Home Synthesis and crystal structure of (Z)-4-((1-(3-fluorophenyl)-1H-1,2,3-triazol-4-yl)methylene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one, C19H14FN5O
Article Open Access

Synthesis and crystal structure of (Z)-4-((1-(3-fluorophenyl)-1H-1,2,3-triazol-4-yl)methylene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one, C19H14FN5O

  • Irina S. Konovalova ORCID logo EMAIL logo , Anna O. Geleverya , Anton Semenets , Sergiy M. Kovalenko ORCID logo and Guido J. Reiss ORCID logo
Published/Copyright: July 25, 2024

Abstract

C19H14FN5O, monoclinic, P21/c (no. 14), a = 7.2944(3) Å, b = 12.2032(5) Å, c = 18.1070(7) Å, β = 95.807(4)°, V = 1603.52(11) Å3, Z = 4, Rgt(F) = 0.0451, wRref = 0.1217, T = 100(2) K.

CCDC no.: 2370815

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Red block
Size: 0.40 × 0.20 × 0.05 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.10 mm−1
Diffractometer, scan mode: Xcalibur, ω
θmax, completeness: 30.1°, >99 %
N(hkl)measured, N(hkl)unique, Rint: 13,035, 4,123, 0.038
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 3291
N(param)refined: 236
Programs: Mercury, 1 CrysAlisPRO, 2 SHELX 3 , 4 , OLEX2 5
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
F1 0.85831 (12) −0.02841 (8) 0.57544 (5) 0.0344 (2)
O1 0.31559 (14) 0.37148 (8) 0.52510 (5) 0.0249 (2)
N1 0.53509 (15) 0.16778 (9) 0.37465 (6) 0.0216 (2)
N2 0.52130 (17) 0.18759 (10) 0.29966 (6) 0.0269 (3)
N3 0.45416 (16) 0.28576 (10) 0.28952 (6) 0.0264 (3)
N4 0.19083 (16) 0.64279 (9) 0.48100 (6) 0.0236 (3)
N5 0.21264 (15) 0.55153 (9) 0.52934 (6) 0.0210 (2)
C1 0.61602 (18) 0.06841 (11) 0.40465 (7) 0.0219 (3)
C2 0.70300 (18) 0.06977 (12) 0.47658 (8) 0.0237 (3)
H2 0.710435 0.134900 0.505462 0.028*
C3 0.77805 (19) −0.02742 (12) 0.50425 (8) 0.0253 (3)
C4 0.7764 (2) −0.12248 (13) 0.46349 (8) 0.0288 (3)
H4 0.833598 −0.187237 0.483766 0.035*
C5 0.6886 (2) −0.12107 (12) 0.39180 (8) 0.0293 (3)
H5 0.685261 −0.185931 0.362680 0.035*
C6 0.6057 (2) −0.02644 (12) 0.36203 (8) 0.0264 (3)
H6 0.543136 −0.026497 0.313399 0.032*
C7 0.47463 (17) 0.25396 (11) 0.41123 (7) 0.0213 (3)
H7 0.468793 0.260715 0.463209 0.026*
C8 0.42278 (18) 0.33063 (11) 0.35724 (7) 0.0221 (3)
C9 0.35652 (18) 0.44181 (11) 0.36054 (7) 0.0221 (3)
H9 0.350379 0.481257 0.315129 0.027*
C10 0.30190 (17) 0.49801 (11) 0.41889 (7) 0.0210 (3)
C11 0.24228 (18) 0.61180 (12) 0.41765 (7) 0.0231 (3)
C12 0.28140 (17) 0.46076 (11) 0.49567 (7) 0.0203 (3)
C13 0.2420 (2) 0.68947 (13) 0.35449 (8) 0.0324 (3)
H13A 0.189015 0.759535 0.368074 0.049*
H13B 0.168193 0.659015 0.311080 0.049*
H13C 0.368730 0.701107 0.342643 0.049*
C14 0.16336 (17) 0.56322 (11) 0.60260 (7) 0.0209 (3)
C15 0.19294 (19) 0.47839 (12) 0.65457 (8) 0.0253 (3)
H15 0.247680 0.411530 0.641274 0.030*
C16 0.1415 (2) 0.49292 (12) 0.72570 (8) 0.0282 (3)
H16 0.162104 0.435540 0.761020 0.034*
C17 0.0607 (2) 0.58972 (13) 0.74607 (8) 0.0294 (3)
H17 0.023420 0.598233 0.794520 0.035*
C18 0.03504 (19) 0.67396 (13) 0.69457 (8) 0.0279 (3)
H18 −0.017955 0.741056 0.708446 0.033*
C19 0.08539 (18) 0.66190 (12) 0.62328 (8) 0.0240 (3)
H19 0.067084 0.720304 0.588627 0.029*

