Home Study on the magnetic properties and critical behavior of CoFe2−xAl x O4 (x = 1.0 and 1.2) spinel ferrite
Article
Licensed
Unlicensed Requires Authentication

Study on the magnetic properties and critical behavior of CoFe2−xAl x O4 (x = 1.0 and 1.2) spinel ferrite

  • Zonghao Song , Ruiyang Cao , ChenLiang Ruan , Xian Zhang , Shouguo Wang , Meiling Wang , Yongqing Ma EMAIL logo and Ganhong Zheng ORCID logo EMAIL logo
Published/Copyright: July 25, 2024
Become an author with De Gruyter Brill

Abstract

We have examined the behavior of CoFe2−xAl x O4 (x = 1.0 and 1.2) ferrite close to the transition from ferromagnetic to paramagnetic phases (TC). The findings indicate that at a temperature of TC = 314 K (x = 1.0) and TC = 224 K (x = 1.2), there is a second order magnetic phase transition. We used various methods, including modified Arrott plot, Kouvel–Fisher method, and critical isotherm analysis, to determine the critical exponents which were found to be similar to those expected for the Tricritical Mean-field model (β = 0.288, γ = 1.057, and δ = 4.665) for the x = 1.0 sample. The critical exponents for the x = 1.2 sample (β = 0.771, γ = 1.081, and δ = 2.403) belonged to a different universality class. These results suggest that the replacement of Fe ions with non-magnetic Al ions decreases the Co–Fe, Fe–Fe, Co–Co interaction sites in the CoFe2O4 spinel ferrite, increasing magnetic disorder.


Corresponding authors: Yongqing Ma and Ganhong Zheng, Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei 230601, People’s Republic of China, E-mail: (Y. Ma), (G. Zheng)

  1. Research ethics: Not applicable.

  2. Author contributions: Zonghao Song: manuscript composition, Ruiyang Cao: experimental design, ChenLiang Ruan: carrying out measurements, Xian Zhang: carrying out measurements, Shouguo Wang: carrying out measurements, Meiling Wang: carrying out measurements, Yongqing Ma: conception, Ganhong Zheng: conception.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This work was supported by the National Key Research and Development Program of China (No. 2021YFA1600203) and the National Natural Science Foundation of China (Grant no. U19A2093), the Key Projects of Natural Science Research of Higher Education Institutions of Anhui Province (KJ2021A0975), and the Open Fund for Discipline Construction, Institute of Physical Science and Information Technology, Anhui University. Anhui Province University Excellent Talents Support Program (Grant No. gxyq2022069).

  5. Data availability: Not applicable.

References

1. Henchiri, C.; Mnasri, T.; Benali, A.; Hamdi, R.; Dhahri, E.; Valente, M. A.; Costa, B. O. F. RSC Adv. 2020, 10 (14), 8352–8363. https://doi.org/10.1039/C9RA10469K.Search in Google Scholar PubMed PubMed Central

2. Kumar, Y.; Sharma, A.; Shirage, P. M. J. Alloys Compd. 2019, 778 (25), 398–409. https://doi.org/10.1016/j.jallcom.2018.11.128.Search in Google Scholar

3. Elayakumar, K.; Dinesh, A.; Manikandan, A.; Palanivelu, M.; Kavitha, G.; Prakash, S.; Kumar, R. T.; Jaganathan, S. K.; Baykal, A. J. Magn. 2019, 476 (15), 157–165. https://doi.org/10.1016/j.jmmm.2018.09.089.Search in Google Scholar

4. Ojha, V. H.; Kant, K. M. Phys. B 2019, 567 (15), 87–94. https://doi.org/10.1016/j.physb.2019.04.035.Search in Google Scholar

5. Ansari, S. M.; Ghosh, K. C.; Devan, R. S.; Sen, D.; Sastry, P. U.; Kolekar, Y. D.; Ramana, C. V. ACS Omega 2020, 5 (31), 19315–19330. https://doi.org/10.1021/acsomega.9b02492.Search in Google Scholar PubMed PubMed Central

6. Sharifianjazi, F.; Moradi, M.; Parvin, N.; Nemati, A.; Rad, A. J.; Sheysi, N.; Abouchenari, A.; Mohammadi, A.; Karbasi, S.; Ahmadi, Z.; Esmaeilkhanian, A.; Irani, M.; Pakseresht, A.; Sahmani, S.; Asl, M. S. Ceram. Int. 2020, 46 (11), 18391–18412. https://doi.org/10.1016/j.ceramint.2020.04.202.Search in Google Scholar

