Abstract
The study investigates how Zr additions and process annealing affect mechanical and corrosion properties of AA5083 Al–Mg alloys by microstructural examination, tensile strength, hardness testing and ASTM G67 nitric acid mass loss test. In the present work, process annealing temperatures were set to 220 °C and 250 °C. The results show that the hardness and tensile properties of Zr-containing cold rolled alloy were superior to that of Zr-free cold rolled alloy before and after process annealing treatment and sensitization heat treatment. Unfortunately, adding Zr to AA5383 alloy significantly degraded the corrosion resistance of the Zr-containing cold rolled alloy annealed at 220 °C. For improving corrosion resistance of Zr-containing alloy, annealing temperature could be increased to 250 °C to avoid a marked drop in the corrosion resistance.
Acknowledgments
The authors would like to thank the financial support provided by National Chung-Shan Institute of Science & Technology.
-
Research ethics: The local Institutional Review Board deemed the study exempt from review.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Chin-Wei Hsu: Collected the data, performed the experiments, contributed data, and performed the analysis. Sheng-Long Lee: Conceived and designed the analysis. Ping-Chih Kuo: Performed the experiments and contributed data. Chih-Ting Wu: Wrote the paper.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: National Chung-Shan Institute of Science & Technology (Contract: NCSIST-629-V102(113)).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Lee, S. L.; Chiu, Y. C.; Pan, T. A.; Chen, M. C. Crystals 2021, 11, 926. https://doi.org/10.3390/cryst11080926.Search in Google Scholar
2. Serkan, T.; Fahrettin, O.; Ilyas, K. J. Mater. Process. Technol. 2008, 207, 1–12. https://doi.org/10.1016/j.jmatprotec.2008.03.057.Search in Google Scholar
3. Chiu, Y. C.; Pan, T. A.; Chen, G. M.; Jiang, X. C.; Bor, H. Y.; Tzeng, Y. C.; Lee, S. L. Molecules 2021, 26, 168. https://doi.org/10.3390/molecules26010168.Search in Google Scholar PubMed PubMed Central
4. Wu, C. T.; Lee, S. L.; Chen, Y. F.; Bor, H. Y.; Liu, K. H. Materials 2020, 13, 1983. https://doi.org/10.3390/ma13081983.Search in Google Scholar PubMed PubMed Central
5. Alireza, G. Hydrogen Embrittlement in a 5083 Aluminum Alloy, Ph.D. Thesis, Ibaraki University, Japan, 2020.Search in Google Scholar
6. Bovard, F. S. Electrochem. Soc. Proc. 2005, 2004-14, 232–243. https://doi.org/10.1002/9781119788867.scard.Search in Google Scholar
7. Searles, J. L.; Gouma, P. I.; Buchheit, R. G. Metall. Mater. Trans. A 2001, 32, 2859–2867. https://doi.org/10.1007/s11661-001-1036-3.Search in Google Scholar
8. Oguocha, I. N. A.; Adigun, O. J.; Yannacopoulos, S. Y. J. Mater. Sci. 2008, 43, 4208–4214. https://doi.org/10.1007/s10853-008-2606-1.Search in Google Scholar
9. Holts, R. L.; Pao, P. S.; Bayles, R. A.; Longazel, T. M.; Goswami, R. Metall. Mater. Trans. A 2012, 43, 2839–2849. https://doi.org/10.1007/BF02662387.Search in Google Scholar
10. Li, M.; Li, H.; Zhang, Z.; Shi, W.; Liu, J.; Hu, Y.; Wu, Y. Mater. Sci. Technol. 2018, 34, 1246–1251. https://doi.org/10.1080/02670836.2018.1444922.Search in Google Scholar
11. Norman, A. F.; Prangnell, P. B.; Mcewen, R. S. Acta Mater. 1998, 46, 5715–5732. https://doi.org/10.1016/S1359-6454(98)00257-2.Search in Google Scholar
12. Yang, D. G.; Li, X. Y.; He, D. G.; Huang, H. Mater. Sci. Eng. A 2013, 561, 226–231. https://doi.org/10.1016/j.msea.2012.11.002.Search in Google Scholar
