Home The crystal structure of 1-(2-iodophenyl)-4-phenyl-1H-1,2,3-triazole, C14H10IN3
Article Open Access

The crystal structure of 1-(2-iodophenyl)-4-phenyl-1H-1,2,3-triazole, C14H10IN3

  • Ignez Caracelli EMAIL logo , Wystan K. O. Teixeira , Danilo Yano de Albuquerque , Ricardo S. Schwab and Edward R. T. Tiekink ORCID logo
Published/Copyright: September 9, 2022

Abstract

C14H10IN3, orthorhombic, P212121 (no. 19), a = 8.0778(6) Å, b = 11.1909(10) Å, c = 14.3114(12) Å, V = 1293.72(19) Å3, Z = 4, R gt (F) = 0.0312, wR ref (F 2) = 0.0790, T = 290 K.

CCDC no.: 2203679

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless irregular
Size: 0.36 × 0.22 × 0.08 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 2.46 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θ max, completeness: 26.4°, >99%
N(hkl)measured, N(hkl)unique, R int: 9322, 2639, 0.056
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 2397
N(param)refined: 163
Programs: SADABS [1], Bruker [2], SIR2014 [3], SHELX [4], WinGX/ORTEP [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.4836 (6) 0.6265 (4) 0.5549 (4) 0.0355 (11)
H1 0.407661 0.683651 0.574636 0.043*
C2 0.5744 (6) 0.6270 (4) 0.4743 (3) 0.0323 (11)
C3 0.5759 (6) 0.7139 (5) 0.3971 (3) 0.0339 (11)
C4 0.6514 (7) 0.6845 (5) 0.3119 (4) 0.0461 (13)
H4 0.703740 0.610976 0.305167 0.055*
C5 0.6486 (9) 0.7631 (7) 0.2386 (4) 0.0603 (18)
H5 0.698820 0.742408 0.182370 0.072*
C6 0.5721 (9) 0.8728 (6) 0.2473 (5) 0.0604 (18)
H6 0.569121 0.925264 0.196884 0.072*
C7 0.5001 (8) 0.9041 (6) 0.3311 (4) 0.0532 (16)
H7 0.450221 0.978492 0.337640 0.064*
C8 0.5018 (7) 0.8247 (5) 0.4060 (4) 0.0425 (13)
H8 0.452923 0.846364 0.462359 0.051*
C9 0.4663 (6) 0.4805 (4) 0.6869 (3) 0.0324 (11)
C10 0.3563 (7) 0.3857 (5) 0.6890 (3) 0.0365 (11)
C11 0.2959 (7) 0.3471 (5) 0.7747 (4) 0.0404 (12)
H11 0.221803 0.283554 0.777409 0.049*
C12 0.3459 (7) 0.4032 (5) 0.8560 (4) 0.0452 (13)
H12 0.304888 0.376979 0.913166 0.054*
C13 0.4548 (7) 0.4967 (6) 0.8535 (4) 0.0468 (14)
H13 0.487990 0.533606 0.908679 0.056*
C14 0.5150 (7) 0.5360 (5) 0.7687 (4) 0.0423 (13)
H14 0.588430 0.599949 0.766623 0.051*
N1 0.5279 (6) 0.5256 (4) 0.5996 (3) 0.0354 (10)
N2 0.6421 (6) 0.4650 (4) 0.5499 (3) 0.0512 (13)
N3 0.6709 (6) 0.5276 (4) 0.4741 (3) 0.0482 (12)
I1 0.27255 (6) 0.30037 (4) 0.56765 (3) 0.05942 (17)

Source of material

To a solution of 1-azido-2-iodobenzene (0.15 mmol, 1.0 equiv.) and phenylacetylene (0.15 mmol, 1.0 equiv.) in methanol (3 mL) was added CuF2 (60.6 mg, 0.3 mmol, 2.0 equiv.). The reaction was placed in a microwave reactor and the temperature was kept at 378 K for 30 min. The solvent was removed under vacuum and the crude product was purified by flash chromatography using silica gel (n-hexane-EtOAc, 8:2) affording the 1-(2-iodophenyl)-4-phenyl-1H-1,2,3-triazole (I). Crystals were obtained by slow evaporation from a dichloromethane solution of (I) and characterised by X-ray crystallography.

