Home Crystal structure of dichloro-tetrakis[(E)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pent-1-en-3-ol-κN]cadmium (II), C60H74CdCl6N12O4
Article Open Access

Crystal structure of dichloro-tetrakis[(E)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pent-1-en-3-ol-κN]cadmium (II), C60H74CdCl6N12O4

  • Jian-Ping Huang , Li Cheng , Ying Huang , Xiu-Ying Song , Nian-Qian Kang and Xu-Liang Nie EMAIL logo
Published/Copyright: September 18, 2018

Abstract

C60H74CdCl6N12O4, triclinic, P1̄ (no. 2), a = 9.1036(18) Å, b = 13.197(3) Å, c = 15.035(3) Å, α = 93.716(2)°, β = 99.904(2)°, γ = 104.928(2)°, V = 1708.0(6) Å3, Z = 2, Rgt(F) = 0.0258, wRref(F2) = 0.0684, T = 296(2) K.

CCDC no.: 1864700

The crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colorless block
Size:0.22 × 0.15 × 0.12 mm
Wavelength:Mo radiation (0.71073 Å)
μ:0.61 mm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω-scans
θmax, completeness:25.5°, >99%
N(hkl)measured, N(hkl)unique, Rint:13223, 6307, 0.017
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 5840
N(param)refined:383
Programs:Bruker programs [1], SHELX [2]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Cd10.50001.00000.00000.03639(7)
Cl1−0.23120(9)1.35273(6)0.52676(5)0.0929(2)
Cl2−0.57033(10)0.52341(6)0.35450(7)0.1165(3)
Cl50.25305(5)1.01651(4)−0.11319(3)0.05589(13)
O10.05634(15)0.96609(10)0.23303(9)0.0548(3)
H1A−0.01210.97900.20210.066*
O2−0.11748(17)0.82013(11)0.01346(10)0.0579(3)
H2A−0.15160.85940.04360.087*
N10.43798(17)1.09239(13)0.11890(10)0.0481(4)
N20.47618(18)1.19795(15)0.24845(11)0.0584(4)
N30.32609(16)1.13723(12)0.22568(9)0.0429(3)
N40.34688(17)0.84504(12)0.04255(11)0.0498(4)
N50.27551(18)0.72730(14)0.13827(12)0.0584(4)
N60.14943(16)0.75439(11)0.09364(10)0.0431(3)
C10.5363(2)1.16666(18)0.18243(14)0.0599(5)
H10.64011.19390.17960.072*
C20.3067(2)1.07656(15)0.14813(12)0.0452(4)
H20.21341.02960.11870.054*
C30.21368(19)1.14558(14)0.28094(11)0.0402(4)
C40.2046(2)1.24157(15)0.30571(12)0.0467(4)
H40.27561.30280.28520.056*
C50.0963(2)1.26796(14)0.36061(12)0.0456(4)
C60.1521(3)1.33489(16)0.44079(14)0.0595(5)
H60.25851.36250.46070.071*
C70.0520(3)1.36130(17)0.49184(15)0.0668(6)
H70.09081.40600.54590.080*
C8−0.1042(3)1.32136(16)0.46234(14)0.0579(5)
C9−0.1632(3)1.25565(19)0.38311(15)0.0665(6)
H9−0.26981.22910.36330.080*
C10−0.0622(2)1.22912(19)0.33266(14)0.0619(6)
H10−0.10201.18420.27880.074*
C110.1265(2)1.04381(14)0.30922(12)0.0438(4)
H110.04291.05840.33660.053*
C120.2236(3)0.99458(17)0.37980(14)0.0612(5)
C130.3097(4)1.0798(2)0.45876(17)0.0992(10)
H13A0.35931.04840.50690.149*
H13B0.23741.11180.48070.149*
H13C0.38661.13260.43820.149*
C140.1105(4)0.9065(2)0.4146(2)0.0940(9)
H14A0.05880.85170.36560.141*
H14B0.03520.93440.43770.141*
H14C0.16630.87800.46220.141*
C150.3381(3)0.9481(2)0.33860(19)0.0858(8)
H15A0.42191.00430.32820.129*
H15B0.28580.90610.28200.129*
H15C0.37830.90470.37980.129*
C160.1960(2)0.82465(15)0.03734(13)0.0480(4)
H160.13110.8550−0.00030.058*
C170.3884(2)0.78405(16)0.10498(15)0.0581(5)
H170.49070.78250.12320.070*
C18−0.00033(19)0.71639(13)0.11715(12)0.0416(4)
C19−0.0050(2)0.67757(16)0.19598(13)0.0537(5)
H190.08840.67400.23030.064*
C20−0.1462(2)0.63927(16)0.23444(12)0.0517(5)
C21−0.2344(3)0.70590(18)0.25371(15)0.0646(6)
H21−0.20550.77570.24150.078*
C22−0.3642(3)0.67068(19)0.29060(17)0.0718(6)
H22−0.42270.71610.30340.086*
C23−0.4060(3)0.56759(18)0.30822(15)0.0671(6)
C24−0.3207(3)0.49961(18)0.29139(15)0.0659(6)
H24−0.35030.43010.30420.079*
C25−0.1896(3)0.53608(17)0.25499(14)0.0594(5)
H25−0.12990.49080.24420.071*
C26−0.1404(2)0.72063(14)0.04851(13)0.0451(4)
H26−0.22600.71410.08130.054*
C27−0.1956(2)0.63130(16)−0.03128(14)0.0548(5)
C28−0.3516(3)0.6396(2)−0.08298(19)0.0879(8)
H28A−0.33730.7060−0.10760.132*
H28B−0.42290.6350−0.04220.132*
H28C−0.39240.5831−0.13160.132*
C29−0.2193(4)0.52498(18)0.00686(18)0.0874(8)
H29A−0.25820.4690−0.04230.131*
H29B−0.29250.51940.04650.131*
H29C−0.12220.51980.04030.131*
C30−0.0832(3)0.6410(2)−0.09681(15)0.0739(6)
H30A0.01360.6325−0.06600.111*
H30B−0.06640.7093−0.11810.111*
H30C−0.12630.5873−0.14750.111*

