Home Physical Sciences The crystal structure of (carbonato κ2 O,O′)(2-oxopyridin-1(2H)-olato-κN)tris(trimethylphosphine)rhodium(III) water solvate, C15H33NO5P3Rh
Article Open Access

The crystal structure of (carbonato κ2 O,O′)(2-oxopyridin-1(2H)-olato-κN)tris(trimethylphosphine)rhodium(III) water solvate, C15H33NO5P3Rh

  • Mohammed A. Elmakki ORCID logo EMAIL logo , Orbett T. Alexander ORCID logo , Johan A. Venter and Andreas Roodt
Published/Copyright: September 12, 2022

Abstract

C15H33NO5P3Rh, orthorhombic, Pnma (no. 62), a = 19.8694(11) Å, b = 12.5765(7) Å, c = 8.6990(5) Å, V = 2173.8(2) Å3, Z = 1, Rgt (F) = 0.0394, wRref (F 2) = 0.0941, T = 100 K, α β γ = 90°.

CCDC No.: 2197355

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow needle
Size: 0.24 × 0.05 × 0.04 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 1.03 mm−1
Diffractometer, scan mode: Bruker APEX-II, ω
θ max, completeness: 28.0°, >99%
N(hkl)measured, N(hkl)unique, R int: 26589, 2737, 0.068
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2249
N(param)refined: 150
Programs: SHELX [1], Bruker [2], Diamond [3], Olex2 [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Rh1 0.37747 (2) 0.750000 0.73576 (4) 0.01974 (14)
P1 0.37592 (5) 0.56431 (7) 0.71743 (10) 0.0275 (2)
P2 0.38384 (6) 0.750000 0.99863 (13) 0.0232 (3)
O1 0.47939 (17) 0.750000 0.6872 (4) 0.0316 (8)
O2 0.40463 (18) 0.750000 0.5013 (4) 0.0258 (7)
O3 0.5143 (2) 0.750000 0.4409 (5) 0.0487 (11)
O4 0.2461 (2) 0.750000 0.9640 (5) 0.0583 (13)
N1 0.27323 (19) 0.750000 0.7112 (5) 0.0253 (9)
C1 0.4693 (3) 0.750000 0.5373 (6) 0.0307 (11)
C2 0.2270 (3) 0.750000 0.8272 (7) 0.0399 (13)
C3 0.1578 (3) 0.750000 0.7839 (8) 0.0478 (15)
H3 0.124276 0.750000 0.861671 0.057*
C4 0.1389 (3) 0.750000 0.6351 (8) 0.0494 (16)
H4 0.092447 0.750000 0.609052 0.059*
C5 0.1879 (3) 0.750000 0.5186 (7) 0.0437 (14)
H5 0.175334 0.750000 0.413208 0.052*
H11A 0.494 (2) 0.806 (4) 0.995 (5) 0.052*
H11B 0.482 (3) 0.750000 1.158 (8) 0.052*
H5A 0.1736 (19) 0.750000 1.095 (5) 0.052*
H5B 0.1034 (13) 0.750000 1.123 (6) 0.052*
C6 0.2533 (3) 0.750000 0.5604 (7) 0.0351 (12)
H6 0.286776 0.750000 0.482387 0.042*
C7 0.3008 (2) 0.4988 (3) 0.7879 (5) 0.0455 (10)
H7A 0.296297 0.511345 0.898588 0.068*
H7B 0.304071 0.422196 0.768522 0.068*
H7C 0.261242 0.527375 0.734588 0.068*
C8 0.4463 (2) 0.4933 (3) 0.7990 (5) 0.0418 (10)
H8A 0.488405 0.527787 0.767765 0.063*
H8B 0.445999 0.419677 0.762028 0.063*
H8C 0.442845 0.493862 0.911324 0.063*
C9 0.3781 (2) 0.5206 (3) 0.5185 (4) 0.0416 (10)
H9A 0.338962 0.549185 0.463760 0.062*
H9B 0.377004 0.442731 0.514819 0.062*
H9C 0.419442 0.546274 0.469661 0.062*
C10 0.3571 (2) 0.8606 (3) 1.1174 (4) 0.0394 (9)
H10A 0.376899 0.926568 1.078065 0.059*
H10B 0.372018 0.848951 1.223419 0.059*
H10C 0.307907 0.866033 1.114834 0.059*
C11 0.4734 (3) 0.750000 1.0402 (6) 0.0310 (11)
O5 0.1433 (2) 0.750000 1.1694 (5) 0.0446 (10)