7. Oh, Y.; Sahu, M.; Hajra, S.; Padhan, A. M.; Panda, S.; Kim, H. J. J. Electron. Mater. 2022, 51, 1933–1939. https://doi.org/10.1007/s11664-022-09551-5.Search in Google Scholar

8. Lin, Q.; He, Y.; Xu, J.; Lin, J.; Guo, Z.; Yang, F. Nanomaterials 2018, 8 (10), 750. https://doi.org/10.3390/nano8100750.Search in Google Scholar PubMed PubMed Central

9. Cao, D.; Pan, L.; Li, J.; Cheng, X.; Zhao, Z.; Xu, J.; Li, Q.; Wang, X.; Li, S.; Wang, J.; Liu, Q. Sci. Rep. 2018, 8, 7916. https://doi.org/10.1038/s41598-018-26341-4.Search in Google Scholar PubMed PubMed Central

10. Nethala, G. P.; Tadi, R.; Gajula, G. R.; Madduri, P. V. P.; Anupama, A. V.; Veeraiah, V. Mater. Chem. Phys. 2019, 238, 121903. https://doi.org/10.1016/j.matchemphys.2019.121903.Search in Google Scholar

11. Monisha, P.; Priyadharshini, P.; Gomathi, S. S.; Pushpanathan, K. J. Alloys Compd. 2021, 856, 157447. https://doi.org/10.1016/j.jallcom.2020.157447.Search in Google Scholar

12. Mariosi, F. R.; Venturini, J.; Viegas, A. C.; Bergmann, C. P. Ceram. Int. 2020, 46 (3), 2772–2779. https://doi.org/10.1016/j.ceramint.2019.09.266.Search in Google Scholar

13. Anantharamaiah, P. N.; Joy, P. A. Phys. B 2019, 554, 107–113. https://doi.org/10.1016/j.physb.2018.11.031.Search in Google Scholar

14. Heiba, Z. K.; Mohamed, M. B.; Wahba, A. M.; Almalowi, M. I. Appl. Phys. A 2018, 124, 290. https://doi.org/10.1007/s00339-018-1721-3.Search in Google Scholar

15. Anantharamaiah, P. N.; Joy, P. A. J. Phys. D: Appl. Phys. 2017, 50 (43), 435005. https://doi.org/10.1088/1361-6463/aa8af6.Search in Google Scholar

16. Yang, H.; Liu, M.; Lin, Y.; Yang, Y. J. Alloys Compd. 2015, 631, 335–339. https://doi.org/10.1016/j.jallcom.2015.01.012.Search in Google Scholar

17. Divya, S.; Sivaprakash, P.; Raja, S.; Muthu, S. E.; Kim, I.; Renuka, N.; Arumugam, S.; Oh, T. H. Ceram. Int. 2022, 48 (22), 33208–33218. https://doi.org/10.1016/j.ceramint.2022.07.263.Search in Google Scholar

18. Niu, P.; Li, C.; Wang, D.; Jia, C.; Zhao, J.; Liu, Z.; Zhang, X.; Geng, L. Appl. Surf. Sci. 2022, 605, 154732. https://doi.org/10.1016/j.apsusc.2022.154732.Search in Google Scholar

19. Zhou, C.; Zhang, A.; Chang, T.; Chen, Y.; Zhang, Y.; Tian, F.; Zuo, W.; Ren, Y.; Song, X.; Yang, S. Materials 2019, 12 (10), 1685. https://doi.org/10.3390/ma12101685.Search in Google Scholar PubMed PubMed Central

20. Pandit, R.; Sharma, K. K.; Kaur, P.; Kotnala, R. K.; Shah, J.; Kumar, R. J. Phys. Chem. Solids 2014, 75 (4), 558–569. https://doi.org/10.1016/j.jpcs.2013.12.015.Search in Google Scholar

21. Abbas, N.; Rubab, N.; Sadiq, N.; Manzoor, S.; Khan, M. I.; Garcia, J. F.; Aragao, I. B.; Tariq, M.; Akhtar, Z.; Yasmin, G. Water 2020, 12 (8), 2285. https://doi.org/10.3390/w12082285.Search in Google Scholar

