Startseite Simulation of Heat Transfer in Laser Transmission Welding
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Simulation of Heat Transfer in Laser Transmission Welding

  • R. Prabhakaran , M. Kontopoulou , G. Zak , P. J. Bates und V. Sidiropoulos
Veröffentlicht/Copyright: 3. März 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A numerical simulation of the heat transfer during laser transmission welding is presented. A finite difference approach was used to solve the one-dimensional unsteady-state heat conduction problem and to investigate the effect of welding conditions on the time-dependent temperature profiles for PA 6. For the needs of the simulation, the process was divided into heating and heat redistribution periods. The absorption coefficient of the laser-transparent part was measured experimentally and that of the laser-absorbing part was fitted using experimental data. The predicted temperature profiles were combined with experimental meltdown data to estimate the heat-affected zone thickness in the welded specimens. Good agreement was found between the estimated and measured heat-affected zone thickness values.


P. J. Bates, Dept. of Chemistry and Chemical Eng., Royal Military College of Canada, PO Box 17000 Stn. Forces Kingston, ON Canada, K7K 7B4


References

1 Wu, C. Y.: Assembly, Nov., p. 48 (2000)Suche in Google Scholar

2 Bryden, B.: Assembly Automation 20, Feb., p. 136 (2000)10.1108/01445150010321760Suche in Google Scholar

3 Weber, A.: Assembly, Jan., p. 34 (2002)10.1111/1467-8330.00253Suche in Google Scholar

4 Jones, I.: Engineering Technology, Oct., p. 17 (1999)10.1023/A:1009634706576Suche in Google Scholar

5 Kagan, V.: Proceedings SAE 2002 World Congress, paper 2002-01-0716 (2002)Suche in Google Scholar

6 Prabhakaran, R.: Master’s Thesis, Queen’s University, Kingston, Canada (2003)Suche in Google Scholar

7 Becker, F., Potente, H.: Poly. Eng. Sci. 42, p. 36 (2002)10.1002/pen.10954Suche in Google Scholar

8 Sato, K., Kurosaki, Y., Saito, T., Satoh, I.: Proceedings of SPIE. 4637, p. 528 (2002)10.1117/12.470662Suche in Google Scholar

9 Jones, I. A., Taylor, N. S., Sallavanti, R., Griffiths, J.: SPE ANTEC Tech. Papers, p. 1160 (2000)Suche in Google Scholar

10 Kennish, Y. C., Shercliff, H. R., McGrath, G. C.: SPE ANTEC Tech. Papers (2002)Suche in Google Scholar

11 Grewell, D., Benatar, A.: SPE ANTEC Tech. Papers, p. 1045 (2003)Suche in Google Scholar

12 Kohan, M. I.: Nylon Plastics Handbook. Hanser, New York (1995)Suche in Google Scholar

13 Macdonald, J.: Master’s Thesis, Royal Military College of Canada, Kingston, Canada (2001)Suche in Google Scholar

14 Vetter, J., Montagne, F. D., Ehrenstein, G. W.: SPE ANTEC Tech. Papers, p. 1191 (2000)Suche in Google Scholar

15 Holman, J. P.: Heat Transfer. McGraw Hill, New York (2002)Suche in Google Scholar

16 Prabhakaran, R., Bates, P. J., Kontopoulou, M., Zak, G., Baylis, B.: SPE ANTEC Tech. Papers (2004)Suche in Google Scholar

Received: 2005-01-29
Accepted: 2005-06-28
Published Online: 2022-03-03

© 2005 Hanser Publishers, Munich

Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2005-0069/pdf?lang=de
Button zum nach oben scrollen