Source of material

[Rh(opo)(CO)2] (opo = 2-oxopyridin-1-olate) was synthesized according to the method described previously [5]. [Rh(opo)(CO3)(P(CH3)3)] was synthesized by dissolving [Rh(opo)(CO)2] (0.1000 g, 0.0495 mmol) in 5 cm3 of acetone under atmospheric conditions. Trimethylphosphine (P(CH3)3), in slight excess, was added to the prepared solution with stirring. Some ice water was added dropwise to precipitate the product. Upon water addition, a few yellow needle crystals formed from the acetone/water medium.

Experimental details

The methyl, aromatic and hydroxyl H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with fixed C—H distances for aromatic C—H of 0.93 Å(C—H) [U iso (H) = 1.2 U eq], for methyl C—H of 0.96 Å(C—H) [U iso(H) = 1.5 U eq]. The graphics were obtained using the DIAMOND [3] program with 50% probability ellipsoids. The highest peak is located 1.02 Å from P2 and the deepest hole is situated 0.74 Å from Rh1 respectively. Some hydrogen atoms in the figure are omitted for clarity.

Comment

There are several essential reactions with regard to homogeneous catalysis which transitional metal (preferably PGMs) complexes can undergo, such as oxidative addition, carbonyl insertion, substitution and reductive elimination. Oxidative addition is one type of reaction that can often be identified in the mechanistic scheme of catalytic processes. Understanding of catalytic processes requires fundamental research on homogeneous catalysis and relationships between catalytic activity and the catalyst structure. One of the carbonyl ligands in the precursor [Rh(L,L–BID)(CO)2] complexes (L,L–BID = different mono-charged bidentate ligands coordinated by e.g. O,O donor atoms such as cupferrate and 2-oxopyridin-1-olate, etc.) is substituted by tertiary phosphine ligands (PR3) to form [Rh(L,L–BID)(CO)(PR3)] complexes. These complexes have been studied intensively for potential applications in catalytic hydroformylation, hydrogenation, carbonylation, and decarbonylation. In this study the complex [Rh(opo)(CO3)(P(CH3)3)] (opo = 2-oxopyridin-1-olate) has been synthesized as part of a study to gain a better understanding of the electronic and steric influence of the phosphine ligands on the oxidative addition of methyl iodide [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]. Surprisingly, an atmospheric carbon dioxide molecule was captured by the rhodium complex, which was converted to a bidentate carbonato ligand in the aqueous solution.

In the title structure, the ligands are coordinated to rhodium in a distorted octahedral geometry around the Rh centre. The evident distortion is exhibited by the small bite angle of 63.269(2)° of the four membered chelate ring as well as the O1–Rh1–O2, N1–Rh1–P2, O2–Rh1–P1, N1–Rh1–P1, P1–Rh1–P2 and P1–Rh1–P1 angles of 63.269(2), 99.081(2), 86.409(1), 88.842(2), 93.954(1) and 171.018(1)°, respectively. Surprisingly, the opo ligand is bonded monodentately via the nitrogen donor atom only, leaving the carbonato ligand as the sole bidentate coordinating entity in the structure. It is however mono-charged, since the oxygen O4 is deprotonated, balancing the charge to yield a neutral rhodium(III) species. Due to the less steric hindrance imposed by the trimethylphosphine ligands, the relative bond distance of Rh1–O1, Rh1–O2, Rh1–N1, Rh1–P1 and Rh1–P2; are 2.0684(1), 2.1104(1), 2.0824(1), 2.3411(1) and 2.2903(1) Å, respectively. There is a mirror plane which passes through the flat equatorial plane [N1–Rh–P1–O1–O2] of the structure and the trapped water solvent O5, resulting in only one half of the complex in the asymmetric unit, while the other half is symmetry generated.