Source of materials

The title compound was synthesized by a hydrothermal method. A mixture of (RS)-uniconazole (0.0582 g, 0.2 mmol), CdCl2 ⋅ H2O (0.029 g, 0.1 mmol), ethanol (5 mL) and distilled water (5 mL) was sealed in a Teflon-lined stainless reactor (25 mL) and heated at 90 °C for 72 h, and then cooled to room temperature. The colorless block crystals were filtered and washed with water and ethanol. Yield 80% (based on CdCl2). Elemental Anal. Calcd. (%) for C60H72Cl6CdN6O4 (1350.41): C, 53.29; H, 5.52; N, 12.43. Found (%): C, 52.93; H, 5.55; N, 12.35. IR(KBr, cm−1): 3414.61, 3165.77, 3141.55, 2956.36, 2872.20, 1593.48, 1514.70, 1491.70, 1428.50, 1399.96, 1361.07, 1235.70, 1217.83, 1198.95, 1188.90, 1131.48, 1091.88, 1070.57, 1056.01, 1014.64, 988.28, 976.80, 885.51, 875.02, 845.0, 823.68, 786.30, 705.28, 695.16, 671.12, 648.54, 522.55.

Experimental details

All H atoms were included in calculated positions and refined as riding atoms, with C—H = 0.90–0.97 Å with Uiso(H) = 1.5 Ueq(C) for methyl H atoms and 1.2 Ueq(C) for all other H atoms.

