Home One-pot synthesis and crystal structure of diethyl 2,6-dimethyl-4-(1-(2-nitrophenyl)-1H-1,2,3-triazol-4-yl)-1,4-dihydropyridine-3,5-dicarboxylate, C21H23N5O6
Article Open Access

One-pot synthesis and crystal structure of diethyl 2,6-dimethyl-4-(1-(2-nitrophenyl)-1H-1,2,3-triazol-4-yl)-1,4-dihydropyridine-3,5-dicarboxylate, C21H23N5O6

  • Irina S. Konovalova ORCID logo EMAIL logo , Anna O. Geleverya , Sergiy M. Kovalenko ORCID logo and Guido J. Reiss ORCID logo
Published/Copyright: February 17, 2023

Abstract

C21H23N5O6, monoclinic, P21/c (no. 14), a = 8.4861(4) Å, b = 16.3198(8) Å, c = 15.8521(8) Å, β = 97.605(5)°, V = 2176.1(2) Å3, Z = 4, Rgt(F) = 0.0463, wRref = 0.1201, T = 293(2) K.

CCDC no.: 2235302

The molecular structure is shown in the Figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.63 × 0.54 × 0.32 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.10 mm−1
Diffractometer, scan mode: Xcalibur, ω
θmax, completeness: 25.0°, >99%
N(hkl)measured, N(hkl)unique, Rint: 29,778, 3818, 0.036
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 2949
N(param)refined: 293
Programs: Mercury [1], CrysAlisPRO [2], SHELX [3], OLEX2 [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
O1 0.6440 (2) 0.20465 (10) 0.51100 (11) 0.0604 (4)
O2 0.6922 (2) 0.22215 (9) 0.37640 (10) 0.0538 (4)
O3 0.9281 (3) 0.57937 (12) 0.34773 (13) 0.0890 (7)
O4 0.84432 (19) 0.47467 (9) 0.26377 (9) 0.0554 (4)
O5 −0.0434 (3) 0.26221 (15) 0.24160 (13) 0.0919 (7)
O6 0.2063 (3) 0.24199 (13) 0.28370 (12) 0.0848 (6)
N1 0.37061 (19) 0.36529 (10) 0.21240 (10) 0.0390 (4)
N2 0.3116 (2) 0.41618 (11) 0.26707 (11) 0.0476 (5)
N3 0.4275 (2) 0.43007 (11) 0.32897 (11) 0.0449 (4)
N4 0.6785 (2) 0.46439 (10) 0.53308 (11) 0.0446 (4)
H4 0.646872 0.490889 0.574612 0.054*
N5 0.0964 (3) 0.26364 (12) 0.23087 (12) 0.0578 (5)
C1 0.5239 (2) 0.34727 (13) 0.23982 (13) 0.0423 (5)
H1 0.591239 0.313931 0.213163 0.051*
C2 0.5593 (2) 0.38810 (11) 0.31464 (12) 0.0355 (4)
C3 0.7098 (2) 0.38624 (11) 0.37797 (12) 0.0355 (4)
H3 0.790812 0.356107 0.351943 0.043*
C4 0.7741 (2) 0.47193 (12) 0.40020 (12) 0.0393 (5)
C5 0.7506 (2) 0.50763 (12) 0.47430 (13) 0.0425 (5)
C6 0.6544 (2) 0.38147 (13) 0.52910 (12) 0.0404 (5)
C7 0.6789 (2) 0.33998 (12) 0.45773 (12) 0.0371 (4)
C8 0.6673 (2) 0.25061 (13) 0.45362 (14) 0.0427 (5)
C9 0.6987 (3) 0.13336 (15) 0.36462 (18) 0.0684 (7)
H9A 0.749437 0.108000 0.416554 0.082*
H9B 0.761792 0.120977 0.319492 0.082*
C10 0.5371 (4) 0.09942 (19) 0.3427 (2) 0.0941 (10)
H10A 0.479874 0.131375 0.297810 0.141*
H10B 0.482124 0.101117 0.391822 0.141*
H10C 0.544165 0.043714 0.324080 0.141*
C11 0.8563 (3) 0.51534 (14) 0.33784 (14) 0.0493 (5)
C12 0.9201 (3) 0.51043 (17) 0.19612 (16) 0.0653 (7)
H12A 1.034111 0.501873 0.206637 0.078*
H12B 0.899712 0.568901 0.192643 0.078*
C13 0.8523 (4) 0.46952 (18) 0.11537 (17) 0.0833 (9)
H13A 0.907559 0.487988 0.069842 0.125*
H13B 0.741518 0.482972 0.102698 0.125*
H13C 0.863976 0.411235 0.121539 0.125*
C14 0.7985 (3) 0.59301 (14) 0.50275 (16) 0.0610 (6)
H14A 0.742817 0.608542 0.549181 0.092*
H14B 0.772401 0.630429 0.456273 0.092*
H14C 0.910977 0.594568 0.520955 0.092*
C15 0.6052 (3) 0.34668 (15) 0.60914 (14) 0.0583 (6)
H15A 0.697219 0.326804 0.645021 0.088*
H15B 0.531996 0.302362 0.595096 0.088*
H15C 0.554711 0.388610 0.638546 0.088*
C16 0.2701 (2) 0.33536 (12) 0.13967 (12) 0.0379 (5)
C17 0.3067 (3) 0.35327 (14) 0.05962 (13) 0.0490 (5)
H17 0.397422 0.383429 0.053396 0.059*
C18 0.2082 (3) 0.32632 (14) −0.01152 (14) 0.0530 (6)
H18 0.235196 0.336813 −0.065469 0.064*
C19 0.0715 (3) 0.28434 (14) −0.00322 (14) 0.0490 (5)
H19 0.004420 0.268056 −0.051504 0.059*
C20 0.0327 (2) 0.26613 (13) 0.07641 (14) 0.0466 (5)
H20 −0.060421 0.237887 0.082251 0.056*
C21 0.1340 (2) 0.29036 (12) 0.14734 (12) 0.0403 (5)