1 Source of material

The starting compounds were obtained from commercial sources and were used without further purification. The NMR spectra were recorded on a Varian MR400 spectrometer with standard pulse sequences operating at 400 MHz for 1H NMR, 101 MHz for 13C NMR. For the NMR spectra, DMSO-d6 was used as solvent. Chemical shift values are referenced to residual protons (δ 2.49 ppm) and carbons (δ 39.6 ppm) of the solvent as an internal standard. LC/MS spectra were recorded on a ELSD Alltech 3,300 liquid chromatograph equipped with a UV detector (λmax = 254 nm), API-150EX mass spectrometer and using a Zorbax SB-C18 column, Phenomenex (100 × 4 mm) Rapid Resolution HT Cartridge 4.6 × 30 mm, 1.8-μm. Elution started with 0.1 M solution of HCOOH in water and ended with 0.1 M solution of HCOOH in acetonitrile used a linear gradient at a flow rate of 0.15 ml/min and an analysis cycle time of 25 min.

Synthesis of the title compound 4. The mixture of 1-(3-fluorophenyl)-1H-1,2,3-triazole-4-carbaldehyde (1 mmol, 150 mg), 5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (1 mmol, 136 mg), sodium acetate (0.2 mmol, 13 mg) was dissolved in ethanol (10 mL). The solution was refluxed for 2 h at 100 °C. After completion of the reaction, according to TLC data, the reaction mixture was cooled to room temperature. The precipitate was filtered off, washed with ethanol, and crystallized from ethanol, giving the yield of 260 mg, 96.3 %.

Red crystals, m.p. 242–243 °C, LC/MS [MH]+ 348.2.

2 Experimental details

Using Olex2, 5 the structure was solved by with the ShelXT 4 structure solution program. Positions of the hydrogen atoms were located from electron density difference maps and refined by riding models with Uiso = nUeq of the carrier atom (n = 1.5 for methyl group and n = 1.2 for other hydrogen atoms).

3 Comment

3.1 Introduction

The development of new biologically active compounds containing the cores of 1,2,3-triazole and pyrazole is of undeniable interest for pharmaceutical and medical research, as many of these compounds exhibit various types of pharmacological activity. 6 , 7 , 8 , 9 , 10 , 11 , 12 One of the key advantages of hybrid molecules containing the cores of 1,2,3-triazole and pyrazole is the opportunity for their broad structural modification, allowing for targeted variation of the molecular structure aimed at improving the pharmacological properties of the substance. Earlier, as demonstrated by the synthesis of diethyl 2,6-dimethyl-4-(1-(2-nitrophenyl)-1H-1,2,3-triazol-4-yl)1,4-dihydropyridine-3,5-dicarboxylate we have shown the possibility of synthesizing 1,2,3-triazole hybrid molecules. 13 Continuing these studies, we have developed a method for the synthesis of (Z)-4-((1-(3-fluorophenyl)-1H-1,2,3-triazol-4-yl)methylene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one and its molecular and crystal structure has been investigated.

3.2 Synthetic background

The reaction was carried out at 100 °C for 2 h in ethanol by stirring 1-(3-fluorophenyl)-1H-1,2,3-triazole-4-carbaldehyde, 5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one, and sodium acetate. The 1-(3-fluorophenyl)-1H-1,2,3-triazole-4-carbaldehyde was obtained from o-nitroaniline according to the method described in Ref. 13 The product 4-((1-(3-fluorophenyl)-1H-1,2,3-triazol-4-yl)methylene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one was crystallized from absolute ethanol with a yield of 96 %.

3.3 Database survey

Any structures with the (Z)-4-((1H-1,2,3-triazol-4-yl) methylene)-3-methyl-1H-pyrazol-5(4H)-one fragment are deposited by now with the Cambridge Structural Database (CSD). 14 The dipyrazolylmethane derivatives as the closest analogs of titled compound are rare found moiety. Only five crystal structures containing this aforementioned fragment are deposited with the CCDC.