Comment

Uniconazole, [(E)-(RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pent-1-en-3-ol] is a highly active fungicide and plant growth regulator with low toxicity. It inhibits the biosynthesis of gibberellin and shows excellent efficacy biological activity and is widely used to protect crops, such as rice, wheat, soybean, peanut, rapeseed, apple [3], [4], [5], [6], [7], [8], [9], [10]. Because of its strong antimicrobial activities and its wide applications, the synthesis and applications of triazole pesticides and its derivatives have attracted much attention, but the complexes of triazole pesticides are still rare [11]. We still focused on the synthesis and antibacterial activities of complexes assembled by triazole fungicides. We have already reported a series of crystal structures and antibacterial activities of diniconazole complexes [12], [13], [14], [15], [16], [17], [18]. In order to study the antimicrobial activities of triazole fungicides complexes more systematically and comprehensively, to find new antibactericidal complexes with the efficiency, broad-spectrum and low toxicity. Herein we report the synthesis and crystal structure of a new cadmium(II) complex incorporating uniconazole.

The asymmetric unit of the title compound, [Cd(C15H18ClN3O)4Cl2], consists of one half of the title complex. The Cd atom lies on an inversion center and has a slightly distorted octahedral geometry. The equatorial positions are occupied by four N atoms from four uniconazole ligands. The axial sites are occupied by two chlorido ligands (cf. the figure). The Cd—N distances are 2.3281(15) and 2.3541(15) Å and Cd—Cl is 2.6424(6) Å. In the crystal packing, intermolecular O—H⋯Cl hydrogen bonds link the molecules into chains along the a axis. The structure of the title compound is isostructural to previously reported zinc(II) complex [18].

Acknowledgements

X-ray data were collected at Instrumental Analysis Center Nanchang Hangkong University, Nanchang 330063, People’s Republic of China. This work was supported by the Research Foundation of Educational Department of Jiangxi Province [GJJ170274, 160382] and the the Research Foundation of company [9131206709].

References

Bruker. APEX2, SAINT and SADABS. Brucker AXS Inc., Madison, WI, USA (2009).Search in Google Scholar

Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

Monhamed, M. A.; Mostafa, A. S.; Hayam, M. L.: Determination of tetraconazole and diniconazole fungicide residues in tomatoes and green beans by capillary gas chromatography. Yakugaku Zasshi. 127 (2007) 993–999.10.1248/yakushi.127.993Search in Google Scholar PubMed

Huang, X. G.; Zhao, A. J.; Liu, X. G.; Zhou, D. H.; Zeng, P.: Environmental protection in the process of production of diniconazole. Acta Agric. Univ. Jiangxiensis 25 (2003) 277–288.Search in Google Scholar

Fletcher, R. A.; Hofstra, G.: Improvement of uniconazole-induced protection in wheat seedlings. J. Plant Growth Regul. 9 (1990) 207–212.10.1007/BF02041964Search in Google Scholar

Zhou, W. J.; Leul, M.: Uniconazole-induced alleviation of freezing injury in relation to changes in hormonal balance, enzyme activities and lipid peroxidation in winter rape. Plant Growth Regul. 26 (1998) 41–47.10.1023/A:1006004921265Search in Google Scholar

Zhang, M. C.; Duan, L. S.; Tian, X. L.; He, Z. P.; Li, J. M.; Wang, B. M.; Li, Z. H.: Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. J. Plant Physiol. 164 (2007) 709–717.10.1016/j.jplph.2006.04.008Search in Google Scholar PubMed

Izumi, K.; Yamaguchi, I.; Wada, A.; Oshio, H.; Takahashi, N.: Effects of a new plant growth retardant (E)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-1-penten-3-ol (S-3307) on the growth and gibberellin content of rice plants. Plant Cell Physiol. 25 (1984) 611–617.Search in Google Scholar

Zeng, X. C.; Liu, C. F.; Chen, S. K.: Studies on the mechanism of PP333 and S-3307 on the stress resistance promotion of rice seedlings. Acta Agric. Univ. Jiangxiensis 15 (1994) 288–291.Search in Google Scholar

