Abstract
For decades, computational theoretical chemistry has provided critical insights into molecular behavior, often anticipating experimental discoveries. This review surveys twenty notable examples from the past fifteen years in which computational chemistry successfully predicted molecular structures, reaction mechanisms, and material properties before experimental confirmation. By spanning fields such as bioinorganic chemistry, materials science, catalysis, and quantum transport, these case studies illustrate how quantum chemical methods have become essential for multidisciplinary molecular sciences. The impact of theoretical predictions across disciplines shows the indispensable role of computational chemistry in guiding experiments and driving scientific discovery.
Funding source: Fondation Aix-Marseille Universite
Award Identifier / Grant number: AMIDEX AMX-22-REAB-173
Award Identifier / Grant number: AMX-22-IN1-48
Funding source: H2020 European Research Council
Award Identifier / Grant number: grant agreement 832237
Acknowledgments
I’m thankful to W. T. Borden, G. A. Cisneros, J. M. Cuerva, D. Dave, T. P. Fay, R. C. Fortenberry, I. Funes-Ardoiz, M. H. Garner, A. Gorden, D. G. Green, M. Huix-Rotllant, J. H. Jensen, C. Laconsay, P.-O. Norrby, G. M. Pavan, R. Poranne, R. Ramakrishnan, R. Rana, T. Santaloci, G. C. Solomon, B. Space, T. Stuyver, M. Swart, J. M. Toldo, M. Torrent-Sucarrat, R. G. Uceda, A. H. Winter, and A. Zaccone, who gave feedback on the manuscript and pointed me out to many relevant works for this review.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: This work received support from the French government under the France 2030 investment plan as part of the Initiative d’Excellence d’Aix-Marseille Université (A*MIDEX AMX-22-REAB-173 and AMX-22-IN1-48) and from the European Research Council (ERC) Advanced Grant SubNano (grant agreement 832237).
-
Data availability: Not applicable.
References
1. Dirac, P. A. M.; Fowler, R. H. Quantum Mechanics of Many-Electron Systems. Proc. R. Soc. London.-Ser. A Contain. Pap. Math. Phys. Character 1997, 123, 714–733. https://doi.org/10.1098/rspa.1929.0094 Search in Google Scholar
2. Schrödinger, E. An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys. Rev. 1926, 28, 1049–1070. https://doi.org/10.1103/PhysRev.28.1049.Search in Google Scholar
3. Born, M.; Oppenheimer, R. On the Quantum Theory of Molecules. In Quantum Chemistry; World Scientific: Singapore, Vol. 8, 2000; pp 1–24.10.1142/9789812795762_0001Search in Google Scholar
4. Born, M.; Oppenheimer, R. Zur Quantentheorie der Molekeln. Ann. Phys. 1927, 389, 457–484. https://doi.org/10.1002/andp.19273892002.Search in Google Scholar
5. Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133.Search in Google Scholar
6. Deutsch, D. Quantum Theory, the Church–Turing Principle and the Universal Quantum Computer. Proc. R. Soc. London, A 1985, 400, 97–117. https://doi.org/10.1098/rspa.1985.0070.10.1098/rspa.1985.0070Search in Google Scholar
7. Joos, E.; Zeh, H. D. The Emergence of Classical Properties through Interaction with the Environment. Z. Phys. B 1985, 59, 223–243. https://doi.org/10.1007/bf01725541.Search in Google Scholar
8. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. https://doi.org/10.1021/j100096a001.Search in Google Scholar
9. Casida, M. E., Time-Dependent Density Functional Response Theory for Molecules. In Recent Advances in Density Functional Methods; Chong, D. P., Ed. World Scientific: Singapore, Vol. 1, 1995; pp 155–192.10.1142/9789812830586_0005Search in Google Scholar