3.4 Structural comment

The asymmetric unit of the title structure contains one complete molecule (see left part of the figure). The phenyl substituent is coplanar to the pyrazole ring (the C12–N5–C14–C15 torsion angle is −4.5(2)°) due to the formation of the C15–H15⋯O1 intramolecular hydrogen bond (H⋯O 2.26 Å, C–H⋯O 124°) on the one hand and, despite of the presence of the shortened intramolecular contacts H19⋯N4 2.42 Å (the van der Waals radii sum 15 is 2.66 Å) on the other hand. Meanwhile the triazole ring is slightly turned around C8–C9 bond (the C7–C8–C9–C10 torsion angle is −10.3(2)°). Such position is stabilized by the strong intramolecular C7–H7⋯O1 intramolecular hydrogen bond (H⋯O 2.14 Å, C–H⋯O 131°). The conjugation between the lone pair of the N1 atom and the fluorophenyl substituent is disrupted due to the rotation around the N(1)–C(6) bond (torsion angle C7–N1–C1–C2 −24.6(2)°), as evidenced by the elongation of the N1–C1 bond to 1.432(2) Å compared to the average value of 1.390 Å. 16 However, noticeable steric repulsion is still present in the molecule, indicated by shortened intramolecular contacts N2⋯H6 2.63 Å (2.66 Å), H2⋯C7 2.72 Å (2.87 Å) and H2⋯H7 2.40 Å (2.42 Å). In the crystal phase molecules of the titled compound form layers parallel to (1 0 0) crystallographic plane due to the stacking interactions between heterocycles rings (3.30 Å) (see the right part of the figure).


Corresponding author: Irina S. Konovalova, SSI “Institute for Single Crystals” NAS of Ukraine, Nauky ave., 60, Kharkiv, 61072, Ukraine; and Institut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Bioanorganische Chemie Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany, E-mail:

  1. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The work was supported by Ministry of Education and Science of Ukraine (grant BF/32-2021, state registration number 0121U112886). This project has received funding through the MSCA4 Ukraine project, which is funded by the European Union. Furthermore this study was supported by the Ministry of Innovation, Science and Research of North-Rhine Westphalia; the German Research Foundation (DFG): Xcalibur diffractometer; INST 208/533-1, project no. 162659349.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A. Mercury 4.0: From Visualization to Analysis, Design and Prediction. J. Appl. Crystallogr. 2020, 53, 226–235; https://doi.org/10.1107/S1600576719014092.Search in Google Scholar PubMed PubMed Central

2. Oxford Diffraction CrysAlisPRO (Version 1.171.41.93a); Oxford Diffraction Ltd.: Oxford, UK, 2020.Search in Google Scholar

3. Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

4. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341.10.1107/S0021889808042726Search in Google Scholar

6. Sharma, K.; Kumar, A.; Prakash, R.; Tripathi, A.; Singh, R.; Bajpai, R.; Sahasrabuddhe, A. A.; Singh, D.; Narender, T. Pyrazoline Analogues: Design, Synthesis, and Evaluation of Anti-osteoporosis Activity. Bioorg. Med. Chem. Lett. 2022, 60, 128585; https://doi.org/10.1016/j.bmcl.2022.128585.Search in Google Scholar PubMed

7. Vaishnani, M. J.; Bijani, S.; Rahamathulla, M.; Baldaniya, L.; Jain, V.; Thajudeen, K. Y.; Ahmed, M. M.; Farhana, S. A.; Pasha, I. Biological Importance and Synthesis of 1,2,3-Triazole Derivatives: A Review. Green Chem. Lett. Rev. 2024, 17, 2307989. https://doi.org/10.1080/17518253.2024.2307989.Search in Google Scholar

8. Faisal, M.; Saeed, A.; Hussain, S.; Dar, P.; Larik, F. A. Recent Developments in Synthetic Chemistry and Biological Activities of Pyrazole Derivatives. J. Chem. Sci. 2019, 131, 1–30; https://doi.org/10.1007/s12039-019-1646-1.Search in Google Scholar

9. Esvet, A.; Berber, I. Antibacterial and Antifungal Activities of New Pyrazolo [3,4d] Pyridazin Derivatives. Eur. J. Med. Chem. 2005, 40, 401–405; https://doi.org/10.1016/j.ejmech.2004.12.001.Search in Google Scholar PubMed

