Home The role of ion-pair on the olefin polymerization reactivity of zirconium bis(phenoxy-imine) catalyst: quantum mechanical study and its beyond
Article
Licensed
Unlicensed Requires Authentication

The role of ion-pair on the olefin polymerization reactivity of zirconium bis(phenoxy-imine) catalyst: quantum mechanical study and its beyond

  • Soumen Saha , Kentaro Matsumoto , Masayoshi Takayanagi , Hirokazu Moriya , Nana Misawa , Nobuaki Koga EMAIL logo and Masataka Nagaoka ORCID logo EMAIL logo
Published/Copyright: June 25, 2025

Abstract

Owing to the progress of quantum mechanical (QM) calculations, we have investigated, for the first time, the geometric structure of an ion-pair consisting of the Zr phenoxy-imine (Zr–FI) cation and the borate anion. Further, a number of different structures for ‘Cation & Monomer’, ‘Ion-Pair’, and ‘Ion-Pair & Monomer’ systems have also been studied. The obtained preferred structures of these systems indicate the formation of an octahedral geometry around the Zr-atom. In addition, the counter anion (CA) is preferably located on trans to the Me group of the cation. This allows more space for ethylene insertion to the active Zr-C center, leading to high ethylene polymerization activity. Furthermore, from the calculated interaction energy, we have found weaker interaction between the Zr–FI cation and the CA than in the zirconocene catalysts, making the ion separation easier and facilitating the monomer coordination to the metal. We also investigated the electronic characteristics of the cation–anion interactions and have shown that (i) the molecular orbital interaction, (ii) the charge transfer between the cation and the anion, and (iii) the non-covalent bond interaction are also crucial factors in determining the ion-pair structure. In conclusion, the usefulness and necessity of QM investigation of the ion-pair structures have become evident. Therefore, we assert that while studying the reactivity of catalysts based on their geometric structures, today, one must model at least the ion-pair structure in the QM calculations. Finally, we touch on the brand-new study using the Red Moon simulation, which would become a new possible computational molecular technology (CMT), with the help of thorough research using the QM calculations, an established CMT.


Corresponding authors: Nobuaki Koga, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan, e-mail: ; and Masataka Nagaoka, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan; and Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University Katsura, Kyoto 615-8520, Japan, e-mail:
Article note: A collection of invited papers to celebrate the UN’s proclamation of 2025 as the International Year of Quantum Science and Technology.
  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: This work was supported by the Core Research for Evolutional Science and Technology (CREST) “Establishment of Computational Molecular Technology towards Macroscopic Chemical Phenomena” of the Japan Science Technology Agency (JST) and partially by the JST ACT-X program “Trans-Scale Approach Toward Materials Innovation” (Grant Number: JPMJAX24DM). It was also supported by a Grant-in-Aid for Science Research from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) in Japan; and also by the MEXT programs “Elements Strategy Initiative for Catalysts and Batteries (ESICB)” (Grant Number JPMXP0112101003), and “Program for Promoting Researches on the Supercomputer Fugaku” (Fugaku battery & Fuel Cell Project) (Grant Number JPMXP1020200301), and additionally by Fugaku Small-Scale Projects (General Research Projects: “Computational Chemical Study for Designing Polymer Materials toward Bond Formation and Cleavage Control” (hp200325) and “Investigation of Parallel Computational Efficiency in Molecular Dynamics Simulations of Adult Human Hemoglobin” (hp210330)) from the Research Organization for Information Science and Technology (RIST). The calculations were partially performed using the computing systems at the Information Technology Center at Nagoya University and also at the Research Center for Computational Science at the Institute for Molecular Science, Okazaki, Japan.