22. Novosel, N.; Pajic, D.; Raghavender, A. T.; Zadro, K.; Jadhav, K. M. J. Phys.: Conf. Ser. 2010, 200, 072070. https://doi.org/10.1088/1742-6596/200/7/072070.Search in Google Scholar

23. Boukili, A. E.; Mounkachi, O.; Hamedoun, M.; Lachkar, P.; Hlil, E. K.; Benyoussef, A.; Balli, M.; Ez-Zahraouy, H. J. Alloys Compd. 2021, 859, 158392. https://doi.org/10.1016/j.jallcom.2020.158392.Search in Google Scholar

24. Jha, R.; Singh, S. K.; Kumar, A.; Awana, V. S. P. J. Magn. Magn. Mater. 2012, 324 (18), 2849–2853. https://doi.org/10.1016/j.jmmm.2012.04.026.Search in Google Scholar

25. Maatar, S. C.; M’nassri, R.; Koubaa, W. C.; Koubaa, M.; Cheikhrouhou, A. J. Solid State Chem. 2015, 225, 83–88. https://doi.org/10.1016/j.jssc.2014.12.007.Search in Google Scholar

26. Koubaa, M.; Cheikhrouhou-Koubaa, W.; Cheikhrouhou, A. J. Phys. Chem. Solids 2009, 70 (2), 326–333. https://doi.org/10.1016/j.jpcs.2008.10.028.Search in Google Scholar

27. Olmos, R.; Delgado, J. A.; Iturriaga, H.; Martinez, L. M.; Saiz, C. L.; Shao, L.; Liu, Y.; Petrovic, C.; Singamaneni, S. R. J. Appl. Phys. 2021, 130 (1), 013902. https://doi.org/10.1063/5.0056387.Search in Google Scholar

28. Henchiri, C.; Omari, L. H.; Mnasri, T.; Benali, A.; Dhahri, E.; Valente, M. A. J. Alloys Compd. 2022, 905, 164196. https://doi.org/10.1016/j.jallcom.2022.164196.Search in Google Scholar

29. Liu, Y.; Koch, R. J.; Hu, Z.; Aryal, N.; Stavitski, E.; Tong, X.; Attenkofer, K.; Bozin, E. S.; Yin, W.; Petrovic, C. Phys. Rev. B 2020, 102, 085158. https://doi.org/10.1103/PhysRevB.102.085158.Search in Google Scholar

30. Han, L.; Zhai, W.; Bai, B.; Zhu, H.; Yang, J.; Yan, Z.; Zhang, T. Ceram. Int. 2019, 45 (11), 14322–14326. https://doi.org/10.1016/j.ceramint.2019.04.146.Search in Google Scholar

31. Hcini, S.; Kouki, N.; Omri, A.; Dhahri, A.; Bouazizi, M. L. J. Magn. Magn. Mater. 2018, 464, 91–102. https://doi.org/10.1016/j.jmmm.2018.05.045.Search in Google Scholar

32. Pan, L.; Wang, Y.; Yin, L.; Zhang, M.; Li, Y.; Townsend, P. D.; Poelman, D. J. Lumin. 2023, 258, 119822. https://doi.org/10.1016/j.jlumin.2023.119822.Search in Google Scholar

33. Shannon, R. D.; Prewitt, C. T. Acta Crystallogr. Sect. B 1969, 25, 925–946. https://doi.org/10.1107/S0567740869003220.Search in Google Scholar

34. Xu, S. T.; Ma, Y. Q.; Zheng, G. H.; Dai, Z. X. Nanoscale 2015, 7 (15), 6520–6526. https://doi.org/10.1039/C5NR00582E.Search in Google Scholar PubMed

35. Henchiri, C.; Hamdi, R.; Mnasri, T.; Valente, M. A.; Prezas, P. R.; Dhahri, E. Appl. Phys. A 2019, 125, 725. https://doi.org/10.1007/s00339-019-2980-3.Search in Google Scholar

36. Nasri, M.; Triki, M.; Dhahri, E.; Hussein, M.; Lachkar, P.; Hlil, E. K. Phys. B 2013, 408, 104–109. https://doi.org/10.1016/j.physb.2012.09.003.Search in Google Scholar