Source of material

The starting compounds were obtained from commercial sources and were used without further purification. The NMR spectra were recorded on a Varian MR-400 spectrometer with standard pulse sequences operating at 400 MHz for 1H NMR, 101 MHz for 13C NMR. For the NMR spectra, DMSO-d6 was used as solvent. Chemical shift values are referenced to residual protons (δ 2.49 ppm) and carbon atoms (δ 39.6 ppm) of the solvent as an internal standard. LC/MS spectra were recorded on a ELSD Alltech 3300 liquid chromatograph equipped with a UV detector (λmax = 254 nm), API-150EX mass spectrometer and using a Zorbax SB–C18 column, Phenomenex (100 × 4 mm) Rapid Resolution HT Cartridge 4.6 × 30 mm, 1.8-Micron. Elution started with 0.1 M solution of HCOOH in water and ended with 0.1 M solution of HCOOH in acetonitrile using a linear gradient at a flow rate of 0.15 mL/min and an analysis cycle time of 25 min.

Synthesis of the title compound. The mixture of 1-(2-nitrophenyl)-1H-1,2,3-triazole-4-carbaldehyde (1 mmol, 500 mg), ethyl acetoacetate (2 mmol, 596 mg), ammonium acetate (1.5 mmol, 258 mg) was dissolved in ethanol (10 mL). The solution was refluxed for 2 h at 80 °C. After completion of the reaction, according to TLC data, the reaction mixture was cooled to room temperature. The precipitate was filtered off, washed with ethanol, and crystallized from ethanol, giving the yield of 860 mg, 85.1%. Yellow crystals, m.p. 242–243 °C, LC/MS [MH]+ 442.2. 1H NMR (400 MHz, DMSO-d6) δ 8.91 (s, 1H), 8.21–8.08 (m, 2H), 7.89 (td, J = 7.7, 1.5 Hz, 1H), 7.83–7.70 (m, 2H), 5.13 (s, 1H), 4.17–3.94 (m, 4H), 2.27 (s, 6H), 1.16 (t, J = 7.1 Hz, 6H). 13C NMR (125 MHz, DMSO-d6) δ 168.43, 151.36, 144.29, 139.44, 133.84, 129.85, 127.18, 123.05, 120.41, 89.38, 60.06, 29.03, 19.41, 14.16.

Further crystallization by slow evaporation from a solution of ethanol was carried out to provide colorless block crystals.

Experimental details

Using Olex2 [5], the structure was solved by with the ShelXT [6] structure solution program. Positions of the hydrogen atoms were located from electron density difference maps and refined by “riding” models with Uiso = nUeq of the carrier atom (n = 1.5 for methyl group and n = 1.2 for other hydrogen atoms).