  7. Data availability: Not applicable.

References

1. a) Kawamura-Kuribayashi, H.; Koga, N.; Morokuma, K. An Ab Initio MO and MM Study of Homogeneous Olefin Polymerization with Silylene-Bridged Zirconocene Catalyst and its Regio- and Stereoselectivity. J. Am. Chem. Soc. 1992, 114, 8687–8694; https://doi.org/10.1021/ja00048a049.b) Chan, M. S. W.; Ziegler, T. A Combined Density Functional and Molecular Dynamics Study on Ethylene Insertion into the Cp2ZrEt−MeB(C6F5)3 Ion-Pair. Organometallics 2000, 19, 5182–5189; https://doi.org/10.1021/om000486s.c) Nifant’ev, I. E.; Ustynyuk, L. Yu.; Laikov, D. N. DFT Study of Ethylene Polymerization by Zirconocene−Boron Catalytic Systems. Effect of Counterion on the Kinetics and Mechanism of the Process. Organometallics 2001, 20, 5375–5393; https://doi.org/10.1021/om010067a.d) Xu, Z.; Vanka, K.; Ziegler, T. Influence of the Counterion MeB(C6F5)3- and Solvent Effects on Ethylene Polymerization Catalyzed by [(CpSiMe2NR)TiMe]+:  A Combined Density Functional Theory and Molecular Mechanism Study. Organometallics 2004, 23, 104–116; https://doi.org/10.1021/om0341202.e) Silanes, I.; Mercero, J. M.; Ugalde, J. M. Comparison of Ti, Zr, and Hf as Cations for Metallocene-Catalyzed Olefin Polymerization. Organometallics 2006, 25, 4483–4490; https://doi.org/10.1021/om050790r.Search in Google Scholar

2. a) Rowley, C. N.; Woo, T. K. Counteranion Effects on the Zirconocene Polymerization Catalyst Olefin Complex from QM/MM Molecular Dynamics Simulations. Organometallics 2011, 30, 2071–2074; https://doi.org/10.1021/om101188t.b) Sandhya, K. S.; Koga, N.; Nagaoka, M. Revisiting the Stereochemistry of Propylene Isotactic Polymerization Reaction Mechanism on C2 Symmetric [SiH2(Ind)2ZrCH3]+ and [SiH2(Ind)2ZrCH3]+[CH3B(C6F5)3]−. Bull. Chem. Soc. Jpn. 2016, 89, 1093–1105; https://doi.org/10.1246/bcsj.20160119.c) Tabatabaie, E. S.; Dehghanpour, S.; Mosaddegh, E.; Babaahmadi, R.; Chipman, A.; Yates, B. F.; Ariafard, A. Rationale for the Reactivity Differences between Main Group and D0 Transition Metal Complexes toward Olefin Polymerisation. Dalton Trans. 2019, 48, 6997–7005; https://doi.org/10.1039/c9dt01017c.Search in Google Scholar

3. a) Matsui, S.; Fujita, T. Catal. Today 2001, 66, 63–73.a)b) Nakayama, Y.; Saito, J.; Bando, H.; Fujita, T. MgCl2/R′nAl(OR)n: An Excellent Activator/Support for Transition-Metal Complexes for Olefin Polymerization. Chem. Eur. J. 2006, 12, 7546–7556; https://doi.org/10.1002/chem.200600355.c) Makio, H.; Fujita, T. Development and Application of FI Catalysts for Olefin Polymerization: Unique Catalysis and Distinctive Polymer Formation. Acc. Chem. Res. 2009, 42, 1532–1544; https://doi.org/10.1021/ar900030a.d) Kawai, K.; Fujita, T. Top. Organomet. Chem. 2009, 26, 3–46.e) Makio, H.; Terao, H.; Iwashita, A.; Fujita, T. FI Catalysts for Olefin Polymerization–A Comprehensive Treatment. Chem. Rev. 2011, 111, 2363–2449; https://doi.org/10.1021/cr100294r.Search in Google Scholar PubMed

4. Yoshida, Y.; Matsui, S.; Fujita, T. Bis(pyrrolide-imine) Ti Complexes with MAO: A New Family of High Performance Catalysts for Olefin Polymerization. J. Organomet. Chem. 2005, 690, 4382–4397; https://doi.org/10.1016/j.jorganchem.2005.01.038.Search in Google Scholar