Experimental details

The carbon-bound H-atoms were placed in calculated positions (C–H = 0.93 Å) and were included in the refinement using the riding model approximation, with U iso(H) set to 1.2 U eq of the parent (C). The absolute structure was established by refinement of the Flack parameter: 0.01(2) from 933 quotients using the Parsons’ method [6].

Comment

1,2,3-Triazoles are a privileged class of heterocyclic compounds as they find applications in several major technological areas, especially in drug discovery [7]. In recent years, several synthetic strategies have been reported for the synthesis of compounds containing fused triazoles [8]. In particular, 2-iodo-phenyl-1,2,3-triazole (I) has been used as an important building block for the construction of polycyclic fused triazole heterocycles. A particularly interesting approach for the synthesis of the polycyclic triazolic core construction was reported by Kumar and co-workers [9]. In this work, the homo-condensation of two molecules of (I), via a palladium catalyzed domino coupling reaction, furnished triazolo[1,5-f] phenanthridines. Later, the same group developed a new copper-mediated, one-pot tandem synthesis of 1,2,3-triazolo-cinnolinone from (I) and terminal alkynes [10]. It was in the context of such considerations that the title compound, (I), previously reported [11], was investigated crystallographically.

The molecular structure of (I) is shown in the figure (50% displacement ellipsoids) and comprises a central triazole ring flanked by a N2-bound 2-iodo-phenyl ring and a C2-bound phenyl ring. The five-membered ring is strictly planar with maximum deviations of ±0.005(5) Å for the N3 and C2 atoms. The 2-iodo-phenyl ring forms a dihedral angle of 74.1(3)° with the triazole ring, a conformation which minimises the repulsion between the iodine atom with the central ring. The triazole ring forms a dihedral angle of 13.4(3)° with the C2-appended phenyl ring, consistent with a small twist. The dihedral angle between the phenyl rings is 64.3(3)° indicating a conrotatory relationship between the outer rings. Within the five-membered ring, there is a clear indication of considerable delocalisation of π-electron density, in particular in the shortening of the N1–N2 [1.348(6) Å], C1–N1 [1.347(7) Å] and C2–N3 [1.357(6) Å] bond lengths and the lengthening of the N2–N3 [1.313(6) Å] and C1–C2 [1.367(7) Å] bonds.

A search of the crystallographic literature for related structures did not reveal many analogues despite the preponderance of the triazole scaffold. For example, there were no direct analogues of the triazole-N2-bound 2-iodo-phenyl residue. However, when the substitution pattern of the central ring in (I) was held constant, and the C-bound group was constrained to be a phenyl ring, seven direct analogues were found where the iodine atom in the 2-position was substituted by another residue, hereafter designated as Y. Three examples of relatively simple substituents were apparent, i.e. Y = NO2 [12], C(=O)OH [13] and Ph [14] which exhibited triazole/2-YC6H4 dihedral angles of 56.06(9), 78.18(6) and 57.27(7)°, respectively. Two organoselenium examples are known, namely Y = SeC6H4OMe-2 [15] and SeC6H2Me3-2,4,6 [16], which had similar dihedral angles of 42.40(7)° and 47.57(6)°, respectively. The remaining two structures are phosphane derivatives. In the first of these, Y = PPh2 with the two molecules comprising the asymmetric-unit having triazole/2-YC6H4 dihedral angles of 44.44(6)  and 52.70(6)° [17]. A more complicated molecule is found in the last example whereby two N-bound phenyl rings are bridged in the 2-position of each by a single PPh residue [18]. The two independent dihedral angles span a large range, i.e. 47.39(6) –85.20(6)°. This last consideration suggests other factors come into play, over and above steric congestion, to dictate the magnitude of the triazole/2-YC6H4 dihedral angle in these species.

The most prominent directional interaction in the crystal of (I) is a (2-iodo-phenyl)-C–H⋯π(phenyl) contact [C11–H11⋯Cg(C3–C8)i: H11⋯Cg(C3–C8)i = 2.63 Å with angle at H11 = 148° for symmetry operation (i): 1/2 − x, 1 − y, 1/2 + z] which gives rise to a supramolecular layer in the ab-plane. The connections between layers are type II I1⋯N2 halogen bonding contacts [C10–I1⋯N2ii = 3.572(5) Å with angle at I1 = 149.88(15)° for (ii): −1/2 + x, 1/2 − y, 1 − z]. This separation is longer than the nominal van der Waals radii of 3.53 Å [19].