Corresponding author: Mohammed A. Elmakki, Department of Chemistry, University of the Free State, 9301 Bloemfontein, South Africa, E-mail:

Funding source: South African Department of Science Innovation https://doi.org/10.13039/100016962

Funding source: Department of Science and Technology http://dx.doi.org/10.13039/100016962

Funding source: Department of Science and Innovation, Republic of South Africa http://dx.doi.org/10.13039/100016962

Funding source: Department of Science and Technology, Republic of South Africa

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors acknowledge funding under the Swiss-South Africa joint research program (SSAJRP) from the SANRF (A. Roodt: UID: 107802) as well as from the Competitive Program for Rated Researchers of the SANRF (A. Roodt: UID: 111698), from the South African Department of Science Innovation (DSI) and the Department of Science and Technology (DST) respectively, “Department of Science and Innovation, Republic of South Africa” and “Department of Science and Technology, Republic of South Africa”.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

2. Bruker. SAINT–Plus (Version 7.12) and SADABS (Version 2004/1); Bruker AXS Inc.: Madison, WI, USA, 2004.Search in Google Scholar

3. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System. 3.0c; Crystal Impact: Bonn, Germany, 2005.Search in Google Scholar

4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

5. Elmakki, M. A., Koen, R., Venter, J. A., Drost, R. Crystal structure of dicarbonyl(pyridine-2-olate-1-oxido-κ2O,O′)rhodium(I), C7H4NO4Rh. Z. Kristallogr. N. Cryst. Struct. 2016, 231, 703–705; https://doi.org/10.1515/ncrs-2015-0240.Search in Google Scholar

6. Roodt, A., Visser, H. G., Brink, A. Structure/reactivity relationships and mechanism from X-ray data and spectroscopic kinetic analysis. Crystallogr. Rev. 2011, 17, 241–280; https://doi.org/10.1080/0889311x.2011.593032.Search in Google Scholar

7. Basson, S. S., Leipoldt, J. G., Roodt, A., Venter, J. A. Crystal structure of carbonyl(N-hydroxy-N-nitrosobenzenaminato-O,Otau)- triphenylphosphinerhodium(I). Inorg. Chim. Acta 1986, 118, L45–L47; https://doi.org/10.1016/s0020-1693(00)81365-1.Search in Google Scholar

8. Basson, S. S., Leipoldt, J. G., Roodt, A., Venter, J. A. Mechanism for the oxidative addition of iodomethane to carbonyl(N-hydroxy-N- nitrosobenzenaminato-O,O′)-triarylphosphinerhodium(I) complexes and crystal structure of [Rh(cupf)(CO)(CH3)(I)(PPh3)]. Inorg. Chim. Acta 1987, 128, 31–37; https://doi.org/10.1016/s0020-1693(00)84691-5.Search in Google Scholar

9. Uguagliati, P., Deganello, G., Belluco, U. The system-dichlorotetracarbonyldirhodium-tertiary phosphines. Inorg. Chim. Acta 1974, 9, 203–207; https://doi.org/10.1016/s0020-1693(00)89906-5.Search in Google Scholar

10. Brink, A., Roodt, A., Steyl, G., Visser, H. G. Steric vs. electronic anomaly observed from iodomethane oxidative addition to tertiary phosphine modified rhodium(I) acetylacetonato complexes following progressive phenyl replacement by cyclohexyl [PR3 = PPh3, PPh2Cy, PPhCy2, PCy3]. Dalton Trans. 2010, 39, 5572–5578; https://doi.org/10.1039/b922083f.Search in Google Scholar PubMed