5. Matsui, S.; Mitani, M.; Saito, J.; Tohi, Y.; Makio, H.; Matsukawa, N.; Takagi, Y.; Tsuru, K.; Nitabaru, M.; Nakano, T.; Tanaka, H.; Kashiwa, N.; Fujita, T. A Family of Zirconium Complexes Having Two Phenoxy−Imine Chelate Ligands for Olefin Polymerization. J. Am. Chem. Soc. 2001, 123, 6847–6856; https://doi.org/10.1021/ja0032780.Search in Google Scholar

6. Tohi, Y.; Nakano, T.; Makio, H.; Matsui, S.; Fujita, T.; Yamaguchi, T. Polyethylenes Having Well‐Defined Bimodal Molecular Weight Distributions Formed with Bis(phenoxy-imine) Zr Complexes. Macromol. Chem. Phys. 2004, 205, 1179–1186; https://doi.org/10.1002/macp.200400039.Search in Google Scholar

7. a) Mitani, M.; Saito, J.; Ishii, S.; Nakayama, Y.; Makio, H.; Matsukawa, N.; Matsui, S.; Mohri, J.; Furuyama, R.; Terao, H.; Bando, H.; Tanaka, H.; Fujita, T. FI Catalysts: New Olefin Polymerization Catalysts for the Creation of Value-Added Polymers. Chem. Rec. 2004, 4, 137–158; https://doi.org/10.1002/tcr.20010.b) Tohi, Y.; Makio, H.; Matsui, S.; Onda, M.; Fujita, T. Polyethylenes with Uni-Bi-And Trimodal Molecular Weight Distributions Produced with a Single Bis(Phenoxy–Imine)zirconium Complex. Macromolecules 2003, 36, 523–525; https://doi.org/10.1021/ma025624z.c) Strauch, J.; Warren, T. H.; Erker, G.; Fröhlich, R.; Saarenketo, P. Formation and Structural Properties of Salicylaldiminato Complexes of Zirconium and Titanium. Inorg. Chim. Acta 2000, 300–302, 810–821; https://doi.org/10.1016/s0020-1693(99)00573-3.d) Flisak, Z. Theoretical Study of Isomerism in Phenoxyimine-Based Precursors of Coordinative Olefin Polymerization Catalysts. J. Mol. Catal. A 2010, 316, 83–89; https://doi.org/10.1016/j.molcata.2009.10.003.Search in Google Scholar PubMed

8. Saha, S.; Takayanagi, M.; Matsumoto, K.; Sankaran, S. K.; Tanaka, Y.; Koga, N.; Nagaoka, M. Probing the Most Stable Isomer of Zirconium Bis(Phenoxy-Imine) Cation: A Computational Investigation. J. Phys. Chem. A 2018, 122, 2198–2208; https://doi.org/10.1021/acs.jpca.7b10999.Search in Google Scholar PubMed

9. Arriola, D. J.; Carnahan, E. M.; Hustad, P. D.; Kuhlman, R. L.; Wenzel, T. T. Catalytic Production of Olefin Block Copolymers Via Chain Shuttling Polymerization. Science 2006, 312, 714–719; https://doi.org/10.1126/science.1125268.Search in Google Scholar PubMed

10. Boys, S. F.; Bernardi, F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 1970, 19, 553–566; https://doi.org/10.1080/00268977000101561.Search in Google Scholar

11. Ciancaleoni, G.; Fraldi, N.; Budzelaar, P. H. M.; Busicoc, V.; Macchioni, A. Activation of a Bis(Phenoxy-Amine) Precatalyst for Olefin Polymerisation: First Evidence for an Outer Sphere Ion Pair with the Methylborate Counterion. Dalton Trans. 2009, 8824–8827; https://doi.org/10.1039/b908805a.Search in Google Scholar PubMed

