Study on the magnetic properties and critical behavior of CoFe2−xAl x O4 (x = 1.0 and 1.2) spinel ferrite
-
Zonghao Song
and Ganhong Zheng
Abstract
We have examined the behavior of CoFe2−xAl x O4 (x = 1.0 and 1.2) ferrite close to the transition from ferromagnetic to paramagnetic phases (TC). The findings indicate that at a temperature of TC = 314 K (x = 1.0) and TC = 224 K (x = 1.2), there is a second order magnetic phase transition. We used various methods, including modified Arrott plot, Kouvel–Fisher method, and critical isotherm analysis, to determine the critical exponents which were found to be similar to those expected for the Tricritical Mean-field model (β = 0.288, γ = 1.057, and δ = 4.665) for the x = 1.0 sample. The critical exponents for the x = 1.2 sample (β = 0.771, γ = 1.081, and δ = 2.403) belonged to a different universality class. These results suggest that the replacement of Fe ions with non-magnetic Al ions decreases the Co–Fe, Fe–Fe, Co–Co interaction sites in the CoFe2O4 spinel ferrite, increasing magnetic disorder.
-
Research ethics: Not applicable.
-
Author contributions: Zonghao Song: manuscript composition, Ruiyang Cao: experimental design, ChenLiang Ruan: carrying out measurements, Xian Zhang: carrying out measurements, Shouguo Wang: carrying out measurements, Meiling Wang: carrying out measurements, Yongqing Ma: conception, Ganhong Zheng: conception.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: This work was supported by the National Key Research and Development Program of China (No. 2021YFA1600203) and the National Natural Science Foundation of China (Grant no. U19A2093), the Key Projects of Natural Science Research of Higher Education Institutions of Anhui Province (KJ2021A0975), and the Open Fund for Discipline Construction, Institute of Physical Science and Information Technology, Anhui University. Anhui Province University Excellent Talents Support Program (Grant No. gxyq2022069).
-
Data availability: Not applicable.
References
1. Henchiri, C.; Mnasri, T.; Benali, A.; Hamdi, R.; Dhahri, E.; Valente, M. A.; Costa, B. O. F. RSC Adv. 2020, 10 (14), 8352–8363. https://doi.org/10.1039/C9RA10469K.Search in Google Scholar PubMed PubMed Central
2. Kumar, Y.; Sharma, A.; Shirage, P. M. J. Alloys Compd. 2019, 778 (25), 398–409. https://doi.org/10.1016/j.jallcom.2018.11.128.Search in Google Scholar
3. Elayakumar, K.; Dinesh, A.; Manikandan, A.; Palanivelu, M.; Kavitha, G.; Prakash, S.; Kumar, R. T.; Jaganathan, S. K.; Baykal, A. J. Magn. 2019, 476 (15), 157–165. https://doi.org/10.1016/j.jmmm.2018.09.089.Search in Google Scholar
4. Ojha, V. H.; Kant, K. M. Phys. B 2019, 567 (15), 87–94. https://doi.org/10.1016/j.physb.2019.04.035.Search in Google Scholar
5. Ansari, S. M.; Ghosh, K. C.; Devan, R. S.; Sen, D.; Sastry, P. U.; Kolekar, Y. D.; Ramana, C. V. ACS Omega 2020, 5 (31), 19315–19330. https://doi.org/10.1021/acsomega.9b02492.Search in Google Scholar PubMed PubMed Central
6. Sharifianjazi, F.; Moradi, M.; Parvin, N.; Nemati, A.; Rad, A. J.; Sheysi, N.; Abouchenari, A.; Mohammadi, A.; Karbasi, S.; Ahmadi, Z.; Esmaeilkhanian, A.; Irani, M.; Pakseresht, A.; Sahmani, S.; Asl, M. S. Ceram. Int. 2020, 46 (11), 18391–18412. https://doi.org/10.1016/j.ceramint.2020.04.202.Search in Google Scholar
7. Oh, Y.; Sahu, M.; Hajra, S.; Padhan, A. M.; Panda, S.; Kim, H. J. J. Electron. Mater. 2022, 51, 1933–1939. https://doi.org/10.1007/s11664-022-09551-5.Search in Google Scholar