10. Nugent, R. A.; Murphy, M.; Schlachter, S. T.; Dunn, C. J.; Smith, R. J.; Staite, N. D.; Galinet, L. A.; Shields, S. K.; Aspar, D. G.; Richard, K. A.; Rohloff, N. A. Pyrazoline Bisphosphonate Esters as Novel Antiinflammatory and Antiarthritic Agents. J. Med. Chem. 1993, 36, 134–139; https://doi.org/10.1021/jm00053a017.Search in Google Scholar PubMed

11. Antonini, I.; Polucci, P.; Magnano, A.; Martelli, S. Synthesis, Antitumor Cytotoxicity, and DNA-Binding of Novel N-5,2-Di(ω-aminoalkyl)-2,6-Dihydropyrazolo[3,4,5-ki]acridine-5-Carboxamides. J. Med. Chem. 2001, 44 (20), 3329–3333; https://doi.org/10.1021/jm010917o.Search in Google Scholar PubMed

12. Fletcher, J. T.; Christensen, J. A.; Villa, E. M. Tandem Synthesis of 1-Formyl-1,2,3-triazoles. Tetrahedron Lett. 2017, 58, 4450–4454. https://doi.org/10.1016/j.tetlet.2017.10.023.Search in Google Scholar PubMed PubMed Central

13. Konovalova, I. S.; Geleverya, A. O.; Kovalenko, S. M.; Reiss, G. J. One-pot Synthesis and Crystal Structure of Diethyl 2,6-Dimethyl-4-(1-(2-Nitrophenyl)-1H-1,2,3-Triazol-4-Yl)-1,4-Dihydropyridine-3,5-Dicarboxylate, C21H23N5O6. Z. Kristallogr. N. Cryst. Struct. 2023, 238, 381–384. https://doi.org/10.1515/ncrs-2022-0573.Search in Google Scholar

14. Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural Database. Acta Crystallogr. 2016, B72, 171–179. https://doi.org/10.1107/S2052520616003954.Search in Google Scholar PubMed PubMed Central

15. Zefirov, Y. V. Reduced Intermolecular Contacts and Specific Interactions in Molecular Crystals. Kristallografiya 1997, 42, 936–958.Search in Google Scholar

16. Bürgi, H.-B.; Dunitz, J. D. Structure Correlation, Vol. 2; VCH: Weinheim, 1994; pp. 741–784.10.1002/9783527616091Search in Google Scholar

Received: 2024-05-15
Accepted: 2024-07-15
Published Online: 2024-07-25
Published in Print: 2024-10-28