12. Roberts, J. A. S.; Chen, M.; Seyam, A. M.; Li, L.; Zuccaccia, C.; Stahl, N. G.; Marks, T. J. Diverse Stereocontrol Effects Induced by Weakly Coordinating Anions. Stereospecific Olefin Polymerization Pathways at Archetypal Cs- and C1-Symmetric Metallocenium Catalysts Using Mono- and Polynuclear Halo-Perfluoroarylmetalates as Cocatalysts. J. Am. Chem. Soc. 2007, 129, 12713–12733; https://doi.org/10.1021/ja0680360.Search in Google Scholar PubMed

13. Lanza, G.; Fragalà, I. L.; Marks, T. J. Organometallics 2002, 21, 5594–5612.10.1021/om0207764Search in Google Scholar

14. a) Dewar, M. J. S. Bull. Soc. Chim. Fr. 1951, 18, C71–C79.b) Chatt, J.; Duncanson, L. A. Olefin Co-ordination Compounds. Part III. Infra-Red Spectra and Structure: Attempted Preparation of Acetylene Complexes. J. Chem. Soc. 1953, 2939–2942; https://doi.org/10.1039/jr9530002939.Search in Google Scholar

15. Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. J. Chem. Phys. 1985, 83, 735–756.10.1063/1.449486Search in Google Scholar

16. a) Kumar, N.; Saha, S.; Sastry, G. N. Towards Developing a Criterion to Characterize Non-covalent Bonds: a Quantum Mechanical Study. Phys. Chem. Chem. Phys. 2021, 23, 8478–8488; https://doi.org/10.1039/d0cp05689h.b) Saha, S.; Sastry, G. N. Cooperative or Anticooperative: How Noncovalent Interactions Influence Each Other. J. Phys. Chem. B 2015, 119, 11121–11135; https://doi.org/10.1021/acs.jpcb.5b03005.c) Saha, S.; Vivek, M. R.; Sastry, G. N. On the Origin of Spurious Errors in Many-Body Expansion for Water Cluster. J. Chem. Sci. 2017, 129, 1053–1060; https://doi.org/10.1007/s12039-017-1303-5.d) Mahadevi, A. S.; Sastry, G. N. Cooperativity in Noncovalent Interactions. Chem. Rev. 2016, 116, 2775–2825; https://doi.org/10.1021/cr500344e.e) Grabowski, S. J.; Sokalsk, W. A.; Dyguda, E.; Leszczynski, J. J. Phys. Chem. B 2006, 110, 6444–6446.f) Senthilkumar, L.; Ghanty, T. K.; Ghosh, S. K.; Kolandaivel, P. Hydrogen Bonding in Substituted Formic Acid Dimers. J. Phys. Chem. A 2006, 110, 12623–12628; https://doi.org/10.1021/jp061285q.g) Mandal, A.; Prakash, M.; Kumar, R. M.; Parthasarathi, R.; Subramanian, V. Ab Initio and DFT Studies on Methanol−Water Clusters. J. Phys. Chem. A 2010, 114, 2250–2258; https://doi.org/10.1021/jp909397z.h) Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. J. Am. Chem. Soc. 2010, 132, 6498–6506.Search in Google Scholar PubMed

17. Tomasi, S.; Razavi, A.; Ziegler, T. Density Functional Theory Investigation into the Stereocontrol of the Syndiospecific Polymerization of Propylene Catalyzed byCs-Symmetric Zirconocenes. Organometallics 2007, 26, 2024–2036; https://doi.org/10.1021/om060786v.Search in Google Scholar

18. Motta, A.; Fragalà, I. L.; Marks, T. J. Stereochemical Control Mechanisms in Propylene Polymerization Mediated by C1-Symmetric CGC Titanium Catalyst Centers. J. Am. Chem. Soc. 2007, 129, 7327–7338; https://doi.org/10.1021/ja068990x.Search in Google Scholar PubMed

19. Motta, A.; Fragalà, I. L.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 16533–16546.10.1021/ja802439uSearch in Google Scholar PubMed