8. Lin, Q.; He, Y.; Xu, J.; Lin, J.; Guo, Z.; Yang, F. Nanomaterials 2018, 8 (10), 750. https://doi.org/10.3390/nano8100750.Search in Google Scholar PubMed PubMed Central
9. Cao, D.; Pan, L.; Li, J.; Cheng, X.; Zhao, Z.; Xu, J.; Li, Q.; Wang, X.; Li, S.; Wang, J.; Liu, Q. Sci. Rep. 2018, 8, 7916. https://doi.org/10.1038/s41598-018-26341-4.Search in Google Scholar PubMed PubMed Central
10. Nethala, G. P.; Tadi, R.; Gajula, G. R.; Madduri, P. V. P.; Anupama, A. V.; Veeraiah, V. Mater. Chem. Phys. 2019, 238, 121903. https://doi.org/10.1016/j.matchemphys.2019.121903.Search in Google Scholar
11. Monisha, P.; Priyadharshini, P.; Gomathi, S. S.; Pushpanathan, K. J. Alloys Compd. 2021, 856, 157447. https://doi.org/10.1016/j.jallcom.2020.157447.Search in Google Scholar
12. Mariosi, F. R.; Venturini, J.; Viegas, A. C.; Bergmann, C. P. Ceram. Int. 2020, 46 (3), 2772–2779. https://doi.org/10.1016/j.ceramint.2019.09.266.Search in Google Scholar
13. Anantharamaiah, P. N.; Joy, P. A. Phys. B 2019, 554, 107–113. https://doi.org/10.1016/j.physb.2018.11.031.Search in Google Scholar
14. Heiba, Z. K.; Mohamed, M. B.; Wahba, A. M.; Almalowi, M. I. Appl. Phys. A 2018, 124, 290. https://doi.org/10.1007/s00339-018-1721-3.Search in Google Scholar
15. Anantharamaiah, P. N.; Joy, P. A. J. Phys. D: Appl. Phys. 2017, 50 (43), 435005. https://doi.org/10.1088/1361-6463/aa8af6.Search in Google Scholar
16. Yang, H.; Liu, M.; Lin, Y.; Yang, Y. J. Alloys Compd. 2015, 631, 335–339. https://doi.org/10.1016/j.jallcom.2015.01.012.Search in Google Scholar
17. Divya, S.; Sivaprakash, P.; Raja, S.; Muthu, S. E.; Kim, I.; Renuka, N.; Arumugam, S.; Oh, T. H. Ceram. Int. 2022, 48 (22), 33208–33218. https://doi.org/10.1016/j.ceramint.2022.07.263.Search in Google Scholar
18. Niu, P.; Li, C.; Wang, D.; Jia, C.; Zhao, J.; Liu, Z.; Zhang, X.; Geng, L. Appl. Surf. Sci. 2022, 605, 154732. https://doi.org/10.1016/j.apsusc.2022.154732.Search in Google Scholar
19. Zhou, C.; Zhang, A.; Chang, T.; Chen, Y.; Zhang, Y.; Tian, F.; Zuo, W.; Ren, Y.; Song, X.; Yang, S. Materials 2019, 12 (10), 1685. https://doi.org/10.3390/ma12101685.Search in Google Scholar PubMed PubMed Central
20. Pandit, R.; Sharma, K. K.; Kaur, P.; Kotnala, R. K.; Shah, J.; Kumar, R. J. Phys. Chem. Solids 2014, 75 (4), 558–569. https://doi.org/10.1016/j.jpcs.2013.12.015.Search in Google Scholar
21. Abbas, N.; Rubab, N.; Sadiq, N.; Manzoor, S.; Khan, M. I.; Garcia, J. F.; Aragao, I. B.; Tariq, M.; Akhtar, Z.; Yasmin, G. Water 2020, 12 (8), 2285. https://doi.org/10.3390/w12082285.Search in Google Scholar
22. Novosel, N.; Pajic, D.; Raghavender, A. T.; Zadro, K.; Jadhav, K. M. J. Phys.: Conf. Ser. 2010, 200, 072070. https://doi.org/10.1088/1742-6596/200/7/072070.Search in Google Scholar
23. Boukili, A. E.; Mounkachi, O.; Hamedoun, M.; Lachkar, P.; Hlil, E. K.; Benyoussef, A.; Balli, M.; Ez-Zahraouy, H. J. Alloys Compd. 2021, 859, 158392. https://doi.org/10.1016/j.jallcom.2020.158392.Search in Google Scholar
24. Jha, R.; Singh, S. K.; Kumar, A.; Awana, V. S. P. J. Magn. Magn. Mater. 2012, 324 (18), 2849–2853. https://doi.org/10.1016/j.jmmm.2012.04.026.Search in Google Scholar
25. Maatar, S. C.; M’nassri, R.; Koubaa, W. C.; Koubaa, M.; Cheikhrouhou, A. J. Solid State Chem. 2015, 225, 83–88. https://doi.org/10.1016/j.jssc.2014.12.007.Search in Google Scholar
26. Koubaa, M.; Cheikhrouhou-Koubaa, W.; Cheikhrouhou, A. J. Phys. Chem. Solids 2009, 70 (2), 326–333. https://doi.org/10.1016/j.jpcs.2008.10.028.Search in Google Scholar