Comment

Introduction

Heterocyclic compounds of the 1,4-dihydropyridine series are of interest due to the use of some 1,4-dihydropyridine derivatives (1,4-DHP), especially in medicine [7, 8]. Currently, based on 1,4-DHP, a number of drugs have been created that are used in the treatment of the cardiovascular system diseases, such as amlodipine, felodipine, nifedipine, nitrendipine, lercanidipine, normodipine, etc. [9]. Taking into account the positive experience of using antihypertensive drugs of the 1,4-DHP group in medical practice and in view of the significant range of pharmacological properties that they possess, it is advisable to expand the space of synthetically available DHP with heterocyclic substituents in position 4 of the heterocyclic system, containing both dihydropyridine and triazole cycles and which is an analogue of nifedipine in order to increase the selectivity of action and enhance the pharmacological effect.

Synthetic background

The synthesis of title compound has been carried out in one-pot multicomponent Hantzsch dihydropyridine reaction [7, 10]. The reaction was carried out at 80 °C for 2 h in ethanol by stirring 1-(2-nitrophenyl)-1H-1,2,3-triazole-4-carbaldehyde, ethyl acetoacetate, and ammonium acetate. The 1-(2-nitrophenyl)-1H-1,2,3-triazole-4-carbaldehyde was obtained from o-nitroaniline according to the method described in [5]. The product diethyl 2,6-dimethyl-4-(1-(2-nitrophenyl)-1H-1,2,3-triazol-4-yl)-1,4-dihydropyridine-3,5-dicarboxylate was crystallized from absolute ethanol with a yield of 85%.

Database survey

The diethyl 2,6-dimethyl-1,4-dihydro-3,5-pyridinedicarboxylate-1-yl fragment of the title molecule is a frequently encountered moiety in many compounds. Thus more than 100 crystal structures containing this aforementioned fragment are deposited with the CCDC [6]. On the other hand the number of reported crystal structures with N-based heterocyclic groups connected to the diethyl 2,6-dimethyl-1,4-dihydro-3,5-pyridinedicarboxylate-1-yl fragment are rare [11], [12], [13], [14]. In all cases the heterocyclic rings are almost perpendicular to the mean plane of the 1,4-dihydropyridinyl fragment. This finding is expected as the bulky ethyl ester groups in both ortho position reduce the sterical possibilities of the heterocyclic substituent. In the title structure this parameter is 87°. Finally, it is worth mentioning that for the 4-(1H-1,2,3-triazol-4-yl)-1,4-dihydropyridine, which represents the core structure of the title compound, no structure is reported by now.

Structural comment

The asymmetric unit of the title structure contains one complete molecule (see the figure). The 1,4-dihydropyridine (DHP) ring of the title compound adopts slight boat conformation (the puckering parameters [15] are S = 0.32, ϴ = 67.8°, Ψ = 5.8°), that is typical for some of the 1,4-dihydropyridine-3,5-dicarboxylate derivatives [16, 17]. Deviations of the C(3) and N(4) atoms from the mean plane of the remaining atoms of the ring are 0.28 and 0.12 Å, respectively. The carbonyl bonds of ethylcarboxylate substituents are almost coplanar with the conjugated double bonds of the DHP ring. The torsion angles C(5)–C(4)–C(11)–O(3) and C(6)–C(7)–C(8)–O(1) are 10.3(4)° and −3.9(3)°, accordingly. Such position of one of this group is stabilized by weak C(15)–H(15B)⋯O(1) intramolecular hydrogen bond (H⋯O 2.36 Å as compared with van der Waals radii sum [18] 2.45 Å, C–H⋯O 110°). The ethylcarboxylate substituents of the dihydropyridine ring adopt both the cis-orientations between the carbonyl oxygen atoms and the adjacent methyl groups with respect to the endocyclic C(4)=C(5) and C(6)=C(7) bonds. The orientations of these substituents in previously studied 1,4-dihydropyridine-3,5-dicarboxylate derivatives are found to be syn, syn or syn, anti, which is depending on the strength of steric repulsion between vicinal substituents [17, 19, 20]. The bulky substituent at the C3 atom occupies axial position (the C(6)–C(7)–C(3)–C(2) torsion angle is –101.6(2)°) and the triazole ring is significantly rotated with respect to the DHP cycle (the C(7)–C(3)–C(2)–C(1) torsion angle is −108.0(2)°). The conjugation between the triazole ring, the benzene ring and the nitro group is distorted (the C(1)–N(1)–C(16)–C(17) and C(16)–C(21)–N(5)–O(6) torsion angles are –64.4(3)° and –37.7(3)°, respectively) due to the ortho position of the nitro substituent.