10. Lakatos, I., Falsification and the Methodology of Scientific Research Programmes. In Criticism and the Growth of Knowledge: Proceedings of the International Colloquium in the Philosophy of Science, London, 1965; Lakatos, I.; Musgrave, A., Eds. Cambridge University Press: Cambridge, 1970; Vol. 4, pp 91–196.10.1017/CBO9781139171434.009Search in Google Scholar
11. Barbatti, M.; Nascimento, M. A. C. Does the H5+ Hydrogen Cluster Exist in Dense Interstellar Clouds? Int. J. Quantum Chem. 2012, 112, 3169–3173. https://doi.org/10.1002/qua.24110.Search in Google Scholar
12. Mukherjee, S.; Mattos, R. S.; Toldo, J. M.; Lischka, H.; Barbatti, M. Prediction Challenge: Simulating Rydberg Photoexcited Cyclobutanone with Surface Hopping Dynamics based on Different Electronic Structure Methods. J. Chem. Phys. 2024, 160, 154306. https://doi.org/10.1063/5.0203636.Search in Google Scholar PubMed
13. Green, A. E.; Liu, Y.; Allum, F.; Graßl, M.; Lenzen, P.; Ashfold, M. N. R.; Bhattacharyya, S.; Cheng, X.; Centurion, M.; Crane, S. W.; Forbes, R. G.; Goff, N. A.; Huang, L.; Kaufman, B.; Kling, M. F.; Kramer, P. L.; Lam, H. V. S.; Larsen, K. A.; Lemons, R.; Lin, M. F.; Orr-Ewing, A. J.; Rolles, D.; Rudenko, A.; Saha, S. K.; Searles, J.; Shen, X.; Weathersby, S.; Weber, P. M.; Zhao, H.; Wolf, T. J. A. Imaging the Photochemistry of Cyclobutanone Using Ultrafast Electron Diffraction: Experimental Results. arXiv [physics.chem-ph] 2025, 162. https://doi.org/10.48550/arXiv.2502.13956.Search in Google Scholar
14. Wang, T.; Jiang, H.; Jin, C.; Zou, X.; Zhu, P.; Jiang, T.; He, F.; Xiang, D. Imaging the Photochemical Dynamics of Cyclobutanone with MeV Ultrafast Electron Diffraction. arXiv [physics.chem-ph] 2025, 162. https://doi.org/10.48550/arXiv.2502.16236.Search in Google Scholar
15. Hueffel, J. A.; Sperger, T.; Funes-Ardoiz, I.; Ward, J. S.; Rissanen, K.; Schoenebeck, F. Accelerated Dinuclear Palladium Catalyst Identification through Unsupervised Machine Learning. Science 2021, 374, 1134–1140. https://doi.org/10.1126/science.abj0999.Search in Google Scholar PubMed
16. Seumer, J.; Kirschner Solberg Hansen, J.; Brøndsted Nielsen, M.; Jensen, J. H. Computational Evolution of New Catalysts For The Morita–Baylis–Hillman Reaction. Angew. Chem. Int. Ed. 2023, 62, e202218565. https://doi.org/10.1002/anie.202218565.Search in Google Scholar PubMed
17. Santaloci, T. J.; Meador, W. E.; Wallace, A. M.; Valencia, E. M.; Rogers, B. N.; Delcamp, J. H.; Fortenberry, R. C. An Automated Quantum Chemistry-Driven, Experimental Characterization for High PCE Donor–π–Acceptor NIR Molecular Dyes. Digit. Dicov. 2023, 2, 1269–1288. https://doi.org/10.1039/D3DD00023K.Search in Google Scholar
18. Uceda, R. G.; Gijón, A.; Míguez-Lago, S.; Cruz, C. M.; Blanco, V.; Fernández-Álvarez, F.; Álvarez de Cienfuegos, L.; Molina-Solana, M.; Gómez-Romero, J.; Miguel, D.; Mota, A. J.; Cuerva, J. M. Can Deep Learning Search for Exceptional Chiroptical Properties? The Halogenated [6]Helicene Case. Angew. Chem. Int. Ed. 2024, 63, e202409998. https://doi.org/10.1002/anie.202409998.Search in Google Scholar PubMed PubMed Central
19. Korablyov, M.; Liu, C.-H.; Jain, M.; van der Sloot, A. M.; Jolicoeur, E.; Ruediger, E.; Nica, A. C.; Bengio, E.; Lapchevskyi, K.; St-Cyr, D.; Schuetz, D. A.; Butoi, V. I.; Rector-Brooks, J.; Blackburn, S.; Feng, L.; Nekoei, H.; Gottipati, S.; Vijayan, P.; Gupta, P.; Rampášek, L.; Avancha, S.; Bacon, P.-L.; Hamilton, W. L.; Paige, B.; Misra, S.; Jastrzebski, S. K.; Kaul, B.; Precup, D.; Hernández-Lobato, J. M.; Segler, M.; Bronstein, M.; Marinier, A.; Tyers, M.; Bengio, Y. Generative Active Learning for the Search of Small-Molecule Protein Binders. arXiv [q-bio.BM] 2024. https://doi.org/10.48550/arXiv.2405.01616.Search in Google Scholar