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial 2024 – New developments and changes of Zeitschrift für Kristallographie – New Crystal Structures
  4. New Crystal Structures
  5. Hydrogen bonding and π⋅⋅⋅halogen interactions in the crystal structure of bis(theophyllinium) hexachloridoplatinate(IV) monohydrate
  6. The crystal structure of 6-amino-2-carboxypyridin-1-ium perchlorate, C6H7ClN2O6
  7. Crystal structure of poly[(μ4-(3-amino-1H-1,2,4-triazol-1-yl)benzene-1,3-dicarboxylato-κ 4 N:O:O':O')(1-methylpyrroldin-2-one-κ1O)dicopper(II)] – 1-methylpyrroldin-2-one (1/3), C40H48Cu2N12O12
  8. The crystal structure of 18-crown-6-k6O6(2,4,5-trinitroimidazol-1-ido-k1O)potassium(I)
  9. Crystal structure of poly[tetraaqua-bis(μ2-5-bromoisophthalato-κ3O,O:O)-(μ2-1,5-bis(imidazol-2-methyl)pentane-κ2N:N)dicadmium(II)] dihydrate
  10. Crystal structure of (5R,6S,E)-5-acetoxy-2-methyl-6-((2aR,3R,5aS,5bS,11aR,12aS)-2a,5a,8,8-tetramethyl-9-oxotetradecahydro-1H,12H-cyclopenta[a]cyclopropa[e]phenanthren-3-yl)hept-2-enoic acid, C32H48O5
  11. The crystal structure of poly[diaqua-bis(μ2 -thiocyanato-κ2N:O)cobalt(II) monohydrate
  12. The crystal structure of 1,3,5-tri(1H-imidazol-1-yl)benzene–2,3,5,6-tetrachlorobenzene-1,4-dicarboxylic acid (1/1)
  13. Crystal structure of dichlorido-bis(1-[(2-ethyl-benzimidazole-1-yl)methyl]-1H–benzotriazole) cadmium(II), C32H32CdN10OCl2
  14. The crystal structure of N′-(tert-butyl)-N′-(3,5-dimethylbenzoyl)-3-methoxy-N,2-dimethylbenzohydrazide, C23H30N2O3
  15. Crystal stucture of 3-benzamido-N-(2-bromo-4-(perfluoropropan-2-yl)-6-(trifluoromethyl)phenyl)-2-fluorobenzamide
  16. Crystal structure of bis(μ-benzeneselenolato)-(tetracarbonyl)-{μ-[N-(diphenylphosphanyl)-N-(3-ethynylphenyl)-P,P-diphenylphosphinous amide]} diiron, C48H35Fe2NO4P2Se2
  17. The crystal structure of 2′-(p-tolyl)-4′H-spiro[isochromane-1,1′-naphthalene]-3,4′-dione, C25H18O3
  18. The crystal structure of poly[hexaqua-tetrakis(μ4-pyridine-2,4-dicarboxylate-κ5N: O: O′: O″: O‴)-bi(μ2-pyridine-2,4-dicarboxylate-κ3N: O: O′)-digadolinium(III)tricopper (II)], [Gd2Cu3(C7H3NO4)6(H2O)6] n
  19. Crystal structure of poly[bis(4-(4-(pyridin-4-yl)phenyl)pyridin-1-ium-κ1N)-(μ4-benzene-1,2,4,5-tetracarboxylato-κ5O:O′: O″:O‴:O⁗)-(μ2-2,5-dicarboxyterephthalato-κ2O:O′)dizinc(II)], C52H32N4O16Zn2
  20. The crystal structure of 4-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 2-carboxy-6-nitrobenzoate monohydrate, C24H25FN4O10
  21. Crystal structure of dichlorido-(1-((3,5-dimethyl-2,3-dihydro-1H-1,2,3-triazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-k1N)zinc(II), C22H24ZnN12Cl2
  22. The crystal structure of (3-chlorothiophene-2-carboxylato-κ2O, O′)-(2,2′-dipyridyl-κ2N,N′)lead(II), C20H12Cl2N2O4S2Pb
  23. Synthesis and crystal structure of (Z)-4-((1-(3-fluorophenyl)-1H-1,2,3-triazol-4-yl)methylene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one, C19H14FN5O
  24. The crystal structure of the coordination compound catena-poly[(18-crown-6-ether-κ6O6)(4,5-dinitroimidazolato-κ1O)potassium(I)]
  25. Crystal structure of 7-(diethylamino)-3-(trifluoroacetyl)-2H-chromen-2-one, C15H14F3NO3
  26. Crystal structure of dichlorido-1-[(2-ethylimidazole-1-yl)methyl]-1H–benzotriazole κ1N zinc(II), C24H26ZnN10Cl2
  27. Crystal and molecular structure of 5-bromopyridine-2,3-diamine
  28. Crystal structure of catena-poly[bis(μ2-1-(3-carboxyphenyl)-5-methyl-4-oxo-1,4-dihydropyridazine-3-carboxylato-k3-O,O:O)hexaqua-dicobalt tetrahydrate], C26H36N4O20Co2