Further insight into the molecular packing was achieved by calculating the contributions to the Hirshfeld surface following established methods [20] and CrystalExplorer17 [21]. This analysis revealed that 92.6% of all contacts involve H atoms. However, the major contribution to the surface contacts were of the type C⋯H/H⋯C [34.2%] followed by H⋯H [28.1%], I⋯H/H⋯I [16.2%] and N⋯H/H⋯N [14.1%] contacts.


Corresponding author: Ignez Caracelli, Departmento de Física, BioMat, Universidade Federal de São Carlos, C. P. 676 13565-905 São Carlos SP, Brazil, E-mail:

Acknowledgements

The Brazilian agencies Coordination for the Improvement of Higher Education Personnel, CAPES, Finance Code 001, the National Council for Scientific and Technological Development (CNPq) and The State of São Paulo Research Foundation (FAPESP) are acknowledged for grants (433957/2018-2 and 406273/2015-4 to IC; 2013/06558-3 and 2014/50249-8 to RSS). RSS also acknowledges GlaxoSmithKline (GSK). Sunway University Sdn Bhd is thanked for support of crystallographic work through Grant No. GRTIN-RRO-56-2022. We thank Prof. Julio Zukerman–Schpector for the data collection.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The Brazilian agencies Coordination for the Improvement of Higher Education Personnel, CAPES, Finance Code 001, the National Council for Scientific and Technological Development (CNPq) and The State of São Paulo Research Foundation (FAPESP) are acknowledged for grants (433957/2018-2 and 406273/2015-4 to IC; 2013/06558-3 and 2014/50249-8 to RSS). Sunway University Sdn Bhd Grant No. GRTIN-RRO-56-2022.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Sheldrick, G. M. SADABS; University of Göttingen: Germany, 1996.Search in Google Scholar

2. Bruker. APEX2 and SAINT; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Search in Google Scholar

3. Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. Crystal structure determination and refinement via SIR2014. J. Appl. Crystallogr. 2015, 48, 306–309; https://doi.org/10.1107/s1600576715001132.Search in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with SHELX. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

6. Parsons, S., Flack, H. D., Wagner, T. Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr. 2013, B69, 249–259; https://doi.org/10.1107/s2052519213010014.Search in Google Scholar PubMed PubMed Central

7. Serafini, M., Pirali, T., Tron, G. C. Click 1,2,3-triazoles in drug discovery and development: From the flask to the clinic? In Advances in Heterocyclic Chemistry: Applications of Heterocycles in the Design of Drugs and Agricultural Products; Meanwell, N. A., Lolli, M. L., Eds. Vol. 134, 1st ed., Elsevier: London, UK, 2021; pp. 101–148.10.1016/bs.aihch.2020.10.001Search in Google Scholar

8. Majumdar, K. C., Ray, K. Synthesis of 1, 2, 3-triazole-fused heterocycles via intramolecular azide-alkyne cycloaddition reactions. Synthesis 2011, 23, 3767–3783; https://doi.org/10.1055/s-0031-1289295.Search in Google Scholar

9. Kumar, A., Shinde, S. S., Tiwari, D. K., Sridhar, B., Likhar, P. R. Palladium catalyzed domino reaction of 1,4-disubstituted 1,2,3-triazoles via double C–H functionalization: one-pot synthesis of triazolo[1,5-f]phenanthridines. RSC Adv. 2016, 6, 43638–43647; https://doi.org/10.1039/c6ra06755g.Search in Google Scholar

10. Kumar, A., Tiwari, D. K., Sridhar, B., Likhar, P. R. Unprecedented synthesis of 1,2,3-triazolo-cinnolinone via Sonogashira coupling and intramolecular cyclization. Org. Biomol. Chem. 2018, 16, 4840–4848; https://doi.org/10.1039/c8ob01152d.Search in Google Scholar PubMed

11. Meng, X., Xu, X., Gao, T., Chen, B. Zn/C-catalyzed cycloaddition of azides and aryl alkynes. Eur. J. Org. Chem. 2010, 28, 5409–5114; https://doi.org/10.1002/ejoc.201000610.Search in Google Scholar