11. Elmakki, M. A., Koen, R., Drost, R. M., Alexander, O. T., Venter, G. J. S., Venter, J. A. Crystal structure of carbonyl (2-oxopyridin-1(2H-olato-κ2O,O′)(triphenylphosphine-κP) rhodium(I), C24H19NO3PRh. Z. Kristallogr. N. Cryst. Struct. 2016, 231, 781–783; https://doi.org/10.1515/ncrs-2015-0266.Search in Google Scholar

12. Elmakki, M. A., Alexander, O. T., Venter, G. J. S., Venter, J. A. Crystal structure of carbonyl(2-oxopyridin-1(2H-olato-κ2O,O′) (diphenylcyclohexylphosphine-κP)rhodium(I), C24H25NO3PRh. Z. Kristallogr. N. Cryst. Struct. 2017, 232, 831–833; https://doi.org/10.1515/ncrs-2017-0066.Search in Google Scholar

13. Elmakki, M. A., Alexander, O. T., Roodt, A. The crystal structure of trans-carbonyl-(diphenylcyclohexyl-phosphine-κP)iodidomethyl-(2-oxopyridin-1(2H)-olato-κ2O,O′)rhodium(III), C25H28INO3PRh. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 279–281; https://doi.org/10.1515/ncrs-2019-0602.Search in Google Scholar

14. Elmakki, M. A., Alexander, O. T., Venter, J. A., Roodt, A. Crystal structure of carbonyl(2-oxopyridin-1(2H)-olato-κ2O,O′)(triphenylarsine-κAs)rhodium(I), C24H19AsNO3Rh. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 223–225; https://doi.org/10.1515/ncrs-2020-0490.Search in Google Scholar

15. Elmakki, M. A., Alexander, O. T., Venter, J. A., Roodt, A. Crystal structure of carbonyl(2-methylquinolin-8-olato-κ2N,O)(triphenylarsine-κAs)rhodium(I), C29H23AsNO2Rh. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 215–217; https://doi.org/10.1515/ncrs-2020-0494.Search in Google Scholar

16. Elmakki, M. A. E., Alexander, O. T., Venter, G. J. S., Venter, J. A., Roodt, A. Synthesis and structural determination of [Rh(opo)(CO)(PR3)] complexes (opo- = 2-oxopyridin-1-olate) and in situ isomeric behavior from preliminary kinetic study of iodomethane oxidative addition. J. Coord. Chem. 2021, 74, 444–466; https://doi.org/10.1080/00958972.2021.1879385.Search in Google Scholar

Received: 2022-07-05
Accepted: 2022-08-11
Published Online: 2022-09-12
Published in Print: 2022-12-16