20. Matsumoto, K.; Takayanagi, M.; Sankaran, S. K.; Koga, N.; Nagaoka, M. Role of the Counteranion in the Reaction Mechanism of Propylene Polymerization Catalyzed by a (Pyridylamido)Hafnium(IV) Complex. Organometallics 2018, 37, 343–349; https://doi.org/10.1021/acs.organomet.7b00767.Search in Google Scholar

21. Matsumoto, K.; Sandhya, K. S.; Takayanagi, M.; Koga, N.; Nagaoka, M. An Active Site Opening Mechanism in a (Pyridylamide)Hafnium(IV) Ion Pair Catalyst: An Associative Mechanism. Organometallics 2016, 35, 4099–4105; https://doi.org/10.1021/acs.organomet.6b00804.Search in Google Scholar

22. Misawa, N.; Suzuki, Y.; Saha, S.; Koga, N.; Nagaoka, M. Theoretical Elucidation of the Effect of Counteranions on the Olefin Polymerization Activity of (Pyridylamido)Hf(IV) Catalyst by QM and REMD Studies: MeB(C6F5)3– versus B(C6F5)4–. Organometallics 2021, 40, 48–62; https://doi.org/10.1021/acs.organomet.0c00698.Search in Google Scholar

23. Nagaoka, M.; Suzuki, Y.; Okamoto, T.; Takenaka, N. A Hybrid MC/MD Reaction Method with Rare Event-Driving Mechanism: Atomistic Realization of 2-Chlorobutane Racemization Process in DMF Solution. Chem. Phys. Lett. 2013, 583, 80–86; https://doi.org/10.1016/j.cplett.2013.08.017.Search in Google Scholar

24. Nagaoka, M.; Takayanagi, M.; Takenaka, N.; Suzuki, Y.; Matsumoto, K.; Koga, K. N.; Sankaran, K. S.; Uppula, P.; Kitamura, Y. In Molecular Technology; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2019.Search in Google Scholar

25. Nagaoka, M. The Computational Molecular Technology for Complex Reaction Systems: The Red Moon Approach. WIREs Comput. Mol. Sci. 2024, 14, e1714; https://doi.org/10.1002/wcms.1714.Search in Google Scholar

26. Matsumoto, K.; Takayanagi, M.; Suzuki, Y.; Koga, N.; Nagaoka, M. Atomistic Chemical Computation of Olefin Polymerization Reaction Catalyzed by (Pyridylamido)Hafnium(IV) Complex: Application of Red Moon Simulation. J. Comput. Chem. 2019, 40, 421–429; https://doi.org/10.1002/jcc.25707.Search in Google Scholar PubMed

27. Misawa, N.; Suzuki, Y.; Matsumoto, K.; Saha, S.; Koga, N.; Nagaoka, M. Atomistic Simulation of the Polymerization Reaction by a (Pyridylamido)Hafnium(IV) Catalyst: Counteranion Influence on the Reaction Rate and the Living Character of the Catalytic System. J. Phys. Chem. B 2021, 125, 1453–1467; https://doi.org/10.1021/acs.jpcb.0c10977.Search in Google Scholar PubMed

28. Misawa, N.; Matsumoto, K.; Suzuki, Y.; Saka, S.; Koga, N.; Nagaoka, M. (Pyridylamido)Hf(IV)-Catalyzed 1-Octene Polymerization Reaction Interwoven with the Structural Dynamics of the Ion-Pair-Active Species: Bridging from Microscopic Simulation to Chemical Kinetics with the Red Moon Method. J. Phys. Chem. B 2023, 127, 1209–1218; https://doi.org/10.1021/acs.jpcb.2c07296.Search in Google Scholar PubMed

29. Kanesato, S.; Yasoshima, K.; Misawa, N.; Massumoto, K.; Suzuki, Y.; Koga, N.; Nagaoka, M.. J. Phys. Chem. B 2023, 36, 7735–7747.10.1021/acs.jpcb.3c03966Search in Google Scholar PubMed PubMed Central