12. Ramana, C. V., Chatterjee, S., Durugkar, K. A., Gonnade, R. G. “Click” synthesis of isomeric compounds for assessing the efficiency of the bifurcated Br⋯NO2 synthon. CrystEngComm 2009, 11, 143–150; https://doi.org/10.1039/b809985e.Search in Google Scholar

13. Sureshbabu, B., Venkatachalam, R., Sankararaman, S. Substituent effect on the formation of helical to layered hydrogen bond networks in hydroxyl and carboxyl substituted 1-aryl-1H-1,2,3-triazoles. CrystEngComm 2014, 16, 6098–6106; https://doi.org/10.1039/c4ce00738g.Search in Google Scholar

14. Chen, Z., Yan, Q., Liu, Z., Xu, Y., Zhang, Y. Copper-mediated synthesis of 1,2,3-triazoles from N-tosylhydrazones and anilines. Angew. Chem. Int. Ed. 2013, 52, 13324–13328; https://doi.org/10.1002/ange.201306416.Search in Google Scholar

15. Camargo, L. R. S., Zukerman-Schpector, J., Deobald, A. M., Braga, A. L., Tiekink, E. R. T. Crystal structure of 1-{2-[(2-methoxyphenyl)selanyl]phenyl}-4-phenyl-1H-1,2,3-triazole. Acta Crystallogr. 2015, E71, o202–o203; https://doi.org/10.1107/s2056989015003230.Search in Google Scholar PubMed PubMed Central

16. Camargo, L. R. S., Zukerman-Schpector, J., Deobald, A. M., Braga, A. L., Tiekink, E. R. T. Crystal structure of 4-phenyl-1-{2-[(2,4,6-trimethylphenyl)selanyl]phenyl}-1H-1,2,3-triazole. Acta Crystallogr. 2015, E71, o204–o205; https://doi.org/10.1107/s2056989015003229.Search in Google Scholar

17. Zhao, Y., van Nguyen, H., Male, L., Craven, P., Buckley, B. R., Fossey, J. S. Phosphino-triazole ligands for palladium-catalyzed cross-coupling. Organometallics 2018, 37, 4224–4241; https://doi.org/10.1021/acs.organomet.8b00539.Search in Google Scholar PubMed PubMed Central

18. Namdeo, P. K., Sheokand, S., Kote, B. S., Radhakrishna, L., Kunchur, H. S., Saini, P., Ramakrishnan, S., Balakrishna, M. S. RuII complexes of 1,2,3-triazole appended tertiary phosphines, [P(Ph){(o-C6H4)(1,2,3-N3C(Ph)CH}2] and [P(Ph){o-C6H4(CCH)-(1,2,3-N3-Ph)}2]: highly active catalysts for transfer hydrogenation of carbonyl/nitro compounds and for α-alkylation of ketones. Dalton Trans. 2022, 51, 6795–6808; https://doi.org/10.1039/d2dt00361a.Search in Google Scholar PubMed

19. Spek, A. L. checkCIF validation ALERTS: what they mean and how to respond. Acta Crystallogr. 2020, E76, 1–11; https://doi.org/10.1107/s2056989019016244.Search in Google Scholar

20. Tan, S. L., Jotani, M. M., Tiekink, E. R. T. Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. 2019, E75, 308–318; https://doi.org/10.1107/s2056989019001129.Search in Google Scholar

21. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D., Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011; https://doi.org/10.1107/s1600576721002910.Search in Google Scholar PubMed PubMed Central

Received: 2022-08-11
Accepted: 2022-08-26
Published Online: 2022-09-09
Published in Print: 2022-12-16