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 1,5-bis(4-chlorophenyl)-3-(3-methylphenyl)pentane- 1,5-dione, C48H40Cl4O4
  4. Crystal structure of (bis(1,10-phenanthroline-κ 2 N,N′))-(3,5-dinitrosalicylato-κ 2 O,O′)nickel(II), C31H18N6NiO7
  5. Crystal structure of {N,N′-bis(4-fluoro-salicylaldehyde)-3,6-dioxa-1,8-diaminooctane-κ4 O,N,N′,O′}zinc(II), C20H20F2N2O4Zn
  6. [5-Bromo-2-(2-(dimethylamino)ethyliminomethyl)phenolato-κ3 N,N′,O]-isothiocyanato-nickel(II), C12H14BrN3NiOS
  7. Crystal structure of 9-bromo-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin- 2-amine, C18H15BrN4O
  8. The crystal structure of imidazolium nitrate, C3H5O3N3
  9. Crystal structure of diiodido-bis(6,6′-dimethoxy-2,2′-(ethane-1,2-diylbis(nitrilomethanylylidene)) diphenolato)tricadmium(II), C36H36Cd3I2N4O8
  10. Crystal structure of [diaqua-bis(2-((1H-tetrazol-1-yl)methyl)-5-carboxy-1H-imidazole-4-carboxylato-κ2 N,O) manganese(II)] dihydrate, C14H18MnN12O12
  11. Crystal structure of Diaqua[5,5′-dicarboxy-2,2′-(propane-1,3-diyl)bis(1H-imidazole-4-carboxylato-k4 O,O′,N,N′)]iron(II), C13H14FeN4O10
  12. Crystal structure of poly[dimethanol-κ1O-(µ2-(E)-2-((2-oxidobenzylidene)amino)acetato)-(µ3-(E)-2-((2-oxidobenzylidene)amino)acetato)dicadmium(II)], C20H22Cd2N2O8
  13. Crystal structure of N 2,N 6-bis(2-(((E)-quinolin-8-ylmethylene)amino)phenyl)pyridine-2,6-dicarboxamide, C39H27N7O2
  14. An I 6 2 anion in the crystal structure of theophyllinium triiodide monohydrate, C7H11I3N4O3
  15. The crystal structure of poly[6,6′-oxybis(4-(pyridin-1-ium-1-yl)-1,3,5,2,4,6-trioxatriborinan-2-olate)], [B6O9](C5H5N)2
  16. The crystal structure of (carbonato κ2 O,O′)(2-oxopyridin-1(2H)-olato-κN)tris(trimethylphosphine)rhodium(III) water solvate, C15H33NO5P3Rh
  17. The crystal structure of dibromido-bis((RS)-2-(4-chlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)hexanenitrile-κ1 N)zinc(II), C30H34Br2Cl2N8Zn
  18. Synthesis and crystal structure of 3-(((7-hydroxy-3-(4-hydroxy-3,5-dinitrophenyl)-4-oxo-4H-chromen-8-yl)methyl)(nitroso)amino)propanoic acid, C19H14N4O11
  19. The crystal structure of 3-((4-chloro-N-(2-methoxyethyl)benzamido)methyl)phenyl methanesulfonate, C18H20ClNO5S
  20. Crystal structure of di([1,1′:3′,1″-terphenyl]-2′-yl)tellane, C36H26Te
  21. The crystal structure of diaqua-bis(pyrazolo[1,5-a]-pyrimidine-3-carboxylato-κ2 N,O)zinc(II), C14H12N6O6Zn
  22. Crystal structure of N′,N‴-((1E,2E)-1,2-diphenylethane-1,2-diylidene)bis(4-methylbenzohydrazide) – water – methanol (1/1/1), C31H32N4O4
  23. Crystal structure of 3-((2,4-dichlorobenzyl)thio)-5-methyl-7-(trifluoromethyl)-[1,2,4]triazolo [4,3-c]pyrimidine, C14H9Cl2F3N4S
  24. Crystal structure of 3,5,6,7-tetramethoxy-3′,4′-methylenedioxy-flavone, C20H18O8
  25. Crystal structure of catena-poly[(5,5′-dimethyl-2,2′-bipyridine-κ 2 N,N′)-(μ 3-hydrogen-1,1′,1″-(1,3,5-triazine-2,4,6-triyl)tris(piperidine-4-carboxylato)- κ 5 O:O,O′:O″,O‴)-cadmium(II)], C33H40CdN8O6