Wen, Y.; Su, S. C.; Ma, L. Y.; Wang, X. N.; Yang, S. Y.: Effects of different concentrations of paclobutrazol on flower bud differentiation and fruit quality in camellia oleifera. Acta Agric. Univ. Jiangxiensis. 37 (2015) 1027–1032.Search in Google Scholar

Zou, Y. H.; Li, Q. W.; Lin, T.; Lan, S. S.; Liu, H. C.: Dynamics of paclobutrazol residues and their effects on physiological characters of tomato. Acta Agric. Univ. Jiangxiensis 38 (2016) 124–127.Search in Google Scholar

Xiong, Z. Q.; Chen, J. Z.; Wen, S. H.; Nie, X. L.: Diniconazole. Acta Crystallogr. E66 (2010) o3278–o3278.10.1107/S160053681004804XSearch in Google Scholar PubMed PubMed Central

Xiong, Z. Q.; Song, X. Y.; Nie, X. L.: Dichlorido-tetrakis(diniconazole)cobalt(II). Acta Crystallogr. E67 (2011) m1213–m1213.10.1107/S160053681103128XSearch in Google Scholar PubMed PubMed Central

Liu, C. X.; Song, X. Y.; Liu, Q.; Nie, X. L.: Dichlorido-tetrakis(diniconazole)nikle(II). Acta Crystallogr. E67 (2011) m1214–m1214.10.1107/S1600536811031291Search in Google Scholar PubMed PubMed Central

Nie, X. L.; Xiong, H.; Tu, Y. G.; Huang, C. G.: Synthesis and crystal structures of complexes of copper, silver assembled by diniconazole. Chin. J. Inorg. Chem. 28 (2012) 2593–2596.Search in Google Scholar

Hu, C. Y.; Nie, X. L.; Xiong, H.; Huang, C. G.: Synthesis, crystal structures and antibacterial activities of two complexes of copper assembled by triazole pesticides ligands. Chin. J. Inorg. Chem. 30 (2014) 621–626.Search in Google Scholar

Hu, C. Y.; Wen, S. H.; Nie, X. L.; Shang-Guan, X. C.: Synthesis, crystal structures and antibacterial activities of diniconazole complexes. Acta Agric. Univ. Jiangxiensis 37 (2015) 73–78.Search in Google Scholar

Nie, X. L.; Song, X. Y.; Huang, C. G.; Gong, L.; Shang-Guan, X. C.: Synthesis and crystal structures of complexes of zinc, silver, copper assembled by uniconazole. J. Chem. Crystallogr. 47 (2017) 120–127.10.1007/s10870-017-0688-9Search in Google Scholar

Received: 2018-07-12
Accepted: 2018-08-30
Published Online: 2018-09-18
Published in Print: 2018-12-19

©2018 Jian-Ping Huang et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Articles in the same Issue