  29. Crystal structure of thiocyanate-κ1N-bis(μ1-2,6-diformyl-4-methylphenol oxime-κ2N,O)-manganese(III) acetonitrile solvate, C21H21MnN6O6S
  30. The crystal structure of pyrrolidin-1-yl pivalate, C9H13NO4
  31. The crystal structure of 2,2′-(2,2-diphenylethene-1,1-diyl)bis(1,4-dimethoxybenzene), C30H28O4
  32. Crystal structure of bis(benzyltrimethylammonium) tetrathiotungstate(VI), {(C6H5CH2)(CH3)3N}2[WS4]
  33. The crystal structure of ethyl (Z)-2-(ethoxymethylene)-3-oxobutanoate, C9H14O4
  34. The crystal structure of (E)-6-bromo-3,5-dimethyl-2-(1-phenylprop-1-en-2-yl)-3Himidazo[4,5b]pyridine, C17H16BrN3
  35. Crystal structure of (3S,3′S,4R,4′S)-3′-(furan-3-yl)-3-hydroxy-4′-methyl-3,5,6′,7′-tetrahydro-1H,3′H-4,5′-spirobi[isobenzofuran]-1,1′(4′H)-dione-methanol (1/1), C21H22O7
  36. Cocrystal structure of progesterone-isophthalic acid, C25H33O4
  37. The crystal structure of 3-(6-fluoro-1H-indol-3-yl)-1-methylquinoxalin-2(1H)-one, C17H12FN3O
  38. Crystal structure of S-(4-carboxybutyl)- l -cysteine
  39. The cocrystal of 2,2′-(hydrazine-1,1-diyl)bis(1H-imidazole-4,5-dicarbonitrile)– methanol (2/3)
  40. Crystal structure of (1′R,2′S,4′R,6′S)-4,6-dihydroxy-1′,8′,8′-trimethyl-3-(3-methylbutanoyl)-4′,8′,6′,1′,7,2′-hexahydro-1H-4′,6′-methanoxanthene-8-carbaldehyde, C23H30O5
  41. Crystal structure of (3,6-di(2-pyridyl)-4-methylphenyl pyridazine-k 2 N,N′)-bis(1-phenyl-pyrazole-κ 2 C,N) iridium(III) hexafluorophosphate, C39H29F6IrN8P
  42. Crystal structure of 1,5-bis[(E)-1-(2-hydroxyphenyl)ethylidene]thiocarbonohydrazide dimethyl sulfoxide monosolvate, C17H18N4O2S·C2H6OS
  43. Crystal structure of (S)-4-(2-(4-(2-acetyl-5-chlorophenyl)-3-methoxy-6-oxopyridazin-1(6H)-yl)-3-phenylpropanamido)benzoic acid monohydrate, C29H26ClN3O7
  44. The crystal structure of 1,3-bis(2,4-dinitro-1H-imidazol-1-yl)propane
  45. Crystal structure of 4-chlorobenzyl (S)-2-(6-methoxynaphthalen-2-yl)propanoate, C21H19ClO3
  46. Crystal structure of 1-(5-(benzo[d][1,3]dioxol-5-yl)-4-benzyl-1-(4-bromophenyl)-4,5-dihydro-1H-1,2,4-triazol-3-yl)ethan-1-one, C24H20BrN3O3
  47. The crystal structure of (Z)-3′-(2-(1-(3,4-dimethyl-phenyl)-3-methyl-5-oxo-1,5-dihydro-4H-pyrazol-4-ylidene)hydrazinyl)-2′-hydroxy-[1,1′-biphenyl]-3-carboxylicacid ─ methanol (1/1), C26H26N4O5
  48. Crystal structure of (S)-1-phenylpropan-1-aminium (S)-(1-phenylpropyl)carbamate C19H26N2O2
  49. Synthesis and crystal structure of methyl 2-((5-bromo-4-(4-cyclopropylnaphthalen-1-yl)-4H-1,2,4-triazol-3-yl)thio)acetate, C18H16BrN3O2S
  50. The crystal structure of trichlorobis(pyridine-2,6-dithio-κS-carbomethylamido)antimony(III), [SbCl3(C9H11N3S2)2]
  51. Crystal structure of 1,8-dihydroxy-3-{[(triphenylstannyl)oxy]carbonyl} anthracene-9,10-dione, C33H22O6Sn
  52. The crystal structure of (E)-4-(2-(pyridin-4-ylmethylene)hydrazine-1-carbonyl)pyridin-1-ium-2-olate dihydrate, C12H14N4O4
  53. The crystal structure of 6-amino-pyridinium-2-carboxylate, C6H6N2O2
  54. The crystal structure of catena-poly[aqua-nitrato-κ3O,O:O′′-(1,10-phenanthroline-κ2N,N)sodium(I)], C24H18N6O7Na2
  55. Retractions
  56. Retraction of: Crystal structure of bis[diaquaisonicotinatosamarium(III)]-µ-isonicotinato-[diisonicotinatocopper(II)], CuSm2(C6H4NO2)8(H2O)4
  57. Retraction of: Crystal structure of aqua(2,2-bipyridine-k 2 N:N′)(nitrato)-(4-aminobenzoato)cadmium(II) nitrate, [Cd(H2O)(NO3)(C10H8N2)(C7H7NO2)][NO3]
Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0213/html?srsltid=AfmBOooaCaDqK6c_w2LAJ_LXgi7qf6CbJlM9-dE6oVv_9qNjS8C4Q6M0
Scroll to top button