  26. The crystal structure of 3,5-bis(propan-2-yl)-1H-pyrazol-4-amine, C9H17N3
  27. Crystal structure of [(1,4,7,10-tetraoxacyclododecane-κ 4 O,O′,O″, O‴)-tris(nitrato-κ 2 O,O′)gadolinium(III)], C8H16N3O13Gd
  28. The crystal structure of 2,2′-((pyridine-2,6-diylbis(methylene))bis(sulfanediyl))-bis(4,5-dihydro-1H-imidazol-3-ium) bromide, C13H19Br2N5S2
  29. Crystal structure of E-2-chloro-N′-(1-(5-chloro-2-hydroxyphenyl)propylidene)benzohydrazide, C16H14Cl2N2O2
  30. Crystal structure of 3-(adamantan-1-yl)-4-methyl-5-{[(4-nitrophenyl)methyl]sulfanyl}-4H-1,2,4-triazole, C20H24N4O2S
  31. The crystal structure of dimethanol-κ1O-(5,10,15,20-tetrakis(4-nitrophenyl)porphyrin-21,23-diido-κ4 O,O′,O″,O′″)manganese(III) trans-dicyanido-κ1C-bis(acetylacetonato-κ2 O,O′)ruthenium(III), C58H46N10O14RuMn
  32. The crystal structure of nitroxyl-κ N-{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl-κN 3)borato}nickel(II), C15H13BF9N7NiO
  33. The crystal structure of [(2,2′-bipyridine-κ2 N,N)-bis(6-phenylpyridine-2-carboxylato- κ2 N,O)nickel(II)] monohydrate, C34H26N4O5Ni
  34. The crystal structure of 5-(2-fluoro-3-methoxyphenyl)-1-(2-fluoro-6-(trifluoromethyl)benzyl)-6-methylpyrimidine-2,4(1H,3H)-dione, C20H15F5N2O3
  35. The crystal structure of ethyl 2,3,5-trifluoro-4-(4-oxo-3,4-dihydropyridin-1(2H)-yl)benzoate, C14H12F3NO3
  36. [2,2′-{Ethane-1,2-diylbis[(azanylylidene)methanylylidene]}bis(3-bromo-2-hydroxyphenyl)]iron(III) nitrate, C20H12Br2CuN2O2
  37. The crystal structure of 1-(2-iodophenyl)-4-phenyl-1H-1,2,3-triazole, C14H10IN3
  38. Synthesis and crystal structure of 2-(2-oxo-2-(thiophen-2-yl)ethyl)-4H-chromen-4-one, C15H10O3S
  39. {6,6′-((1E,1′E)-((2,2-dimethylpropane-1,3-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(2-bromo-4-chlorophenolate)-κ4N,N′,O,O′}copper(II), C19H16Br2Cl2CuN2O2
  40. The crystal structure of N′-[bis(2-hydroxyphenyl)methylidene]pyridine-4-carbohydrazide, C19H15N3O3
  41. Crystal structure of 2-chloro-6-formylphenolato-κ2O,O′-(6,6′-(((2,2-dimethylpropane-1,3-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(2-chlorophenolato)κ4 N,N,O,O′)cobalt(III), C26H22Cl3CoN2O4
  42. The crystal structure of tetrakis(6-phenylpyridine-2-carboxylate-κ 2 N,O)-bis(μ2-6-phenylpyridine-2-carboxylate-κ 2 O:O′)-bis(μ2-6-phenylpyridine-2-carboxylate-κ 3N,O:O)tetralead(II) C48H32N4O8Pb2
  43. The crystal structure of 3,7-dihydroxy-9-methoxy-4a-methyl-4aH-benzo[c] chromene-2,6-dione —dichloromethane (1/1), C16H14Cl2O6
  44. The crystal structure of (Z)-6-(((5-chloro-2-hydroxyphenyl)amino)methylene)- 4-nitrocyclohexa, C13H9ClN2O4
  45. Crystal structure of dichlorido-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ1 N)zinc(II), C60H68O4N12Cl10Zn
  46. The crystal structure of 4-(2-bromoethoxy)-2-hydroxybenzaldehyde, C9H9BrO3
  47. The crystal structure of 5-azido-1-methyl-4-nitroimidazole, C4H4O2N6
  48. Crystal structure of dibromido-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II), C60H68O4N12Br2Cl8Zn