  1. Cover and Frontmatter
  2. Crystal structure of bis(6,6′-((ethane-1,2-diylbis(azanylylidene))bis(methanylylidene))bis(2,4-diiodophenolato)-κ4N,N′,O,O′)cer(IV), C32H20CeI8N4O4
  3. Crystal structure of (6,6′-((ethane-1,2-diylbis(azanylylidene))bis(methanylylidene))bis(2-chlorophenolato-κ2N,O))copper(II), C16H12Cl2CuN2O2
  4. Crystal structure of poly[aqua-(μ3-4-(pyridin-4-yl)isophthalato-κ4O,O′:O′′:O′′′)-(μ2-5-carboxy-2-(pyridin-4-yl)benzoato-κ2O:O′)samarium(III)], C26H18N2O9Sm
  5. Crystal structure of 1-{4-[(2-hydroxy-5-nitrobenzylidene)amino]phenyl}ethanone O-methyl oxime, C16H15N3O4
  6. Synthesis and crystal structure of bis(μ2-acetato-κ2O:O′)-bis(μ2-1-(8-(2-oxidophenyl)-3,6-dioxa-2,7-diazaocta-1,7-dien-1-yl)naphthalen-2-olato-κ6O:O,N,N′,O′:O′)trizinc(II), C44H38Zn3N4O12
  7. Synthesis and crystal structure of bis(μ2-acetato-κ2O:O′)–bis(μ2–(8-(2-oxidophenyl)-3,6-dioxa-2,7-diazaocta-1,7-dien-1-yl)naphthalen-2-olato-κ6O:O,N,N′,O′:O′)tricobalt(II), C44H38Co3N4O12
  8. Crystal structure of poly[aqua(μ4-2,2′,2′′-nitrilotriacetato-κ6O1,O3,O5:O2:O4:O6)-yttrium(III)], C6H8NO7Y
  9. Crystal structure of catena-poly[bromido-(μ2-pyrazine-2-carboxylato-κ3N:N′,O)copper(II)], C10H6N4Cu2O4Br
  10. Crystal structure of poly[dodekais(μ2-2,6-difluorobenzoato-κ2O:O′)-bis((μ3-hexamethylenetetramine-κ3N:N′:N′′)hexacopper(II)], C48H30N4O12F12Cu3
  11. Crystal structure of methyl 4-(4-hydroxy-3-nitrophenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C18H18N2O6
  12. Crystal structure of N-phenyl-2-(propan-2-ylidene)hydrazine-1-carbothioamide, C10H13N3S
  13. Crystal structure of sodium caesium zinc phosphate, NaCsZnP2O7
  14. Crystal structure of methyl 4-(4-isopropylphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro-quinoline-3-carboxylate, C23H29NO3
  15. Crystal structure of catena-poly[bis(μ2-1,3-di(4H-1,2,4-triazol-4-yl)benzene-κ2N:N′)-bis(thiocyanato-κ1N)cobalt(II), C22H16CoN14S2
  16. Crystal structure of catena-poly[(μ2-2,5-di(pyridin-3-yl)-1,3,4-thiadiazole-κ2N:N′)-bis(2,5-di(pyridin-3-yl)-1,3,4-thiadiazole-κ1N)-bis(thiocyanato-κ1N)cobalt(II)], C38H24CoN14S5
  17. Crystal structure of bis(2,5-di(pyridin-2-yl)-1,3,4-thiadiazole-κ2N,N′)-bis(thiocyanato-κ1N)cobalt(II), C26H16CoN10S4
  18. Crystal structure of (bis((1H-benzo[d]imidazol2-yl)methyl)amine-κ3N,N′,N′′)-(pyridine-2,6-dicarboxylato-κ3N,O,O′)zinc(II) — methanol — water (1/2/1), C25H28N6O7Zn
  19. Crystal structure of catena-poly[triaqua-(μ2-5-methoxy-isophthalato-κ2O:O′)copper(II)], C9H12CuO8
  20. Structure and photochromism of 1-[2-methyl-5-phenyl-3-thienyl]-2-[2-methyl-5-(4-chlorophenyl)-3-thienyl]3,3,4,4,5,5-hexafluorocyclopent-1-ene, C27H16ClF6S2
  21. Crystal structure of methyl 4-(3-phenoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C26H27NO4