In the crystal the molecules of the title compound form centrosymmetric dimers due to the N(4)–H(4)⋯N(3)′ (1 − x, 1 − y, 1 − z) hydrogen bond (H⋯N 2.16 Å, N–H⋯N′ 174°). These dimers furthermore form infinite chains along the crystallographic direction [0 1 0] via weak C(14)–H(14A)⋯N(3)′ (1 − x, 1 − y, 1 − z) (H⋯N′ 2.64 Å, N–H⋯N′ 151°) intermolecular hydrogen bonds. The neighboring chains are connected by bifurcated C(19)–H(19)⋯C(8)π′ and C(20)–H(20)⋯C(8)π′ (−1 + x, 0.5 − y, −0.5 + z) (H⋯C′ 2.88 Å, C–H⋯C′ 121°) intermolecular hydrogen bonds.


Corresponding author: Irina S. Konovalova, Scientific Research Division “Chemistry of Functional Materials”, SSI “Institute for Single Crystals” NAS of Ukraine, Nauky Ave., 60, Kharkiv, 61072, Ukraine; and Institut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany, E-mail:

  1. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The work was supported by Ministry of Education and Science of Ukraine (grant BF/32-2021, state registration number 0121U112886). This study was funded by the Ministry of Innovation, Science and Research of North–Rhine Westphalia; the German Research Foundation (DFG): Xcalibur diffractometer; INST 208/533-1, project no. 162659349.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., Wood, P. A. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Cryst., 2020, 53, 226–235.10.1107/S1600576719014092Search in Google Scholar PubMed PubMed Central

2. Oxford Diffraction. CrysAlisPRO (Version 1.171.41.93a); Oxford Diffraction Ltd.: Oxford, UK, 2020.Search in Google Scholar

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

5. Fletcher, J. T., Christensen, J. A., Villa, E. M. Tandem synthesis of 1-formyl-1,2,3-triazoles. Tetrahedron Lett. 2017, 58, 4450–4454; https://doi.org/10.1016/j.tetlet.2017.10.023.Search in Google Scholar PubMed PubMed Central

6. Groom, C. R., Bruno, I. J., Lightfoot, M. P., Ward, S. C. The Cambridge Structural Database. Acta Crystallogr. 2016, B72, 171–179; https://doi.org/10.1107/S2052520616003954.Search in Google Scholar PubMed PubMed Central

7. Silva, E. M., Varandas, P. A., Silva, A. M. Developments in the synthesis of 1,2-dihydropyridines. Synthesis 2013, 45, 3053–3089; https://doi.org/10.1055/s-0033-1338537.Search in Google Scholar

8. Velena, A., Zarkovic, N., Gall Troselj, K., Bisenieks, E., Krauze, A., Poikans, J., Duburs, G., Saso, L. 1,4-Dihydropyridine derivatives: dihydronicotinamide analogues-model compounds targeting oxidative stress. Oxid. Med. Cell. Longev. 2016, 2016, 1892412.10.1155/2016/1892412Search in Google Scholar PubMed PubMed Central

9. Ioan, P., Carosati, E., Micucci, M., Cruciani, G., Broccatelli, F. S., Zhorov, B., Chiarini, A., Budriesi, R. 1,4-Dihydropyridine scaffold in medicinal chemistry, the story so far and perspectives (Part 1): action in ion channels and GPCRs. Curr. Med. Chem. 2011, 18, 4901–4922; https://doi.org/10.2174/092986711797535173.Search in Google Scholar PubMed

10. Hantzsch, A. Ueber die Synthese pyridinartiger Verbindungen aus Acetessigäther und Aldehydammoniak. Liebigs Ann. 1882, 215, 1–82; https://doi.org/10.1002/jlac.18822150102.Search in Google Scholar

11. Novoa de Armas, H., Blaton, N., Peeters, O. M., De Ranter, C., Suarez, M., Rolando, E., Verdecia, Y., Ochoa, E., Martin, N., Quinteiro, M., Seoane, C., Soto, J. L. Experimental and theoretical structural study of 2-pyridyl- and 4-hydroxyphenyl-1,4-dihydropyridine derivatives. J. Heterocycl. Chem. 2000, 37, 1575–1581; https://doi.org/10.1002/jhet.5570370627.Search in Google Scholar