20. Lavecchia, A. Navigating the Frontier of Drug-Like Chemical Space with Cutting-Edge Generative AI Models. Drug Discov. Today 2024, 29, 104133. https://doi.org/10.1016/j.drudis.2024.104133.Search in Google Scholar PubMed
21. Flores-Hernandez, H.; Martinez-Ledesma, E. A Systematic Review of Deep Learning Chemical Language Models in Recent Era. J. Cheminf. 2024, 16, 129. https://doi.org/10.1186/s13321-024-00916-y.Search in Google Scholar PubMed PubMed Central
22. Mai, H.; Le, T. C.; Chen, D.; Winkler, D. A.; Caruso, R. A. Machine Learning for Electrocatalyst and Photocatalyst Design and Discovery. Chem. Rev. 2022, 122, 13478–13515. https://doi.org/10.1021/acs.chemrev.2c00061.Search in Google Scholar PubMed
23. Shi, Y.-F.; Yang, Z.-X.; Ma, S.; Kang, P.-L.; Shang, C.; Hu, P.; Liu, Z.-P. Machine Learning for Chemistry: Basics and Applications. Engineering 2023, 27, 70–83. https://doi.org/10.1016/j.eng.2023.04.013.Search in Google Scholar
24. Heller, E. J. The Semiclassical Way to Dynamics and Spectroscopy; Princeton University Press: Princeton, 2018.10.23943/9781400890293Search in Google Scholar
25. Truhlar, D. G. Valence Bond Theory for Chemical Dynamics. J. Comput. Chem. 2007, 28, 73–86. https://doi.org/10.1002/jcc.20529.Search in Google Scholar PubMed
26. Löwdin, P.-O. Correlation Problem in Many-Electron Quantum Mechanics I. Review of Different Approaches and Discussion of Some Current Ideas. Adv. Chem. Phys. 1958, 207–322. https://doi.org/10.1002/9780470143483.ch7.Search in Google Scholar
27. Angeli, C. On the Nature of the π → π* Ionic Excited States: The V State of Ethene as a Prototype. J. Comput. Chem. 2009, 30, 1319–1333. https://doi.org/10.1002/Jcc.21155.Search in Google Scholar
28. Helgaker, T.; Jørgensen, P.; Olsen, J. Molecular Electronic‐Structure Theory; John Wiley & Sons: Chichester, 2000; pp 1–33.10.1002/9781119019572.ch1Search in Google Scholar
29. Jones, R. O. Density Functional Theory: Its Origins, Rise to Prominence, and Future. Rev. Mod. Phys. 2015, 87, 897–923. https://doi.org/10.1103/RevModPhys.87.897.Search in Google Scholar
30. Medvedev, M. G.; Bushmarinov, I. S.; Sun, J.; Perdew, J. P.; Lyssenko, K. A. Density Functional Theory Is Straying from the Path Toward the Exact Functional. Science 2017, 355, 49–52. https://doi.org/10.1126/science.aah5975.Search in Google Scholar PubMed
31. Casida, M. E.; Huix-Rotllant, M. Progress in Time-Dependent Density-Functional Theory. Annu. Rev. Phys. Chem. 2012, 63, 287–323. https://doi.org/10.1146/annurev-physchem-032511-143803.Search in Google Scholar PubMed
32. Golze, D.; Dvorak, M.; Rinke, P. The GW Compendium: A Practical Guide to Theoretical Photoemission Spectroscopy. Front. Chem. 2019, 7, 377. https://doi.org/10.3389/fchem.2019.00377.Search in Google Scholar PubMed PubMed Central
33. Pulay, P. A Perspective on the CASPT2 Method. Int. J. Quantum Chem. 2011, 111, 3273–3279. https://doi.org/10.1002/qua.23052.Search in Google Scholar
34. Liu, W. Perspective: Simultaneous Treatment of Relativity, Correlation, and QED. WIREs: Comp. Mol. Sci. 2023, 13, e1652. https://doi.org/10.1002/wcms.1652.Search in Google Scholar
35. Dewyer, A. L.; Argüelles, A. J.; Zimmerman, P. M. Methods for Exploring Reaction Space in Molecular Systems. WIREs: Comp. Mol. Sci. 2018, 8, e1354. https://doi.org/10.1002/wcms.1354.Search in Google Scholar
36. Groenhof, G., Introduction to QM/MM Simulations. In Biomolecular Simulations: Methods and Protocols; Monticelli, L.; Salonen, E., Eds.; Humana Press: Totowa, NJ, 2013; pp 43–66.10.1007/978-1-62703-017-5_3Search in Google Scholar PubMed