13. Croteau, J. R.; Griffiths, S.; Rossell, M. D.; Leinenbach, C.; Kenel, C.; Jansen, V.; Seidman, D. N.; Dunand, D. C.; Vo, N. Q. Acta Mater. 2018, 153, 35–44. https://doi.org/10.1016/j.actamat.2018.04.053.Search in Google Scholar
14. Belelli, F.; Casati, R.; Andrianopoli, C.; Cuccaro, F.; Vedani, M. J. Alloys Compd. 2022, 924, 166519. https://doi.org/10.1016/j.jallcom.2022.166519.Search in Google Scholar
15. Lee, Y. B.; Shin, D. H.; Park, K. T.; Won, J. N. Scripta Mater. 2004, 51, 355–359. https://doi.org/10.1016/j.scriptamat.2004.02.037.Search in Google Scholar
16. Miljana, P.; Endre, R. Mater. Sci. Eng. A 2008, 492, 60–467. https://doi.org/10.1016/j.msea.2008.04.001.Search in Google Scholar
17. Hashimoto, T.; Ikeda, K.; Miura, S. Mater. Trans. 2023, 64, 1959–1968. https://doi.org/10.2320/matertrans.MT-M2022217.Search in Google Scholar
18. Mikhaylovskaya, A. V.; Mochugovskiy, A. G.; Levchenko, V. S.; Tabachkova, N. Y.; Mufalo, W.; Portnoy, V. K. Mater. Charact. 2018, 139, 30–37. https://doi.org/10.1016/j.matchar.2018.02.030.Search in Google Scholar
19. Lee, S. L.; Wu, S. T. Metall. Mater. Trans. A 1987, 18, 1353–1357. https://doi.org/10.1007/BF02646649.Search in Google Scholar
20. Yang, Z.; Ji, P.; Wu, R.; Wang, Y.; Turakhodjaev, N.; Kudratkhon, B. Int. J. Mater. Res. 2023, 114, 65–76. https://doi.org/10.1515/ijmr-2021-8485.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Polarizabilities and emission cross-sections of lanthanide laser crystals
- Wet-chemical synthesis and luminescence studies of nano-crystalline gadolinium gallium garnet
- Synthesis of carbon nanotube–iron oxide and silver nanocomposites as photocatalyst in removing carcinogenic aromatic dyes
- Influence of annealing temperature on the structure, morphology, optical property and antibacterial response of phytochemicals-assisted synthesized zinc oxide nanoparticles
- Study on the magnetic properties and critical behavior of CoFe2−xAl x O4 (x = 1.0 and 1.2) spinel ferrite
- Experimental study on selected properties and microstructure of pine-based wood ceramics
- Muga (Antheraea assamensis) silk electrospun scaffold for biomedical applications
- First-principles calculations of the mechanical properties of Mg2Si intermetallic via ternary elements doping
- Effects of Zr additions and process annealing on mechanical and corrosion properties of AA5383 Al–Mg alloys
- Study on the effect of LuCl3 doping on the characteristics of titanium alloy micro-arc oxidation coatings
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Polarizabilities and emission cross-sections of lanthanide laser crystals
- Wet-chemical synthesis and luminescence studies of nano-crystalline gadolinium gallium garnet
- Synthesis of carbon nanotube–iron oxide and silver nanocomposites as photocatalyst in removing carcinogenic aromatic dyes
- Influence of annealing temperature on the structure, morphology, optical property and antibacterial response of phytochemicals-assisted synthesized zinc oxide nanoparticles
- Study on the magnetic properties and critical behavior of CoFe2−xAl x O4 (x = 1.0 and 1.2) spinel ferrite
- Experimental study on selected properties and microstructure of pine-based wood ceramics
- Muga (Antheraea assamensis) silk electrospun scaffold for biomedical applications
- First-principles calculations of the mechanical properties of Mg2Si intermetallic via ternary elements doping
- Effects of Zr additions and process annealing on mechanical and corrosion properties of AA5383 Al–Mg alloys
- Study on the effect of LuCl3 doping on the characteristics of titanium alloy micro-arc oxidation coatings
- News
- DGM – Deutsche Gesellschaft für Materialkunde