12. Sharma, M. G., Vala, R. M., Patel, D. M., Lagunes, I., Fernandes, M. X., Padrón, J. M., Ramkumar, V., Gardas, R. L., Patel, H. M. Anti-proliferative 1,4-dihydropyridine and pyridine derivatives synthesized through a catalyst-free, one-pot multi-component reaction. Chem. Select 2018, 3, 12163–12168; https://doi.org/10.1002/slct.201802537.Search in Google Scholar

13. Stumm, G., Niclas, H.-J., Winter, G., Reck, G. Synthesis and structure of quinoxaline-substituted 1,4-dihydropyridines. Arch. Pharm. 1991, 324, 971–978; https://doi.org/10.1002/ardp.2503241207.Search in Google Scholar

14. Rasheeda, K., Samshuddin, S., Swathi, P. N., Alva, V. D. P., Mague, J. T., Ramli, Y. Diethyl 4-(4-chloro-2-propyl-1H-imidazol-5-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate monohydrate. IUCrData 2018, 3, x181470; https://doi.org/10.1107/S2414314618014700.Search in Google Scholar

15. Zefirov, N. S., Palyulin, V. A., Dashevskaya, E. E. Quantitative description of ring puckering via torsional angles. The case of six-membered rings. J. Phys. Org. Chem. 1990, 3, 147–154; https://doi.org/10.1002/poc.610030304.Search in Google Scholar

16. Fun, H.-K., Goh, J. H., Reddy, P. B., Sarveswari, S., Vijayakumarb, V. Diethyl 4-(4-ethoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate. Acta Crystallogr. 2009, E65, o2247–o2248; https://doi.org/10.1107/S160053680903339X.Search in Google Scholar PubMed PubMed Central

17. Rathore, R. S., Reddy, P. B., Vijayakumar, V., Ragavan, R. V., Narasimhamurthy, T. Hantzsch 1,4-dihydropyridine esters and analogs: candidates for generating reproducible one-dimensional packing motifs. Acta Crystallogr. 2009, B65, 375–381; https://doi.org/10.1107/S0108768109004832.Search in Google Scholar PubMed

18. Zefirov, Y. V. Reduced intermolecular contacts and specific interactions in molecular crystals. Kristallografiya 1997, 42, 936–958.Search in Google Scholar

19. Steiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L., Natale, N. R. Diethyl 4-(biphenyl-4-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate. Acta Crystallogr. 2014, E70, o791–o792; https://doi.org/10.1107/S1600536814013294.Search in Google Scholar PubMed PubMed Central

20. Metcalf, S. K., Holt, E. M. Three methoxy-substituted diethyl 4-phenyl-2,6-dimethyl-1, 4-dihydropyridine-3,5-dicarboxylate compounds. Acta Crystallogr. 2000, C56, 1228–1231; https://doi.org/10.1107/S0108270100008416.Search in Google Scholar PubMed

Received: 2022-12-08
Accepted: 2023-01-10
Published Online: 2023-02-17
Published in Print: 2023-04-25