37. Sun, L.; Hase, W. L. Born–Oppenheimer Direct Dynamics Classical Trajectory Simulations. In Reviews in Computational Chemistry; Wiley-VCH: New York, 2003; pp 79–146.10.1002/0471466638.ch3Search in Google Scholar
38. Agostini, F.; Curchod, B. F. E. Different Flavors of Nonadiabatic Molecular Dynamics. WIREs: Comp. Mol. Sci. 2019, 9, e1417. https://doi.org/10.1002/wcms.1417.Search in Google Scholar
39. Crespo-Otero, R.; Barbatti, M. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum-Classical Dynamics. Chem. Rev. 2018, 118, 7026–7068. https://doi.org/10.1021/acs.chemrev.7b00577.Search in Google Scholar PubMed
40. Worth, G. A.; Meyer, H. D.; Köppel, H.; Cederbaum, L. S.; Burghardt, I. Using the MCTDH Wavepacket Propagation Method to Describe Multimode Non-adiabatic Dynamics. Int. Rev. Phys. Chem. 2008, 27, 569–606. https://doi.org/10.1080/01442350802137656.Search in Google Scholar
41. Manzano, D. A Short Introduction to the Lindblad Master Equation. AIP Adv. 2020, 10, 025106. https://doi.org/10.1063/1.5115323.Search in Google Scholar
42. Kramer, T.; Noack, M.; Reinefeld, A.; Rodríguez, M.; Zelinskyy, Y. Efficient Calculation of Open Quantum System Dynamics and Time-Resolved Spectroscopy with Distributed Memory HEOM (DM-HEOM). J. Comput. Chem. 2018, 39, 1779–1794. https://doi.org/10.1002/jcc.25354.Search in Google Scholar PubMed
43. Camsari, K. Y.; Chowdhury, S.; Datta, S., The Nonequilibrium Green Function (NEGF) Method. In Springer Handbook of Semiconductor Devices, Rudan, M.; Brunetti, R.; Reggiani, S., Eds.; Springer International Publishing: Cham, 2023; pp 1583–1599.10.1007/978-3-030-79827-7_44Search in Google Scholar
44. Fukuzumi, S.; Morimoto, Y.; Kotani, H.; Naumov, P.; Lee, Y.-M.; Nam, W. Crystal Structure of a Metal Ion-Bound Oxoiron(IV) Complex and Implications for Biological Electron Transfer. Nat. Chem. 2010, 2, 756–759. https://doi.org/10.1038/nchem.731.Search in Google Scholar PubMed
45. Swart, M. A Change in the Oxidation State of Iron: Scandium Is Not Innocent. Chem. Commun. 2013, 49, 6650–6652. https://doi.org/10.1039/C3CC42200C.Search in Google Scholar
46. Prakash, J.; Rohde, G. T.; Meier, K. K.; Jasniewski, A. J.; Van Heuvelen, K. M.; Münck, E.; Que, L.Jr. Spectroscopic Identification of an FeIII Center, Not FeIV, in the Crystalline Sc–O–Fe Adduct Derived from [FeIV(O)(TMC)]2+. J. Am. Chem. Soc. 2015, 137, 3478–3481. https://doi.org/10.1021/jacs.5b00535.Search in Google Scholar PubMed PubMed Central
47. Zhou, A.; Kleespies, S. T.; Van Heuvelen, K. M.; Que, L. Characterization of a Heterobimetallic Nonheme Fe(iii)–O–Cr(iii) Species Formed by O2 activation. Chem. Commun. 2015, 51, 14326–14329. https://doi.org/10.1039/C5CC05931C.Search in Google Scholar PubMed PubMed Central
48. Mura, F.; Zaccone, A. Effects of Shear Flow on Phase Nucleation and Crystallization. Phys. Rev. E 2016, 93, 042803. https://doi.org/10.1103/PhysRevE.93.042803.Search in Google Scholar PubMed
49. Debuysschère, R.; Rimez, B.; Zaccone, A.; Scheid, B. Experimental and Theoretical Investigation of Nonclassical Shear-Induced Nucleation Mechanism for Small Molecule. Cryst. Growth Des. 2023, 23, 4979–4989. https://doi.org/10.1021/acs.cgd.3c00232.Search in Google Scholar
50. Zhou, Z.; Kawade, R. K.; Wei, Z.; Kuriakose, F.; Üngör, Ö.; Jo, M.; Shatruk, M.; Gershoni-Poranne, R.; Petrukhina, M. A.; Alabugin, I. V. Negative Charge as a Lens for Concentrating Antiaromaticity: Using a Pentagonal “Defect” and Helicene Strain for Cyclizations. Angew. Chem. Int. Ed. 2020, 59, 1256–1262. https://doi.org/10.1002/anie.201911319.Search in Google Scholar PubMed