27. Olmos, R.; Delgado, J. A.; Iturriaga, H.; Martinez, L. M.; Saiz, C. L.; Shao, L.; Liu, Y.; Petrovic, C.; Singamaneni, S. R. J. Appl. Phys. 2021, 130 (1), 013902. https://doi.org/10.1063/5.0056387.Search in Google Scholar
28. Henchiri, C.; Omari, L. H.; Mnasri, T.; Benali, A.; Dhahri, E.; Valente, M. A. J. Alloys Compd. 2022, 905, 164196. https://doi.org/10.1016/j.jallcom.2022.164196.Search in Google Scholar
29. Liu, Y.; Koch, R. J.; Hu, Z.; Aryal, N.; Stavitski, E.; Tong, X.; Attenkofer, K.; Bozin, E. S.; Yin, W.; Petrovic, C. Phys. Rev. B 2020, 102, 085158. https://doi.org/10.1103/PhysRevB.102.085158.Search in Google Scholar
30. Han, L.; Zhai, W.; Bai, B.; Zhu, H.; Yang, J.; Yan, Z.; Zhang, T. Ceram. Int. 2019, 45 (11), 14322–14326. https://doi.org/10.1016/j.ceramint.2019.04.146.Search in Google Scholar
31. Hcini, S.; Kouki, N.; Omri, A.; Dhahri, A.; Bouazizi, M. L. J. Magn. Magn. Mater. 2018, 464, 91–102. https://doi.org/10.1016/j.jmmm.2018.05.045.Search in Google Scholar
32. Pan, L.; Wang, Y.; Yin, L.; Zhang, M.; Li, Y.; Townsend, P. D.; Poelman, D. J. Lumin. 2023, 258, 119822. https://doi.org/10.1016/j.jlumin.2023.119822.Search in Google Scholar
33. Shannon, R. D.; Prewitt, C. T. Acta Crystallogr. Sect. B 1969, 25, 925–946. https://doi.org/10.1107/S0567740869003220.Search in Google Scholar
34. Xu, S. T.; Ma, Y. Q.; Zheng, G. H.; Dai, Z. X. Nanoscale 2015, 7 (15), 6520–6526. https://doi.org/10.1039/C5NR00582E.Search in Google Scholar PubMed
35. Henchiri, C.; Hamdi, R.; Mnasri, T.; Valente, M. A.; Prezas, P. R.; Dhahri, E. Appl. Phys. A 2019, 125, 725. https://doi.org/10.1007/s00339-019-2980-3.Search in Google Scholar
36. Nasri, M.; Triki, M.; Dhahri, E.; Hussein, M.; Lachkar, P.; Hlil, E. K. Phys. B 2013, 408, 104–109. https://doi.org/10.1016/j.physb.2012.09.003.Search in Google Scholar
37. Henchiri, C.; Benali, A.; Mnasri, T.; Valente, M. A.; Dhahri, E. J. Supercond. Nov. Magnetism 2020, 33, 1143–1149. https://doi.org/10.1007/s10948-019-05316-0.Search in Google Scholar
38. Oumezzine, E.; Hcini, S.; Baazaoui, M.; Hlil, E. K.; Oumezzine, M. J. Alloys Compd. 2016, 656, 676–684. https://doi.org/10.1016/j.jallcom.2015.09.269.Search in Google Scholar
39. Arrott, A. Phys. Rev. 1957, 108 (6), 1394. https://doi.org/10.1103/PhysRev.108.1394.Search in Google Scholar
40. Shin, H. S.; Lee, J. E.; Nam, Y. S.; Ju, H. L.; Park, C. W. Solid State Commun. 2001, 118 (7), 377–380. https://doi.org/10.1016/S0038-1098(01)00123-5.Search in Google Scholar
41. Henchiri, C.; Mnasri, T.; Benali, A.; Dhahri, E.; Valente, M. A. Chem. Phys. Lett. 2021, 769, 138422. https://doi.org/10.1016/j.cplett.2021.138422.Search in Google Scholar
42. Kaul, S. N. J. Magn. Magn. Mater. 1985, 53 (1–2), 5–53. https://doi.org/10.1016/0304-8853(85)90128-3.Search in Google Scholar
43. Arrott, A.; Noakes, J. E. Phys. Rev. Lett. 1967, 19 (14), 786. https://doi.org/10.1103/PhysRevLett.19.786.Search in Google Scholar
44. Widom, B. J. Chem. Phys. 1965, 43 (11), 3892–3897. https://doi.org/10.1063/1.1696617.Search in Google Scholar
45. Phan, M. H.; Morales, M. B.; Bingham, N. S.; Srikanth, H.; Zhang, C. L.; Cheong, S. W. Phys. Rev. B 2010, 81 (9), 094413. https://doi.org/10.1103/PhysRevB.81.094413.Search in Google Scholar
46. Kouki, N.; Hcini, S.; Boudard, M.; Aldawas, R.; Dhahri, A. RSC Adv. 2019, 9 (4), 1990–2001. https://doi.org/10.1039/C8RA09113G.Search in Google Scholar