  49. Crystal structure of tetrasodium-bis(μ 2-oxido)-hexafluoro-didioxo-molybdenum(V), Na2(Mo2O4F6)
  50. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-4- hydroxybenzohydrazide-water (1/1), C14H13Cl1N2O4
  51. Crystal structure of (E)-N-(4-morpholinophenyl)-1-(quinolin-2-yl)methanimine, C20H19N3O
  52. The crystal structure of catena-poly[(1,10-phenanthroline-κ2 N,N′)-(μ3-2-hydroxybenzene-1,3-dicarboxylato-κ5 O,O′:O″,O‴:O‴)cadmium(II)], C20H12CdN2O5
  53. The crystal structure of 2,6-di-tert-butyl-4-(4-(methylthio)benzylidene)cyclohexa-2,5-dien-1-one, C22H28OS
  54. La3.65Mg30Sb1.07 as a disordered derivative of Th2Ni17-type structure
  55. Crystal structure of (E)-N-(4-morpholinophenyl)-1-(quinoxalin-2-yl)methanimine, C19H18N4O
  56. The crystal structure of 2,2′-(1,2-phenylenebis(methylene))bis(1,3-dimethylisothiouronium) bromide, C14H24Br2N4S2
  57. Crystal structure of tetraaqua-bis[4-(1H-1,2,4-triazol-1-yl)benzoato-κ1 N]zinc(II), C18H20ZnN6O8
  58. Crystal structure of bis(tricarbonyl)-{(S)-(tert-butoxycarbonyl)(1-methoxy-1-oxo-3-sulfido-k2 S:S′-propan-2-yl)amido-k2N:N′}diiron(I) (Fe—Fe), C15H15Fe2NO10S
  59. Crystal structure of (E)-3-((4-chlorophenyl)thio)-4-hydroxypent-3-en-2-one, C11H11ClO2S
  60. The crystal structure of (E)-3′,6′-bis(diethylamino)-2-((5-(diethylamino)-2-hydroxybenzylidene)amino)spiro[isoindoline-1,9′-xanthen]-3-one, C39H45N5O3
  61. The crystal structure of 2-(4-methoxynaphthalen-1-yl)-4H-chromen-4-one, C20H14O3
  62. The crystal structure of trans-dichlorido-(ethylenediamine-κ 2 N,N′)-bis(triphenylphosphine-κ 1 P)ruthenium(II), C38H38Cl2N2P2Ru
  63. The double polymeric chain of catena-poly[(μ2-6-bromopyridine-3-carboxylato-κ2 O,O′) (6-bromopyridine-3-carboxylato-κ2 O,O′) (μ2-1,2-bis(4-pyridyl)ethylene-κ2 N:N′)cobalt(II)], C24H16CoBr2N4O4
  64. The crystal structure of tert-butyl 2-(4-(12-bromo [2.2]paracyclophanyl)carbamoyl)pyrrolidine-1-carboxylate, C26H31BrN2O3
  65. The crystal structure of (Z)-2-(2,3-dimethoxybenzylidene)naphtho[1,2-b]furan-3(2H)-one, C21H16O4
  66. Crystal structure of 2-hydroxy-1-tosylindolin-3-yl- 2-naphthoate, C26H21N1S1O5
  67. The crystal structure of 1-methyl-N-(1-methyl-1H-imidazole-2-carbonyl)-1H-imidazole-2-carboxamide, C10H11N5O2
  68. The crystal structure of (E)-2-((5-bromo-2-hydroxybenzylidene)amino)-3′,6′-bis(ethylamino)-2′, 7′-dimethylspiro[isoindoline-1,9′-xanthen]-3-one, C33H31BrN4O3
  69. The crystal structure of dimethanol-5,15-diphenylporphyrin-21,23-diido-κ4 N,Nʹ,Nʺ,Nʹʺ-manganese(III) trans-dicyanido-bis(acetylacetonato-κ2O,Oʹ)ruthenium(III), C46H42N6O6RuMn
  70. Crystal structure of 1,4,8,11-tetraazacyclotetradecane-1,8-diium bis(3,5-dicarboxybenzoate), C28H36N4O12
  71. Bifurcated halogen bonds in the crystal structure of 2,2′-bi(1,8-naphthyridine)—1,4-diiodotetrafluorobenzene (1/1), C22H10F4I2N4
Downloaded on 4.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0345/html?lang=en
Scroll to top button