Startseite 3D Finite Element Simulation of Processing of Generalized Newtonian Fluids in Counter-rotating and Tangential TSE and Die Combination
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

3D Finite Element Simulation of Processing of Generalized Newtonian Fluids in Counter-rotating and Tangential TSE and Die Combination

  • M. Malik und D. M. Kalyon
Veröffentlicht/Copyright: 3. März 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A full three-dimensional finite element analysis of the nonisothermal flow of generalized non-Newtonian fluids in counter-rotating tangential twin screw extruder is presented. Previous studies of the simulation of processing in tangential twin screw extruders have focused solely on the twin screw extruder, whereas here the coupled flow and heat transfer occurring in the integrated geometry of the extruder, connected to a die are considered. The FEM based numerical simulation of the coupled momentum-mass-energy conservation equations allowed the determination of the effects of some of the important system parameters, including the power law index and the staggering angle of the screws, on the pumping and pressurization capability of the extruder and the associated degree of fill in the extruder.


D. M. Kalyon, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030


Acknowledgements

We thank Mr. Tugrulbey Kiryaman of SIT, for his help and input at various stages of this work and to Material Processing & Research, Inc. of Hackensack, NJ for their financial assistance.

References

1 White, J. L.: Twin Screw Extrusion: Technology and Principles. Hanser Publishers, Munich (1990)Suche in Google Scholar

2 White, J. L., Potente, H. (Eds.): Screw Extrusion. Hanser Publishers, Munich (2001)10.3139/9783446434189.fmSuche in Google Scholar

3 U.S. Patent 2 441 222 (1948), Fuller, L. J.10.1136/bmj.2.4573.441-aSuche in Google Scholar

4 U.S. Patent 2 515 199 (1952), Fuller, L. J.10.1136/bmj.2.4782.515-cSuche in Google Scholar

5 Kaplan, A., Tadmor, Z.: Polym. Eng. Sci. 14, p. 58 (1974)10.1002/pen.760140110Suche in Google Scholar

6 Nichols, R. J.: SPE ANTEC Tech. Papers 29, p. 130 (1983)Suche in Google Scholar

7 Nichols, R. J.: SPE ANTEC Tech. Papers 30, p. 6 (1984)Suche in Google Scholar

8 Jerman, R. E.: SPE ANTEC Tech. Papers 32, p. 995 (1986)10.1016/0022-1910(86)90149-6Suche in Google Scholar

9 Nguyen, K., Lindt, J.: SPE ANTEC Tech. Papers 34, p. 93 (1988)Suche in Google Scholar

10 Nguyen, K., Lindt, J.: Polym. Eng. Sci. 29, p. 709 (1989)10.1002/pen.760291103Suche in Google Scholar

11 Bigio, D., Zerafati, S.: SPE ANTEC Tech. Papers 34, p. 85 (1988)Suche in Google Scholar

12 Tadmor, Z., Broyer, E., Gutfinger, C.: Polym. Eng. Sci. 14, p. 660 (1974)10.1002/pen.760140913Suche in Google Scholar

13 Kim, M. H., Szydlowski, W., White, J. L., Min, K.: Adv. Polym. Technol. 9, p. 87 (1989)10.1002/adv.1989.060090109Suche in Google Scholar

14 Kim, M. H., White, J. L.: SPE ANTEC Tech. Papers 35, p. 49 (1989)Suche in Google Scholar

15 Kim, M. H., White, J. L.: Int. Polym. Process. 5, p. 201 (1990)10.3139/217.900201Suche in Google Scholar

16 Kim, M. H., White, J. L.: J. Non-Newt. Fluid Mech. 37, p. 37 (1990)10.1016/0377-0257(90)80003-ISuche in Google Scholar

17 Bang, D.-S., White, J. L.: SPE ANTEC Tech. Papers 39, p. 2763 (1993)Suche in Google Scholar

18 Bang, D.-S., White, J. L.: Int. Polym. Process. 11, p. 109 (1996)10.3139/217.960109Suche in Google Scholar

19 Bang, D.-S., White, J. L.: Int. Polym. Process. 12, p. 278 (1997)10.3139/217.970278Suche in Google Scholar

20 Ishikawa, T., Kihara, S.-I., Funatsu, K.: Polym. Eng. Sci. 40, p. 365 (2000)10.1002/pen.11170Suche in Google Scholar

21 Lawal, A., Railkar, S., Kalyon, D. M.: Int. Polym. Process. 12, 123 (1997)10.3139/217.970123Suche in Google Scholar

22 Kalyon D. M., Sangani, H.: Polym. Eng. Sci., 29 1018–1026 (1989)10.1002/pen.760291508Suche in Google Scholar

23 Mudalamane, R., Bigio, D. I., Tomayko, D. C., Meissel, M.: Polym. Eng. Sci. 43, p. 1466 (2003)10.1002/pen.10124Suche in Google Scholar

24 Reddy, J. N., Gartling, D. K.: The Finite Element Method in Heat Transfer and Fluid Dynamics. CRC Press, Boca Raton (1994)Suche in Google Scholar

25 Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley, New York (2003)10.1002/0470013826Suche in Google Scholar

26 Brooks, A. N., Hughes, T. J. R.: Comput. Methods Appl. Mech. Eng. 32, p. 199 (1982)10.1016/0045-7825(82)90071-8Suche in Google Scholar

27 Yu, C. C., Heinrich, J. C.: Int. J. Numer. Methods Eng. 24, p. 2201 (1987)10.1002/nme.1620241112Suche in Google Scholar

28 Gotsis, A. D., Ji. Z., Kalyon, D. M.: SPE ANTEC Tech. Papers 36, p. 139 (1990)Suche in Google Scholar

29 Ji, Z., Gotsis, A. D., Kalyon, D. M.: SPE ANTEC Tech. Papers 36, p. 160 (1990)Suche in Google Scholar

30 Lawal, A., Kalyon, D. M.: Numer. Heat Transfer, Pt. A. 26, p. 103 (1994)10.1080/10407789408955983Suche in Google Scholar

Received: 2005-01-27
Accepted: 2005-07-22
Published Online: 2022-03-03

© 2005 Hanser Publishers, Munich

Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2005-0068/html
Button zum nach oben scrollen