47. Haug, M.; Fähnle, M.; Kronmüller, H.; Haberey, F. Phys. Status Solidi B 1987, 144 (1), 411. https://doi.org/10.1002/pssb.2221440136.Search in Google Scholar
48. Haug, M.; Fähnle, M.; Kronmüller, H.; Haberey, F. J. Magn. Magn. Mater. 1987, 69 (2), 163–170. https://doi.org/10.1016/0304-8853(87)90113-2.Search in Google Scholar
49. Nasri, M.; Henchiri, C.; Dhahri, R.; Khelifi, J.; Dhahri, E.; Mariano, J. F. M. L. Inorg. Chem. Commun. 2021, 133, 108933. https://doi.org/10.1016/j.inoche.2021.108933.Search in Google Scholar
50. Lin, S.; Lv, H. Y.; Lin, J. C.; Huang, Y. N.; Zhang, L.; Song, W. H.; Tong, P.; Lu, W. J.; Sun, Y. P. Phys. Rev. B 2018, 98 (1), 014412. https://doi.org/10.1103/PhysRevB.98.014412.Search in Google Scholar
51. Han, H.; Zhang, L.; Sapkota, D.; Hao, N.; Ling, L.; Du, H.; Pi, L.; Zhang, C.; Mandrus, D. G.; Zhang, Y. Phys. Rev. B 2017, 96 (9), 094439. https://doi.org/10.1103/PhysRevB.96.094439.Search in Google Scholar
52. Ghosh, K.; Lobb, C. J.; Greene, R. L.; Karabashev, S. G.; Shulyatev, D. A.; Arsenov, A. A.; Mukovskii, Y. Phys. Rev. Lett. 1998, 81 (21), 4740. https://doi.org/10.1103/PhysRevLett.81.4740.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Polarizabilities and emission cross-sections of lanthanide laser crystals
- Wet-chemical synthesis and luminescence studies of nano-crystalline gadolinium gallium garnet
- Synthesis of carbon nanotube–iron oxide and silver nanocomposites as photocatalyst in removing carcinogenic aromatic dyes
- Influence of annealing temperature on the structure, morphology, optical property and antibacterial response of phytochemicals-assisted synthesized zinc oxide nanoparticles
- Study on the magnetic properties and critical behavior of CoFe2−xAl x O4 (x = 1.0 and 1.2) spinel ferrite
- Experimental study on selected properties and microstructure of pine-based wood ceramics
- Muga (Antheraea assamensis) silk electrospun scaffold for biomedical applications
- First-principles calculations of the mechanical properties of Mg2Si intermetallic via ternary elements doping
- Effects of Zr additions and process annealing on mechanical and corrosion properties of AA5383 Al–Mg alloys
- Study on the effect of LuCl3 doping on the characteristics of titanium alloy micro-arc oxidation coatings
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Polarizabilities and emission cross-sections of lanthanide laser crystals
- Wet-chemical synthesis and luminescence studies of nano-crystalline gadolinium gallium garnet
- Synthesis of carbon nanotube–iron oxide and silver nanocomposites as photocatalyst in removing carcinogenic aromatic dyes
- Influence of annealing temperature on the structure, morphology, optical property and antibacterial response of phytochemicals-assisted synthesized zinc oxide nanoparticles
- Study on the magnetic properties and critical behavior of CoFe2−xAl x O4 (x = 1.0 and 1.2) spinel ferrite
- Experimental study on selected properties and microstructure of pine-based wood ceramics
- Muga (Antheraea assamensis) silk electrospun scaffold for biomedical applications
- First-principles calculations of the mechanical properties of Mg2Si intermetallic via ternary elements doping
- Effects of Zr additions and process annealing on mechanical and corrosion properties of AA5383 Al–Mg alloys
- Study on the effect of LuCl3 doping on the characteristics of titanium alloy micro-arc oxidation coatings
- News
- DGM – Deutsche Gesellschaft für Materialkunde