51. Zhou, Z.; Egger, D. T.; Hu, C.; Pennachio, M.; Wei, Z.; Kawade, R. K.; Üngör, Ö.; Gershoni-Poranne, R.; Petrukhina, M. A.; Alabugin, I. V. Localized Antiaromaticity Hotspot Drives Reductive Dehydrogenative Cyclizations in Bis- and Mono-Helicenes. J. Am. Chem. Soc. 2022, 144, 12321–12338. https://doi.org/10.1021/jacs.2c03681.Search in Google Scholar PubMed
52. Bochicchio, D.; Salvalaglio, M.; Pavan, G. M. Into the Dynamics of a Supramolecular Polymer at Submolecular Resolution. Nat. Commun. 2017, 8, 147. https://doi.org/10.1038/s41467-017-00189-0.Search in Google Scholar PubMed PubMed Central
53. Archontakis, E.; Dhiman, S.; Zhang, M.; Vleugels, M. E. J.; Meijer, E. W.; Palmans, A. R. A.; Zijlstra, P.; Albertazzi, L. Visualizing the Heterogeneity in Homogeneous Supramolecular Polymers. J. Am. Chem. Soc. 2024, 146, 19974–19985. https://doi.org/10.1021/jacs.4c03562.Search in Google Scholar PubMed PubMed Central
54. Frederix, P. W. J. M.; Scott, G. G.; Abul-Haija, Y. M.; Kalafatovic, D.; Pappas, C. G.; Javid, N.; Hunt, N. T.; Ulijn, R. V.; Tuttle, T. Exploring the Sequence Space for (tri-)Peptide Self-assembly to Design and Discover New Hydrogels. Nat. Chem. 2015, 7, 30–37. https://doi.org/10.1038/nchem.2122.Search in Google Scholar PubMed
55. Tada, T.; Yoshizawa, K. Reverse Exponential Decay of Electrical Transmission in Nanosized Graphite Sheets. J. Phys. Chem. B 2004, 108, 7565–7572. https://doi.org/10.1021/jp0310908.Search in Google Scholar
56. Stuyver, T.; Fias, S.; De Proft, F.; Geerlings, P. The Relation Between Delocalization, Long Bond Order Structure Count and Transmission: An Application to Molecular Wires. Chem. Phys. Lett. 2015, 630, 51–56. https://doi.org/10.1016/j.cplett.2015.04.043.Search in Google Scholar
57. Tsuji, Y.; Movassagh, R.; Datta, S.; Hoffmann, R. Exponential Attenuation of Through-Bond Transmission in a Polyene: Theory and Potential Realizations. ACS Nano 2015, 9, 11109–11120. https://doi.org/10.1021/acsnano.5b04615.Search in Google Scholar PubMed
58. Stuyver, T.; Fias, S.; De Proft, F.; Geerlings, P.; Tsuji, Y.; Hoffmann, R. Enhancing the Conductivity of Molecular Electronic Devices. J. Chem. Phys. 2016, 146, 092310. https://doi.org/10.1063/1.4972992.Search in Google Scholar
59. Garner, M. H.; Bro-Jørgensen, W.; Pedersen, P. D.; Solomon, G. C. Reverse Bond-Length Alternation in Cumulenes: Candidates for Increasing Electronic Transmission with Length. J. Phys. Chem. C 2018, 122, 26777–26789. https://doi.org/10.1021/acs.jpcc.8b05661.Search in Google Scholar
60. Zang, Y.; Fu, T.; Zou, Q.; Ng, F.; Li, H.; Steigerwald, M. L.; Nuckolls, C.; Venkataraman, L. Cumulene Wires Display Increasing Conductance with Increasing Length. Nano Lett. 2020, 20, 8415–8419. https://doi.org/10.1021/acs.nanolett.0c03794.Search in Google Scholar PubMed
61. Torrent-Sucarrat, M.; Anglada, J. M. Anharmonicity and the Eigen-Zundel Dilemma in the IR Spectrum of the Protonated 21 Water Cluster. J. Chem. Theory Comput. 2011, 7, 467–472. https://doi.org/10.1021/ct100692x.Search in Google Scholar PubMed
62. Fournier, J. A.; Johnson, C. J.; Wolke, C. T.; Weddle, G. H.; Wolk, A. B.; Johnson, M. A. Vibrational Spectral Signature of the Proton Defect in the Three-Dimensional H+(H2O)21 Cluster. Science 2014, 344, 1009–1012. https://doi.org/10.1126/science.1253788.Search in Google Scholar PubMed
63. Perry, A.; Neipert, C.; Ridley, C.; Space, B.; Moore, P. B. Identification of a Wagging Vibrational Mode of Water Molecules at the Water/Vapor Interface. Phys. Rev. E 2005, 71, 050601. https://doi.org/10.1103/PhysRevE.71.050601.Search in Google Scholar PubMed