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of methyl 2-((4-chloro-2-fluoro-6-((2,2,2-trifluoroethyl) thio)phenoxy)methyl)benzoate, C17H13ClF4O3S
  4. The crystal structure of 3-hydroxy-5-oxo-4-propanoylcyclohex-3-ene-1-carboxylic monohydrate, C10H14O6
  5. Crystal structure of 2-({[5-(adamantan-2-yl)-2-sulfanylidene-1,3,4-oxadiazolidin-3-yl]methyl}amino)benzonitrile, C20H22N4OS
  6. Crystal structure of 1-(3-bromopropyl)-2-((4-chlorophenoxy)methyl)-4-methyl-1H-benzo[d]imidazole, C18H18BrClN2O
  7. Crystal structure of 2-methoxy-6-[(2-morpholin-4-yl-phenylamino)-methylene]-4-nitro-cyclohexa-2,4-dienone, C18H19N3O5
  8. The crystal structure of 2-(7-(2,3-dimethoxyphenyl)-[1,2,4]triazolo[1,5-a]-pyrimidin-5-yl)-3-methoxyphenol, C20H18N4O4
  9. The crystal structure of 3-(1-(2-(4-hydroxy-3,5-dimethoxybenzylidene)hydrazinyl)ethylidene)chroman-2,4-dione dihydrate, C20H22N2O8
  10. Crystal structure of 3,5,7-trimethoxy-3′,4′-methylenedioxy-flavone, C19H16O7
  11. The crystal structure of strictic acid, C20H26O3
  12. Crystal structure of 1,1′-(pyrazine-1,4-diyl)-bis(propan-2-one), C10H14N2O2
  13. The crystal structure of 1-(adamantan-1-yl)-3-(4-chlorophenyl)urea, C17H21ClN2O
  14. The crystal structure of (2R,6′R)-2′,7-dichloro-4,6-dimethoxy-6′-methyl-3H-spiro[benzofuran-2,1′-cyclohexan]-2′-ene-3,4′-dione, C16H14Cl2O5
  15. Synthesis and crystal structure of 1-((3R,10S,13R,17S)-3-((4-methoxyphenyl)amino)-10,13-dimethylhexadecahydro-1H-cyclopenta[α]-phenanthren-17-yl)ethan-1-one, C28H41NO2
  16. Crystal structure of N-2,6-difluorobenzoyl-N′-[1-(3-chloro-4-methyl-phenyl)-4-cyano-1H-pyrazol-5-carbamoyl]urea, C19H12ClF2N5O2
  17. Crystal structure of (−)-β-D-19-glucopiranosyl-9,15-dihydroxy kaurenoate, C26H40O9
  18. Crystal structure of 7-hydroxy-6-(2-hydroxyethyl)-2H-chromen-2-one, C11H10O4
  19. Crystal structure of S-(benzo[d]thiazol-2-yl)-N-(tert-butyl)thiohydroxylamine, C11H14N2S2
  20. Crystal structure of poly[di-µ2-aqua-aqua-nitrato-κ2O,O′-(µ3-2-nitroisophthalato-κ4O,O′:O″:O′″)barium(II)natrium(II)] monohydrate, C8H11BaN2NaO13
  21. The crystal structure of diaqua-bis(pyrazolo[1,5-a]pyrimidine-3-carboxylato-κ2 N,O)-cobalt(II) dihydrate, C14H16N6O8Co
  22. Crystal structure of (S,E)-3-((pyridin-2-ylmethylene)amino)-2-(pyridin-4-yl)-2,3- dihydroquinazolin-4(1H)-one monohydrate, C19H15N5O⋅H2O
  23. Synthesis and crystal structure of 5-(8-(((5-carboxypentyl)ammonio)methyl)-7-hydroxy-4-oxo-4H-chromen-3-yl)-2-hydroxy-3-nitrobenzenesulfonate monohydrate, C22H24N2O12S
  24. Synthesis and crystal structure of 8-bromo-3-(1H-pyrazole-1-carbonyl)-2H-chromen-2-one, C13H7BrN2O3
  25. Crystal structure of E-7-fluoro-2-(4-methoxy-3-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  26. Hydrogen bonded dimers in the crystal structure of 2-chloro-N-((3,5-dimethylphenyl)carbamoyl)-nicotinamide, C30H28Cl2N6O4
  27. Crystal structure of 3,3′-(1,4-phenylenebis(methylene))bis(1-allyl-1H-imidazol-3-ium) bis(hexafluoro phosphate)(V), C10H12F6N2P
  28. Crystal structure of (E)-7-bromo-2-(4-(4-methylpiperazin-1-yl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C22H23BrN2O
  29. Crystal structure of pentacarbonyl-(μ2-ethane-1,2-dithiolato-κ4S:S,S′:S′)-(diphenyl(o-tolyl)phosphine-κ1P)diiron (Fe–Fe), C26H21Fe2O5PS2