30. Kanesato, S.; Yasoshima, K.; Matsumoto, K.; Misawa, N.; Suzuki, Y.; Koga, N.; Nagaoka, M. Atomistic Simulation of Hf-Pyridyl Amido-Catalyzed Chain Transfer Alkene Polymerization Reaction and its Machine Learning for Extraction of Essential Descriptors: Effect of Microscopic Steric Hindrance on the Monomer Insertion Process. J. Phys. Chem. B 2024, 128, 6178–6188; https://doi.org/10.1021/acs.jpcb.4c01303.Search in Google Scholar PubMed

31. Chen, E. Y.-X.; Marks, T. J. Cocatalysts for Metal-Catalyzed Olefin Polymerization:  Activators, Activation Processes, and Structure−Activity Relationships. Chem. Rev. 2000, 100, 1391–1434; https://doi.org/10.1021/cr980462j.Search in Google Scholar PubMed

32. Wang, J. M.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174; https://doi.org/10.1002/jcc.20035.Search in Google Scholar PubMed

33. Case, D. A.; Darden, T. A.; Cheatham, T. E.III; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Walker, R. C.; Zhang, W.; Merz, K. M.; Roberts, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Swails, J.; Götz, A. W.; Kolossváry, I.; Wong, K. F.; Paesani, F.; Vanicek, J.; Wolf, R. M.; Liu, J.; Wu, X.; Brozell, S. R.; Steinbrecher, T.; Gohlke, H.; Cai, Q.; Ye, X.; Wang, J.; Hsieh, M.-J.; Cui, G.; Roe, D. R.; Mathews, D. H.; Seetin, M. G.; Salomon-Ferrer, R.; Sagui, C.; Babin, V.; Luchko, T.; Gusarov, S.; Kovalenko, A.; Kollman, P. A. AMBER 12; University of California: San Francisco, 2012.Search in Google Scholar

34. Rowley, C. N.; Woo, T. K. Counteranion Effects on the Zirconocene Polymerization Catalyst Olefin Complex from QM/MM Molecular Dynamics Simulations. Organometallics 2011, 30, 2071–2074; https://doi.org/10.1021/om101188t.Search in Google Scholar

35. Singh, U. C.; Kollman, P. A. An Approach to Computing Electrostatic Charges for Molecules. J. Comput. Chem. 1984, 5, 129–145; https://doi.org/10.1002/jcc.540050204.Search in Google Scholar

36. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford CT, 2009.Search in Google Scholar

37. Zhao, Y.; Truhlar, D. G. A New Local Density Functional for Main-Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions. J. Chem. Phys. 2006, 125, 194101; https://doi.org/10.1063/1.2370993.Search in Google Scholar PubMed

38. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396; https://doi.org/10.1021/jp810292n.Search in Google Scholar PubMed

39. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38; https://doi.org/10.1016/0263-7855(96)00018-5.Search in Google Scholar PubMed

40. Case, D. A.; Babin, V.; Berryman, J. T.; Betz, R. M.; Cai, Q.; Cerutti, D. S.; Cheatham, T. E.III; Darden, T. A.; Duke, R. E.; Gohlke, H.; Goetz, A. W.; Gusarov, S.; Homeyer, N.; Janowski, P.; Kaus, J.; Kolossváry, I.; Kovalenko, A.; Lee, T. S.; LeGrand, S.; Luchko, T.; Luo, R.; Madej, B.; Merz, K. M.; Paesani, F.; Roe, D. R.; Roitberg, A.; Sagui, C.; Salomon-Ferrer, R.; Seabra, G.; Simmerling, C. L.; Smith, W.; Swails, J.; Walker, R. C.; Wang, J.; Wolf, R. M.; Wu, X.; Kollman, P. A. AMBER 14; University of California: San Francisco, 2014.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2025-0463).

Video 1

Received: 2025-03-20
Accepted: 2025-06-03
Published Online: 2025-06-25
Published in Print: 2025-09-25

© 2025 IUPAC & De Gruyter

Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0463/html
Scroll to top button