64. Tong, Y.; Kampfrath, T.; Campen, R. K. Experimentally Probing the Libration of Interfacial Water: The Rotational Potential of Water Is Stiffer at the Air/Water Interface Than in Bulk Liquid. Phys. Chem. Chem. Phys. 2016, 18, 18424–18430. https://doi.org/10.1039/C6CP01004K.Search in Google Scholar
65. Singh, M. K.; Yadav, N.; Rajaraman, G. Record High Magnetic Exchange and Magnetization Blockade in Ln2@C79N (Ln = Gd(iii) and Dy(iii)) Molecules: A Theoretical Perspective. Chem. Commun. 2015, 51, 17732–17735. https://doi.org/10.1039/C5CC06642E.Search in Google Scholar
66. Fu, W.; Zhang, J.; Fuhrer, T.; Champion, H.; Furukawa, K.; Kato, T.; Mahaney, J. E.; Burke, B. G.; Williams, K. A.; Walker, K.; Dixon, C.; Ge, J.; Shu, C.; Harich, K.; Dorn, H. C. Gd2@C79N: Isolation, Characterization, and Monoadduct Formation of a Very Stable Heterofullerene with a Magnetic Spin State of S = 15/2. J. Am. Chem. Soc. 2011, 133, 9741–9750. https://doi.org/10.1021/ja202011u.Search in Google Scholar PubMed PubMed Central
67. Liu, F.; Krylov, D. S.; Spree, L.; Avdoshenko, S. M.; Samoylova, N. A.; Rosenkranz, M.; Kostanyan, A.; Greber, T.; Wolter, A. U. B.; Büchner, B.; Popov, A. A. Single Molecule Magnet with an Unpaired Electron Trapped between Two Lanthanide Ions Inside a Fullerene. Nat. Commun. 2017, 8, 16098. https://doi.org/10.1038/ncomms16098.Search in Google Scholar PubMed PubMed Central
68. Naaman, R.; Waldeck, D. H. Chiral-Induced Spin Selectivity Effect. J. Phys. Chem. Lett. 2012, 3, 2178–2187. https://doi.org/10.1021/jz300793y.Search in Google Scholar PubMed
69. Fay, T. P.; Limmer, D. T. Origin of Chirality Induced Spin Selectivity in Photoinduced Electron Transfer. Nano Lett. 2021, 21, 6696–6702. https://doi.org/10.1021/acs.nanolett.1c02370.Search in Google Scholar PubMed
70. Eckvahl, H. J.; Tcyrulnikov, N. A.; Chiesa, A.; Bradley, J. M.; Young, R. M.; Carretta, S.; Krzyaniak, M. D.; Wasielewski, M. R. Direct Observation of Chirality-Induced Spin Selectivity in Electron Donor–Acceptor Molecules. Science 2023, 382, 197–201. https://doi.org/10.1126/science.adj5328.Search in Google Scholar PubMed
71. Uceda, R. G.; Cruz, C. M.; Míguez-Lago, S.; de Cienfuegos, L. Á.; Longhi, G.; Pelta, D. A.; Novoa, P.; Mota, A. J.; Cuerva, J. M.; Miguel, D. Can Magnetic Dipole Transition Moment Be Engineered? Angew. Chem. Int. Ed. 2024, 63, e202316696. https://doi.org/10.1002/anie.202316696.Search in Google Scholar PubMed
72. Jennifer, G, A.; Gao, Y.; Schreckenbach, G.; Varathan, E. Periodic Trends in the Stabilization of Actinyls in Their Higher Oxidation States Using Pyrrophen Ligands. Inorg. Chem. 2023, 62, 6920–6933. https://doi.org/10.1021/acs.inorgchem.3c00022.Search in Google Scholar PubMed
73. Ducilon, J.; Nicholas, A. D.; Surbella, R. G.; Gorden, A. E. V. Neptunyl Pyrrophen Complexes: Exploring Schiff Base Chemistry with Multidentate Acyclic Ligands and Transuranics. Chem. – Eur. J. 2024, 30, e202402047. https://doi.org/10.1002/chem.202402047 Search in Google Scholar PubMed
74. Zhang, X.; Hrovat, D. A.; Borden, W. T. Calculations Predict That Carbon Tunneling Allows the Degenerate Cope Rearrangement of Semibullvalene to Occur Rapidly at Cryogenic Temperatures. Org. Lett. 2010, 12, 2798–2801. https://doi.org/10.1021/ol100879t.Search in Google Scholar PubMed
75. Schleif, T.; Mieres-Perez, J.; Henkel, S.; Ertelt, M.; Borden, W. T.; Sander, W. The Cope Rearrangement of 1,5-Dimethylsemibullvalene-2(4)-d1: Experimental Evidence for Heavy-Atom Tunneling. Angew. Chem. 2017, 129, 10886–10889. https://doi.org/10.1002/ange.201704787.Search in Google Scholar