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 1,5-bis(4-chlorophenyl)-3-(3-methylphenyl)pentane- 1,5-dione, C48H40Cl4O4
  4. Crystal structure of (bis(1,10-phenanthroline-κ 2 N,N′))-(3,5-dinitrosalicylato-κ 2 O,O′)nickel(II), C31H18N6NiO7
  5. Crystal structure of {N,N′-bis(4-fluoro-salicylaldehyde)-3,6-dioxa-1,8-diaminooctane-κ4 O,N,N′,O′}zinc(II), C20H20F2N2O4Zn
  6. [5-Bromo-2-(2-(dimethylamino)ethyliminomethyl)phenolato-κ3 N,N′,O]-isothiocyanato-nickel(II), C12H14BrN3NiOS
  7. Crystal structure of 9-bromo-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin- 2-amine, C18H15BrN4O
  8. The crystal structure of imidazolium nitrate, C3H5O3N3
  9. Crystal structure of diiodido-bis(6,6′-dimethoxy-2,2′-(ethane-1,2-diylbis(nitrilomethanylylidene)) diphenolato)tricadmium(II), C36H36Cd3I2N4O8
  10. Crystal structure of [diaqua-bis(2-((1H-tetrazol-1-yl)methyl)-5-carboxy-1H-imidazole-4-carboxylato-κ2 N,O) manganese(II)] dihydrate, C14H18MnN12O12
  11. Crystal structure of Diaqua[5,5′-dicarboxy-2,2′-(propane-1,3-diyl)bis(1H-imidazole-4-carboxylato-k4 O,O′,N,N′)]iron(II), C13H14FeN4O10
  12. Crystal structure of poly[dimethanol-κ1O-(µ2-(E)-2-((2-oxidobenzylidene)amino)acetato)-(µ3-(E)-2-((2-oxidobenzylidene)amino)acetato)dicadmium(II)], C20H22Cd2N2O8
  13. Crystal structure of N 2,N 6-bis(2-(((E)-quinolin-8-ylmethylene)amino)phenyl)pyridine-2,6-dicarboxamide, C39H27N7O2
  14. An I 6 2 anion in the crystal structure of theophyllinium triiodide monohydrate, C7H11I3N4O3
  15. The crystal structure of poly[6,6′-oxybis(4-(pyridin-1-ium-1-yl)-1,3,5,2,4,6-trioxatriborinan-2-olate)], [B6O9](C5H5N)2
  16. The crystal structure of (carbonato κ2 O,O′)(2-oxopyridin-1(2H)-olato-κN)tris(trimethylphosphine)rhodium(III) water solvate, C15H33NO5P3Rh
  17. The crystal structure of dibromido-bis((RS)-2-(4-chlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)hexanenitrile-κ1 N)zinc(II), C30H34Br2Cl2N8Zn
  18. Synthesis and crystal structure of 3-(((7-hydroxy-3-(4-hydroxy-3,5-dinitrophenyl)-4-oxo-4H-chromen-8-yl)methyl)(nitroso)amino)propanoic acid, C19H14N4O11
  19. The crystal structure of 3-((4-chloro-N-(2-methoxyethyl)benzamido)methyl)phenyl methanesulfonate, C18H20ClNO5S
  20. Crystal structure of di([1,1′:3′,1″-terphenyl]-2′-yl)tellane, C36H26Te
  21. The crystal structure of diaqua-bis(pyrazolo[1,5-a]-pyrimidine-3-carboxylato-κ2 N,O)zinc(II), C14H12N6O6Zn
  22. Crystal structure of N′,N‴-((1E,2E)-1,2-diphenylethane-1,2-diylidene)bis(4-methylbenzohydrazide) – water – methanol (1/1/1), C31H32N4O4
  23. Crystal structure of 3-((2,4-dichlorobenzyl)thio)-5-methyl-7-(trifluoromethyl)-[1,2,4]triazolo [4,3-c]pyrimidine, C14H9Cl2F3N4S
  24. Crystal structure of 3,5,6,7-tetramethoxy-3′,4′-methylenedioxy-flavone, C20H18O8
  25. Crystal structure of catena-poly[(5,5′-dimethyl-2,2′-bipyridine-κ 2 N,N′)-(μ 3-hydrogen-1,1′,1″-(1,3,5-triazine-2,4,6-triyl)tris(piperidine-4-carboxylato)- κ 5 O:O,O′:O″,O‴)-cadmium(II)], C33H40CdN8O6