  30. Crystal structure of 9-(2-chloroethoxy)-4-(4-methoxy-3-(trifluoromethyl)phenyl)- 5,6-dihydrobenzo[h]quinazolin-2-amine, C22H19ClF3N3O2
  31. Crystal structure of triaqua-[5-bromo-2-(carboxylatomethoxy)benzoate-κ3 O,O′,O″]nickel(II), C9H11BrNiO8
  32. The crystal structure of 4,4′-dichloro-3,5′-diphenyl-1′H-1,3′- bipyrazole, C18H12Cl2N4
  33. The crystal structure of bis(1H-pyrazole-carboxamidine-κN,N′)bis(nitrato-κO)-copper(II), C8H12CuN10O6
  34. Synthesis and crystal structure of 3-bromo-4-phenyl-2H-chromene, C15H11BrO
  35. Crystal structure of (E)-5-(diethylamino)-2-((morpholinoimino)methyl)phenol, C15H23N3O2
  36. Crystal structure of niobium trigallide, NbGa3
  37. Crystal structure of dimethyl 4,4′-(((1R, 2R)-cyclohexane-1,2-diyl)bis(azanediyl))dibenzoate, C22H26N2O4
  38. Crystal structure of dimethyl 4,4′-((4R, 5R)-4,5-diphenylimidazolidine-1,3-diyl)dibenzoate, C31H28N2O4
  39. The crystal structure of 2-(2-bromophenyl)-4-phenylbenzo[b][1,4]oxaphosphinine 4-oxide, C20H14BrO2P
  40. The crystal structure of 3-hydroxy-2-nitroestra-1,3,5(10)-trien-17-one, C18H21NO4
  41. Crystal structure of catena-poly[[μ2-1,3-bis[(1H-imidazol-1- yl)methyl]benzene-N:N′]-(μ2–D–camphorato-O, O′: O″, O‴)cadmium(II)], C48H56Cd2N8O8
  42. Crystal structure of N-(4-bromophenyl)-4-[3-(trifluoromethyl)phenyl]-piperazine-1-carbothioamide, C18H17BrF3N3S
  43. The crystal structure of cis-Dicyano-bis(2,2′-bipyridine)k2N,N′-chromium(III) hexafluorophosphate, C22H16N6F6PCr
  44. Crystal structure of 4-((6-bromohexyl)oxy)-2-hydroxybenzaldehyde, C13H17BrO3
  45. Crystal structure of hydrazinium methanesulfonate, CH8N2O3S
  46. Crystal structure of 1-(2-iodobenzoyl)-6-methoxy-1H-indole-3-carbaldehyde, C17H12INO3
  47. Crystal structure of bis(acridinium) tetrabromidomanganate(II), C26H20Br4MnN2
  48. The crystal structure of 6,6′-((1E,1′E)-hydrazine-1,2-diylidenebis(methanylylidene)) bis(2-(tert-butyl)phenol), C22H28N2O2
  49. The crystal structure of the cocrystal di-μ2-chlorido-tetramethyl-tetraphenyl-di-μ3-oxido-dichloridotetratin(IV) – diphenyl-methyl-chloridotin(IV)(1/2), C54H58Cl6O2Sn6
  50. Crystal structure of (3a7R,13bR)-3-((1R)-1-hydroxy-1-(5-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-3a,11,11,13b-tetramethyl-2,3,3a,4,5,11,11a,12,13,13b-decahydroindeno[5′,4′:4,5] cyclohepta[1,2-c]oxepin-9(1H)-one, C30H40O5
  51. Crystal structure of 1-(4-methoxyphenyl)-2-phenoxyethan-1-one, C15H14O3
  52. Crystal structure of trans-tetrakis(3-phenylpyridine-κN)bis(thiocyanato-κN)nickel(II), C46H36N6NiS2
  53. Crystal structure of sodium catena-poly[bis(thiourea-κ1S)-tetrakis(μ2-thiourea-κ2S,S)tricopper(I)] difumarate, C14H29Cu3N12NaO8S6
  54. Crystal structure of bis(benzylamine-κ1N)-bis((E)-2-methyl-3-phenylacrylato-κ1O)copper(II), C34H36CuN2O4
  55. The crystal structure of 3,4-dihydroxybenzoic acid – 3-[7-{[2-(3,4-difluorophenyl)cyclopropyl]amino}-5-(propylsulfanyl)-3H-[1,2,3] triazolo[4,5-d]pyrimidin-3-yl]-5-(2-hydroxyethoxy)cyclopentane-1,2-diol – water (1/1/1), C30H36F2N6O9S
  56. Crystal structure of catena-poly[dipyridine-bis(pyridine-2-carboxylato-κ 2 N,O)-bis(μ 2-pyridine-2-carboxylato-κ 2 N,O)-dinickel(II)], C34H26N6Ni2O8