76. Albright, T. R.; Winter, A. H. A Fine Line Separates Carbocations from Diradical Ions in Donor-Unconjugated Cations. J. Am. Chem. Soc. 2015, 137, 3402–3410. https://doi.org/10.1021/jacs.5b00707.Search in Google Scholar PubMed
77. Takano, M.-a.; Abe, M. Photoreaction of 4-(Bromomethyl)-7-(diethylamino)coumarin: Generation of a Radical and Cation Triplet Diradical during the C–Br Bond Cleavage. Org. Lett. 2022, 24, 2804–2808. https://doi.org/10.1021/acs.orglett.2c00694.Search in Google Scholar PubMed
78. Nguyen, H. D.; Abe, M. Crucial Roles of Leaving Group and Open-Shell Cation in Photoreaction of (Coumarin-4-yl)methyl Derivatives. J. Am. Chem. Soc. 2024, 146, 10993–11001. https://doi.org/10.1021/jacs.4c02880.Search in Google Scholar PubMed
79. Falahati, K.; Tamura, H.; Burghardt, I.; Huix-Rotllant, M. Ultrafast Carbon Monoxide Photolysis and Heme Spin-Crossover in Myoglobin via Nonadiabatic Quantum Dynamics. Nat. Commun. 2018, 9, 4502. https://doi.org/10.1038/s41467-018-06615-1.Search in Google Scholar PubMed PubMed Central
80. Barends, T. R. M.; Gorel, A.; Bhattacharyya, S.; Schirò, G.; Bacellar, C.; Cirelli, C.; Colletier, J.-P.; Foucar, L.; Grünbein, M. L.; Hartmann, E.; Hilpert, M.; Holton, J. M.; Johnson, P. J. M.; Kloos, M.; Knopp, G.; Marekha, B.; Nass, K.; Nass Kovacs, G.; Ozerov, D.; Stricker, M.; Weik, M.; Doak, R. B.; Shoeman, R. L.; Milne, C. J.; Huix-Rotllant, M.; Cammarata, M.; Schlichting, I. Influence of Pump Laser Fluence on Ultrafast Myoglobin Structural Dynamics. Nature 2024, 626, 905–911. https://doi.org/10.1038/s41586-024-07032-9.Search in Google Scholar PubMed PubMed Central
81. Loo, C. E.; Hix, M. A.; Wang, T.; Cisneros, G. A.; Kohli, R. M. Revealing Drivers for Carboxy-S-adenosyl-l-Methionine Use by Neomorphic Variants of a DNA Methyltransferase. ACS Chem. Biol. 2023, 18, 2224–2232. https://doi.org/10.1021/acschembio.3c00184.Search in Google Scholar PubMed PubMed Central
82. Hix, M. A.; Wong, L.; Flath, B.; Chelico, L.; Cisneros, G. A. Single-Nucleotide Polymorphism of the DNA Cytosine Deaminase APOBEC3H Haplotype I Leads to Enzyme Destabilization and Correlates with Lung Cancer. NAR Cancer 2020, 2, zcaa023. https://doi.org/10.1093/narcan/zcaa023.Search in Google Scholar PubMed PubMed Central
83. Rosales, A. R.; Wahlers, J.; Limé, E.; Meadows, R. E.; Leslie, K. W.; Savin, R.; Bell, F.; Hansen, E.; Helquist, P.; Munday, R. H.; Wiest, O.; Norrby, P.-O. Rapid Virtual Screening of Enantioselective Catalysts Using CatVS. Nat. Catal. 2019, 2, 41–45. https://doi.org/10.1038/s41929-018-0193-3.Search in Google Scholar
84. Hansen, E.; Rosales, A. R.; Tutkowski, B.; Norrby, P.-O.; Wiest, O. Prediction of Stereochemistry using Q2MM. Acc. Chem. Res. 2016, 49, 996–1005. https://doi.org/10.1021/acs.accounts.6b00037.Search in Google Scholar PubMed PubMed Central
85. Rosales, A. R.; Quinn, T. R.; Wahlers, J.; Tomberg, A.; Zhang, X.; Helquist, P.; Wiest, O.; Norrby, P.-O. Application of Q2MM to Predictions in Stereoselective Synthesis. Chem. Commun. 2018, 54, 8294–8311. https://doi.org/10.1039/C8CC03695K.Search in Google Scholar PubMed PubMed Central
86. Grimme, S.; Bannwarth, C.; Shushkov, P. A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All spd-Block Elements (Z = 1–86). J. Chem. Theory Comput. 2017, 13, 1989–2009. https://pubs.acs.org/doi/pdf/10.1021/acs.jctc.7b00118.10.1021/acs.jctc.7b00118Search in Google Scholar PubMed