  26. The crystal structure of 3,5-bis(propan-2-yl)-1H-pyrazol-4-amine, C9H17N3
  27. Crystal structure of [(1,4,7,10-tetraoxacyclododecane-κ 4 O,O′,O″, O‴)-tris(nitrato-κ 2 O,O′)gadolinium(III)], C8H16N3O13Gd
  28. The crystal structure of 2,2′-((pyridine-2,6-diylbis(methylene))bis(sulfanediyl))-bis(4,5-dihydro-1H-imidazol-3-ium) bromide, C13H19Br2N5S2
  29. Crystal structure of E-2-chloro-N′-(1-(5-chloro-2-hydroxyphenyl)propylidene)benzohydrazide, C16H14Cl2N2O2
  30. Crystal structure of 3-(adamantan-1-yl)-4-methyl-5-{[(4-nitrophenyl)methyl]sulfanyl}-4H-1,2,4-triazole, C20H24N4O2S
  31. The crystal structure of dimethanol-κ1O-(5,10,15,20-tetrakis(4-nitrophenyl)porphyrin-21,23-diido-κ4 O,O′,O″,O′″)manganese(III) trans-dicyanido-κ1C-bis(acetylacetonato-κ2 O,O′)ruthenium(III), C58H46N10O14RuMn
  32. The crystal structure of nitroxyl-κ N-{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl-κN 3)borato}nickel(II), C15H13BF9N7NiO
  33. The crystal structure of [(2,2′-bipyridine-κ2 N,N)-bis(6-phenylpyridine-2-carboxylato- κ2 N,O)nickel(II)] monohydrate, C34H26N4O5Ni
  34. The crystal structure of 5-(2-fluoro-3-methoxyphenyl)-1-(2-fluoro-6-(trifluoromethyl)benzyl)-6-methylpyrimidine-2,4(1H,3H)-dione, C20H15F5N2O3
  35. The crystal structure of ethyl 2,3,5-trifluoro-4-(4-oxo-3,4-dihydropyridin-1(2H)-yl)benzoate, C14H12F3NO3
  36. [2,2′-{Ethane-1,2-diylbis[(azanylylidene)methanylylidene]}bis(3-bromo-2-hydroxyphenyl)]iron(III) nitrate, C20H12Br2CuN2O2
  37. The crystal structure of 1-(2-iodophenyl)-4-phenyl-1H-1,2,3-triazole, C14H10IN3
  38. Synthesis and crystal structure of 2-(2-oxo-2-(thiophen-2-yl)ethyl)-4H-chromen-4-one, C15H10O3S
  39. {6,6′-((1E,1′E)-((2,2-dimethylpropane-1,3-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(2-bromo-4-chlorophenolate)-κ4N,N′,O,O′}copper(II), C19H16Br2Cl2CuN2O2
  40. The crystal structure of N′-[bis(2-hydroxyphenyl)methylidene]pyridine-4-carbohydrazide, C19H15N3O3
  41. Crystal structure of 2-chloro-6-formylphenolato-κ2O,O′-(6,6′-(((2,2-dimethylpropane-1,3-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(2-chlorophenolato)κ4 N,N,O,O′)cobalt(III), C26H22Cl3CoN2O4
  42. The crystal structure of tetrakis(6-phenylpyridine-2-carboxylate-κ 2 N,O)-bis(μ2-6-phenylpyridine-2-carboxylate-κ 2 O:O′)-bis(μ2-6-phenylpyridine-2-carboxylate-κ 3N,O:O)tetralead(II) C48H32N4O8Pb2
  43. The crystal structure of 3,7-dihydroxy-9-methoxy-4a-methyl-4aH-benzo[c] chromene-2,6-dione —dichloromethane (1/1), C16H14Cl2O6
  44. The crystal structure of (Z)-6-(((5-chloro-2-hydroxyphenyl)amino)methylene)- 4-nitrocyclohexa, C13H9ClN2O4
  45. Crystal structure of dichlorido-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ1 N)zinc(II), C60H68O4N12Cl10Zn
  46. The crystal structure of 4-(2-bromoethoxy)-2-hydroxybenzaldehyde, C9H9BrO3
  47. The crystal structure of 5-azido-1-methyl-4-nitroimidazole, C4H4O2N6
  48. Crystal structure of dibromido-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II), C60H68O4N12Br2Cl8Zn