  57. The crystal structure of 1-((1-methyl-1H-1,2,4-triazol-3-yl) methyl)-3-(2,4,5-trifluorobenzyl)-1,3,5-triazinane-2,4,6-trione, C14H11F3N6O3
  58. Crystal structure of (E)-2-((Z)-2-((1S,4R)-3,3-dimethylbicyclo[2.2.1] heptan-2-ylidene)ethylidene)hydrazine-1-carbothioamide, C24H38N6S2
  59. Crystal structure of photochromic 3-(5-(2,5-dimethylthiophen-3-yl)-2,2,3,3,4,4-hexafluorocyclopentyl)-2-methylbenzo[b]-thiophene, C20H14F6S2
  60. Crystal structure of bis(2,5,5,7-tetramethyl-1,4-diazepane-1,4-diium) diaqua-bis(1,2-diaminopropane)copper(II) bis(μ6-oxido)tetrakis(μ3-oxido)-tetradecakis(μ2-oxido)-octaoxido-decavanadium(V) – water (1/4), C24H76CuN8V10O34
  61. Crystal structure of 1,2,3,5,13-pentamethoxy-6,7-dimethyl-1,2,3,4,4a,5,6,7,8,13b-decahydrobenzo[3′,4′]cycloocta[1′,2′:4,5]benzo[1,2-d][1,3]dioxole, C24H30O7
  62. Crystal structure of bis(6-carboxyhexyl)-4,4′-bipyridinium dibromide – 2,6-dihydroxynaphthalene (1/2), C42H46Br2N2O8
  63. Crystal structure of methyl 2-(2-chloroacetyl)-1-(4-(methoxycarbonyl)phenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b] indole-3-carboxylate, C23H21ClN2O5
  64. Crystal structure of bis(dimethylammonium) poly[{μ4-1,1ʹ-(1,4-phenylenebis(methylene))bis(1H-pyrazole-3,5-dicarboxylato)-κ6N4O2}zinc(II)], C22H26N6O8Zn
  65. Crystal structure of 2-(2-(4-methoxyphenyl)-2H-indazol-3-yl)acetonitrile, C16H13N3O
  66. Crystal structure of (E)-7-methoxy-2-(4-morpholinobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C22H23NO3
  67. The crystal structure of N′1,N′2-bis((E)-3-(tert-butyl)-2-hydroxybenzylidene)oxalohydrazide, C24H30N4O4
  68. The crystal structure of trimethyl 2,2′,2′′-(benzene-1,3,5-triyltris(oxy))triacetate, C15H18O9
  69. Crystal structure of bis(N,N-dimethylformamide-κO)-bis(pyridine-2-carboxylato-κ2N,O)-bis(μ2-pyridine-2-carboxylato-κ2N,O)-dinickel(II), C30H30N6Ni2O10
  70. Crystal structure of bis(μ2-1-pyrenecarboxylato-κ3O,O′:O′)-bis(1-pyrenecarboxylato-κ2O,O′)-(benzimidazole-κ1N)dicadmium(II), C82H48Cd2N4O8
  71. One-pot synthesis and crystal structure of diethyl 2,6-dimethyl-4-(1-(2-nitrophenyl)-1H-1,2,3-triazol-4-yl)-1,4-dihydropyridine-3,5-dicarboxylate, C21H23N5O6
  72. The crystal structure of 1-(2-fluorobenzoyl)-5-methoxy-2-methyl-1H-indole-3-carbonitrile, C18H13FN2O2
  73. Crystal structure of bis(trimethylphenylammonium) aqua-oxido-octathiotritungstate, (Me3PhN)2[W3OS8(H2O)]
  74. The crystal structure of trichlorido[N-[(2-oxyphenyl)methylidene]phenylglycinemethylester-κ3O,N,O′]-tin(IV) – methylene chloride (1/1), C16H14Cl3NO3Sn·CH2Cl2
  75. The crystal structure of furan-2,5-diylbis((4-chlorophenyl)methanol), C18H14Cl2O3
  76. The crystal structure of hexalithium decavanadate hexadecahydrate, H32Li6O44V10
  77. Crystal structure of ethyl 4-{[5-(adamantan-1-yl)-2-sulfanylidene-2,3-dihydro-1,3,4-oxadiazol-3-yl]methyl}piperazine-1-carboxylate, C20H30N4O3S
  78. Crystal structure of aqua(μ2-2,2′,2″-((nitrilo)tris(ethane-2,1-diyl(nitrilo)methylylidene))tris (6-ethoxyphenolato))(pentane-2,4-dionato-κ2O,O′)-dinickel(II), C38H48N4Ni2O9
Downloaded on 15.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0573/html?lang=en
Scroll to top button