  22. Crystal structure of poly[diaqua-di-μ2-hydroxido-(μ4-3,4,5,6-tetrafluoro-1,2-phthalato-κ4O:O′:O′′:O′′′)-(μ4-3,4,5,6-tetrafluoro-1,2-phthalato-κ5O,O:O′:O′′:O′′′)disamarium(III)] – bipyridine (2/1), C21H11NF16O12Sm2
  23. Crystal structural of diethyl 4-(3,5-dibromo-4-hydroxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate, C19H21Br2NO5
  24. Crystal structure of catena-poly[tetraaqua(μ2-4-(1H-imidazol-1-yl)pyridine-κ2N:N′))zinc(II)] thiophene-2,5-dicarboxylate, C14H17N3O8ZnS
  25. Crystal structure of (20S)-20-(dimethylamino)-3-(tigloylamino)-5α-pregn-2,16-dien-4-one, C28H42N2O2
  26. Crystal structure of rac-trans-N,N′-bis(3,5-diiodosalicylidene)-1,2-cyclohexanediamine, C20H18I4N2O2
  27. Crystal structure of 2-bromo-7-(4-(dimethylamino)phenyl)-10-methylacridin-9 (10H)-one, C22H19BrN2O
  28. Crystal structure of catena-poly[(μ2-pentane-1,5-dicarboxylato-κ2O:O′)-(μ2-2-[(1H-imidazol-1-yl)methyl]-6-methyl-1H-benzimidazole-κ2N:N′)zinc(II)] sesquihydrate, C17H21N4O5.5Zn
  29. Crystal structure of ethyl 2-amino-4-(3,4-difluorophenyl)-5-oxo-4H,5H-pyrano[3,2-c] chromene-3-carboxylate, C21H15F2NO5
  30. Crystal structure of 9-(5-methylthiophen-2-yl)-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione, C18H18O3S
  31. Crystal structure of [5,5′-((propane-1,3-diylbis(azanylylidene))bis(ethan-1-yl-2-ylidene))bis(3-(ethoxycarbonyl)-2,4-dimethylpyrrol-1-ido)-κ4N,N′,N′′,N′′′]nickel(II), C23H30N4O4Ni
  32. Crystal structure of (Z)-2-(2-(1,3-dioxo-1-(phenylamino)butan-2-ylidene)hydrazineyl) terephthalic acid-dimethylsulfoxide (1/1), C18H15N3O6 ⋅ C2H6OS
  33. Crystal structure of (2E,4Z)-dimethyl 4-((phenylamino)methylene)pent-2-enedioate, C14H15N1O4
  34. Crystal structure of (2Z,2′Z)-1,1′-(pyridine-2,6-diyl) bis(3-hydroxy-3-phenylprop-2-en-1-one), C23H17NO4
  35. Crystal structure of ethyl 2-amino-4-(3-bromophenyl)-5-oxo-4H,5H-pyrano[3,2-c]chromene-3-carboxylate, C21H16BrNO5
  36. Crystal structure of bis(μ2-3,5-dichloro-2-oxidobenzoato-κ4O,O′:O′,O′′)-hexakis(μ2-pivalato-κ2O:O′)-bis(pivalato-κ2O,O′)-tetrakis(1,10-phenanthroline-κ2N,N′)tetragadolinium(III), C102H108Cl4Gd4N8O22
  37. Crystal structure of catena-poly[aqua-bis(formato-κ1O)-(μ2-1,1′-(oxybis(1,4-phenylene))-bis(1H-1,2,4-triazole)-κ2N:N′)copper(II)]hydrate, C18H16CuN6O6
  38. Crystal structure of 5-bromo-2-(naphthalen-6-yl)pyridine, C15H10BrN
  39. Crystal structure of N-(4-methoxybenzyl)pyridazin-3-amine- a rare Z′ = 4 structure, C12H13N3O
  40. Crystal structure of bis(perchlorato-κ1O)-bis(3,4,5-trimethoxy-N-(pyridin-2-yl)benzamide-κ2N,O)copper(II), C32H30Cl2CuN4O16
  41. Crystal structure of methyl 4-methyl-2,5-di(pyridin-4-yl)-1H-pyrrole-3-carboxylate monohydrate C17H15N3O2⋅H2O
  42. Crystal structure of dimethyl 5-(10-(methoxycarbonyl)anthracen-9-yl) isophthalate,C26H20O6
  43. Crystal structure of tert-butyl (R)-(1-(benzylamino)-3-methoxy-1-oxopropan-2-yl)carbamate, C16H24N2O4