37. Henchiri, C.; Benali, A.; Mnasri, T.; Valente, M. A.; Dhahri, E. J. Supercond. Nov. Magnetism 2020, 33, 1143–1149. https://doi.org/10.1007/s10948-019-05316-0.Search in Google Scholar

38. Oumezzine, E.; Hcini, S.; Baazaoui, M.; Hlil, E. K.; Oumezzine, M. J. Alloys Compd. 2016, 656, 676–684. https://doi.org/10.1016/j.jallcom.2015.09.269.Search in Google Scholar

39. Arrott, A. Phys. Rev. 1957, 108 (6), 1394. https://doi.org/10.1103/PhysRev.108.1394.Search in Google Scholar

40. Shin, H. S.; Lee, J. E.; Nam, Y. S.; Ju, H. L.; Park, C. W. Solid State Commun. 2001, 118 (7), 377–380. https://doi.org/10.1016/S0038-1098(01)00123-5.Search in Google Scholar

41. Henchiri, C.; Mnasri, T.; Benali, A.; Dhahri, E.; Valente, M. A. Chem. Phys. Lett. 2021, 769, 138422. https://doi.org/10.1016/j.cplett.2021.138422.Search in Google Scholar

42. Kaul, S. N. J. Magn. Magn. Mater. 1985, 53 (1–2), 5–53. https://doi.org/10.1016/0304-8853(85)90128-3.Search in Google Scholar

43. Arrott, A.; Noakes, J. E. Phys. Rev. Lett. 1967, 19 (14), 786. https://doi.org/10.1103/PhysRevLett.19.786.Search in Google Scholar

44. Widom, B. J. Chem. Phys. 1965, 43 (11), 3892–3897. https://doi.org/10.1063/1.1696617.Search in Google Scholar

45. Phan, M. H.; Morales, M. B.; Bingham, N. S.; Srikanth, H.; Zhang, C. L.; Cheong, S. W. Phys. Rev. B 2010, 81 (9), 094413. https://doi.org/10.1103/PhysRevB.81.094413.Search in Google Scholar

46. Kouki, N.; Hcini, S.; Boudard, M.; Aldawas, R.; Dhahri, A. RSC Adv. 2019, 9 (4), 1990–2001. https://doi.org/10.1039/C8RA09113G.Search in Google Scholar

47. Haug, M.; Fähnle, M.; Kronmüller, H.; Haberey, F. Phys. Status Solidi B 1987, 144 (1), 411. https://doi.org/10.1002/pssb.2221440136.Search in Google Scholar

48. Haug, M.; Fähnle, M.; Kronmüller, H.; Haberey, F. J. Magn. Magn. Mater. 1987, 69 (2), 163–170. https://doi.org/10.1016/0304-8853(87)90113-2.Search in Google Scholar

49. Nasri, M.; Henchiri, C.; Dhahri, R.; Khelifi, J.; Dhahri, E.; Mariano, J. F. M. L. Inorg. Chem. Commun. 2021, 133, 108933. https://doi.org/10.1016/j.inoche.2021.108933.Search in Google Scholar

50. Lin, S.; Lv, H. Y.; Lin, J. C.; Huang, Y. N.; Zhang, L.; Song, W. H.; Tong, P.; Lu, W. J.; Sun, Y. P. Phys. Rev. B 2018, 98 (1), 014412. https://doi.org/10.1103/PhysRevB.98.014412.Search in Google Scholar

51. Han, H.; Zhang, L.; Sapkota, D.; Hao, N.; Ling, L.; Du, H.; Pi, L.; Zhang, C.; Mandrus, D. G.; Zhang, Y. Phys. Rev. B 2017, 96 (9), 094439. https://doi.org/10.1103/PhysRevB.96.094439.Search in Google Scholar

52. Ghosh, K.; Lobb, C. J.; Greene, R. L.; Karabashev, S. G.; Shulyatev, D. A.; Arsenov, A. A.; Mukovskii, Y. Phys. Rev. Lett. 1998, 81 (21), 4740. https://doi.org/10.1103/PhysRevLett.81.4740.Search in Google Scholar

Received: 2023-11-07
Accepted: 2024-05-01
Published Online: 2024-07-25
Published in Print: 2024-08-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0330/html?lang=en
Scroll to top button