87. Katbashev, A.; Stahn, M.; Rose, T.; Alizadeh, V.; Friede, M.; Plett, C.; Steinbach, P.; Ehlert, S. Overview on Building Blocks and Applications of Efficient and Robust Extended Tight Binding. J. Phys. Chem. A 2025, 129, 2667–2682. https://doi.org/10.1021/acs.jpca.4c08263.Search in Google Scholar PubMed
88. Grimme, S. Density Functional Theory with London Dispersion Corrections. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011, 1, 211–228. https://doi.org/10.1002/wcms.30.Search in Google Scholar
89. Cassidy, J. P.; Hofierka, J.; Cunningham, B.; Green, D. G. Many-Body Theory Calculations of Positronic-Bonded Molecular Dianions. J. Chem. Phys. 2024, 160, 084304. https://doi.org/10.1063/5.0188719.Search in Google Scholar PubMed
90. Arthur-Baidoo, E.; Danielson, J. R.; Surko, C. M.; Cassidy, J. P.; Gregg, S. K.; Hofierka, J.; Cunningham, B.; Patterson, C. H.; Green, D. G. Positron Annihilation and Binding in Aromatic and Other Ring Molecules. Phys. Rev. A 2024, 109, 062801. https://doi.org/10.1103/PhysRevA.109.062801.Search in Google Scholar
© 2025 IUPAC & De Gruyter
Articles in the same Issue
- Frontmatter
- IUPAC Technical Report
- Acid dissociation constants in selected dipolar non-hydrogen-bond-donor solvents (IUPAC Technical Report)
- Preface
- Introduction to the Special Issue of “The International Year of Quantum”
- Review Articles
- Quantum chemistry of molecules in solution. A brief historical perspective
- From Hückel to Clar: a block-localized description of aromatic systems
- Exploring potential energy surfaces
- Unlocking the chemistry facilitated by enzymes that process nucleic acids using quantum mechanical and combined quantum mechanics–molecular mechanics techniques
- Hypothetical heterocyclic carbenes
- Is relativistic quantum chemistry a good theory of everything?
- When theory came first: a review of theoretical chemical predictions ahead of experiments
- Research Articles
- Exploring reaction dynamics involving post-transition state bifurcations based on quantum mechanical ambimodal transition states
- Molecular aromaticity: a quantum phenomenon
- Using topology for understanding your computational results
- The role of ion-pair on the olefin polymerization reactivity of zirconium bis(phenoxy-imine) catalyst: quantum mechanical study and its beyond
- Theoretical insights on the structure and stability of the [C2, H3, P, O] isomeric family
Articles in the same Issue
- Frontmatter
- IUPAC Technical Report
- Acid dissociation constants in selected dipolar non-hydrogen-bond-donor solvents (IUPAC Technical Report)
- Preface
- Introduction to the Special Issue of “The International Year of Quantum”
- Review Articles
- Quantum chemistry of molecules in solution. A brief historical perspective
- From Hückel to Clar: a block-localized description of aromatic systems
- Exploring potential energy surfaces
- Unlocking the chemistry facilitated by enzymes that process nucleic acids using quantum mechanical and combined quantum mechanics–molecular mechanics techniques
- Hypothetical heterocyclic carbenes
- Is relativistic quantum chemistry a good theory of everything?
- When theory came first: a review of theoretical chemical predictions ahead of experiments
- Research Articles
- Exploring reaction dynamics involving post-transition state bifurcations based on quantum mechanical ambimodal transition states
- Molecular aromaticity: a quantum phenomenon
- Using topology for understanding your computational results
- The role of ion-pair on the olefin polymerization reactivity of zirconium bis(phenoxy-imine) catalyst: quantum mechanical study and its beyond
- Theoretical insights on the structure and stability of the [C2, H3, P, O] isomeric family