  49. Crystal structure of tetrasodium-bis(μ 2-oxido)-hexafluoro-didioxo-molybdenum(V), Na2(Mo2O4F6)
  50. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-4- hydroxybenzohydrazide-water (1/1), C14H13Cl1N2O4
  51. Crystal structure of (E)-N-(4-morpholinophenyl)-1-(quinolin-2-yl)methanimine, C20H19N3O
  52. The crystal structure of catena-poly[(1,10-phenanthroline-κ2 N,N′)-(μ3-2-hydroxybenzene-1,3-dicarboxylato-κ5 O,O′:O″,O‴:O‴)cadmium(II)], C20H12CdN2O5
  53. The crystal structure of 2,6-di-tert-butyl-4-(4-(methylthio)benzylidene)cyclohexa-2,5-dien-1-one, C22H28OS
  54. La3.65Mg30Sb1.07 as a disordered derivative of Th2Ni17-type structure
  55. Crystal structure of (E)-N-(4-morpholinophenyl)-1-(quinoxalin-2-yl)methanimine, C19H18N4O
  56. The crystal structure of 2,2′-(1,2-phenylenebis(methylene))bis(1,3-dimethylisothiouronium) bromide, C14H24Br2N4S2
  57. Crystal structure of tetraaqua-bis[4-(1H-1,2,4-triazol-1-yl)benzoato-κ1 N]zinc(II), C18H20ZnN6O8
  58. Crystal structure of bis(tricarbonyl)-{(S)-(tert-butoxycarbonyl)(1-methoxy-1-oxo-3-sulfido-k2 S:S′-propan-2-yl)amido-k2N:N′}diiron(I) (Fe—Fe), C15H15Fe2NO10S
  59. Crystal structure of (E)-3-((4-chlorophenyl)thio)-4-hydroxypent-3-en-2-one, C11H11ClO2S
  60. The crystal structure of (E)-3′,6′-bis(diethylamino)-2-((5-(diethylamino)-2-hydroxybenzylidene)amino)spiro[isoindoline-1,9′-xanthen]-3-one, C39H45N5O3
  61. The crystal structure of 2-(4-methoxynaphthalen-1-yl)-4H-chromen-4-one, C20H14O3
  62. The crystal structure of trans-dichlorido-(ethylenediamine-κ 2 N,N′)-bis(triphenylphosphine-κ 1 P)ruthenium(II), C38H38Cl2N2P2Ru
  63. The double polymeric chain of catena-poly[(μ2-6-bromopyridine-3-carboxylato-κ2 O,O′) (6-bromopyridine-3-carboxylato-κ2 O,O′) (μ2-1,2-bis(4-pyridyl)ethylene-κ2 N:N′)cobalt(II)], C24H16CoBr2N4O4
  64. The crystal structure of tert-butyl 2-(4-(12-bromo [2.2]paracyclophanyl)carbamoyl)pyrrolidine-1-carboxylate, C26H31BrN2O3
  65. The crystal structure of (Z)-2-(2,3-dimethoxybenzylidene)naphtho[1,2-b]furan-3(2H)-one, C21H16O4
  66. Crystal structure of 2-hydroxy-1-tosylindolin-3-yl- 2-naphthoate, C26H21N1S1O5
  67. The crystal structure of 1-methyl-N-(1-methyl-1H-imidazole-2-carbonyl)-1H-imidazole-2-carboxamide, C10H11N5O2
  68. The crystal structure of (E)-2-((5-bromo-2-hydroxybenzylidene)amino)-3′,6′-bis(ethylamino)-2′, 7′-dimethylspiro[isoindoline-1,9′-xanthen]-3-one, C33H31BrN4O3
  69. The crystal structure of dimethanol-5,15-diphenylporphyrin-21,23-diido-κ4 N,Nʹ,Nʺ,Nʹʺ-manganese(III) trans-dicyanido-bis(acetylacetonato-κ2O,Oʹ)ruthenium(III), C46H42N6O6RuMn
  70. Crystal structure of 1,4,8,11-tetraazacyclotetradecane-1,8-diium bis(3,5-dicarboxybenzoate), C28H36N4O12
  71. Bifurcated halogen bonds in the crystal structure of 2,2′-bi(1,8-naphthyridine)—1,4-diiodotetrafluorobenzene (1/1), C22H10F4I2N4
Downloaded on 15.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0408/html?srsltid=AfmBOoraRNVpuR-RWFXKbdVXPjx1N41Zc7QB-u1n99vWFDYeqs7hecRw
Scroll to top button