  44. Crystal structure of aqua-bis(1,5-dimethyl-2-phenyl-4-(((E)-4-pyridylmethylene)amino)pyrazolidin-3-one-κN)-(nitrato-κO)-(nitrato-κ2O,O′)zinc(II), C34H34N10O9Zn
  45. Crystal structure of catena-poly[dichlorido-(μ2-1,5-dimethyl-2-phenyl-4-((pyridin-4-ylmethylene)amino)-1,2-dihydro-3H-pyrazol-3-one-κ2N:O)cobalt(II)] – methanol (1/1), C18H20Cl2CoN4O2
  46. Crystal structure of poly[diaqua-bis(μ2-1-(4-(1H-imidazol-1-yl)benzyl)-1H-1,2,4-triazole-κ2N:N′)manganese(II)]bis(2-carboxybenzoate) dihydrate, MnC40H40N10O12
  47. The crystal structure of 4-((3,4-dichlorobenzylidene)amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one, C18H15Cl2N3O
  48. Crystal structure of bis(2-methoxy-6-((2-(pyrimidin-2-yl)hydrazono)methyl)phenolato-κ3N,N′,O)iron(III) perchlorate, C24H22N8O8ClFe
  49. The crystal structure of 2-[4-hydroxy-3-methoxyphenyl]-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl, C14H19N2O4
  50. Crystal structure of diaqua-bis(3,3-dimethylacrylato-κ2O,O′)zinc(II), C10H18ZnO6
  51. Crystal structure of dichloro-tetrakis[(E)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pent-1-en-3-ol-κN]cadmium (II), C60H74CdCl6N12O4
  52. Crystal structure of (20R)-20,25-epoxy-dammaran-3,12-dione, C30H48O3
  53. Crystal structure of (E)-3′,6′-bis(ethylamino)-2′,7′-dimethyl-2-((pyridin-2-ylmethylene)amino)spiro[isoindoline-1,9′-xanthen]-3-one, C32H31N5O2
  54. The crystal structure of 2-(4-fluorophenyl)-1,3,4-oxadiazole, C8H5FN2O
  55. Crystal structure of (2,2′-bipyridine-κ2N,N′)bis(tri(p-tolyl)phosphine-κP)copper(I) tetrafluoroborate – 4,4′-bipyridine (2/1), C57H54BCuF4N3P2
  56. The crystal structure of 2,6-dimethyl-3,5-dinitrocyclohexa-2,5-diene-1,4-dione, C8H6N2O6
  57. The crystal structure of 2,3-dimethyl-1,4-dinitrobenzene – a Z′ = 4 structure, C8H8N2O4
  58. Crystal structure of [(1,2-η)-1,2,3,4,5-pentamethyl-cyclopenta-2,4-dien-1-yl] (1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-κ6N2,O4) rubidium (I), [Rb(diaza-18-crown-6)]Cp*, C22H41N2O4Rb
  59. Crystal structure of 2-(4-fluorophenyl)-N-phenyl-2-(phenylamino)ethanesulfonamide – toluene (1/0.5), C23.5H23FN2O2S
  60. Crystal structure of pyrene-4-aldehyde, C17H10O
  61. Crystal structure of 2-(furan-2-yl)-5-methyl-1,3-dioxane-5-carboxylic acid, C10H12O5
  62. Crystal structure of 2-(4-chlorophenyl)-3-phenyl-1,8-naphthyridine, C20H13N2Cl
  63. Crystal structure and photochromism of 1-(2-ethyl-5-formylthiophen-3yl)-2-(2-cyano-1,5-dimethyl-4-pyrrl)-3,3,4,4,5,5-hexafluorocyclopent-1-ene, C19H14F6N2OS
  64. Crystal structure of 2-(4-bromophenyl)-1,3-dimethyl-1H-perimidin-3-ium iodide, C19H16BrIN2
  65. Crystal structure of 2-(4-(dimethylamino)phenyl)-10-methylacridin-9(10H)-one, C22H20N2O
  66. Crystal structure of 4-(acetoxymethyl)-6-(3-acetyl-3-(4-fluorophenyl)thioureido)cyclohex-4-ene-1,2,3-triyl triacetate, C24H26FN2O9S
Downloaded on 11.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2018-0236/html
Scroll to top button