum chemistry of molecules in solution. A brief historical perspective
- From Hückel to Clar: a block-localized description of aromatic systems
- Exploring potential energy surfaces
- Unlocking the chemistry facilitated by enzymes that process nucleic acids using quantum mechanical and combined quantum mechanics–molecular mechanics techniques
- Hypothetical heterocyclic carbenes
- Is relativistic quantum chemistry a good theory of everything?
- When theory came first: a review of theoretical chemical predictions ahead of experiments
- Research Articles
- Exploring reaction dynamics involving post-transition state bifurcations based on quantum mechanical ambimodal transition states
- Molecular aromaticity: a quantum phenomenon
- Using topology for understanding your computational results
- The role of ion-pair on the olefin polymerization reactivity of zirconium bis(phenoxy-imine) catalyst: quantum mechanical study and its beyond
- Theoretical insights on the structure and stability of the [C2, H3, P, O] isomeric family
Artikel in diesem Heft
- Frontmatter
- IUPAC Technical Report
- Acid dissociation constants in selected dipolar non-hydrogen-bond-donor solvents (IUPAC Technical Report)
- Preface
- Introduction to the Special Issue of “The International Year of Quantum”
- Review Articles
- Quantum chemistry of molecules in solution. A brief historical perspective
- From Hückel to Clar: a block-localized description of aromatic systems
- Exploring potential energy surfaces
- Unlocking the chemistry facilitated by enzymes that process nucleic acids using quantum mechanical and combined quantum mechanics–molecular mechanics techniques
- Hypothetical heterocyclic carbenes
- Is relativistic quantum chemistry a good theory of everything?
- When theory came first: a review of theoretical chemical predictions ahead of experiments
- Research Articles
- Exploring reaction dynamics involving post-transition state bifurcations based on quantum mechanical ambimodal transition states
- Molecular aromaticity: a quantum phenomenon
- Using topology for understanding your computational results
- The role of ion-pair on the olefin polymerization reactivity of zirconium bis(phenoxy-imine) catalyst: quantum mechanical study and its beyond
- Theoretical insights on the structure and stability of the [C2, H3, P, O] isomeric family