Home Phase constituents near the center of the Co–Cr–Fe–Ni–Ti system at 1000 °C
Article
Licensed
Unlicensed Requires Authentication

Phase constituents near the center of the Co–Cr–Fe–Ni–Ti system at 1000 °C

  • Xiangying Zhu , Changjun Wu ORCID logo EMAIL logo , Hao Tu , Jianhua Wang , Jian Lu and Xuping Su
Published/Copyright: April 7, 2022
Become an author with De Gruyter Brill

Abstract

The phase constituents of Co–Cr–Fe–Ni–Ti alloys at 1000 °C, with Cr and Fe each fixed at 20 at.%, were investigated using X-ray diffraction and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. A series of alloys were prepared via the arc-melting method and annealed at 1000 °C for 30 d. None of the alloys were in the single-phase region. The σ- and χ-(Cr13Fe35Ni3Ti7) phases were confirmed to exist in the center of the system. The alloys with more than 15 at.% Ti were composed of two or more intermetallic phases, and no fcc solid solution was present. Eight phase regions were found near the center of the Co–Cr–Fe–Ni–Ti system, i.e., fcc + D024, fcc + D024 + σ, σ + D024 + C14, fcc + D024 + σ + χ(Cr13Fe35Ni3Ti7), D024 + σ + χ + C14, bcc + D024 + C14, D024 + C14 + bcc + B2 and fcc + C15 + fcc#2. All detected phases contained 5 elements and had their own unique compositions. Moreover, comparing the experimental results with thermodynamic calculations based on the PANHEA database showed that the present database cannot satisfactorily predict the phase constituents in the center of the Co–Cr–Fe–Ni–Ti system. The result presented will be helpful in phase composition analysis and in composition design of related systems.


Corresponding author: Changjun Wu, Jiangsu Key Laboratory of Materials Surface Science and Technology, School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China; and Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, P. R. China, E-mail:

Acknowledgements

The authors would like to thank Xuehui An in CompuTherm LLC for thermodynamic calculation.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors gratefully acknowledge the financial support from National Natural Science Foundation of China (Nos. 51771035 and 51871030), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Tsau, C. H., Chang, S. Y. Adv. Eng. Mater. 2004, 6, 299. https://doi.org/10.1002/adem.200300567.Search in Google Scholar

2. Cantor, B., Chang, I. T. H., Knight, P., Vincent, A. J. B. Mater. Sci. Eng., A 2004, 375–377, 213. https://doi.org/10.1016/j.msea.2003.10.257.Search in Google Scholar

3. Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., Lu, Z. P. Prog. Mater. Sci. 2014, 61, 1. https://doi.org/10.1016/j.pmatsci.2013.10.001.Search in Google Scholar

4. Zhang, W., Liaw, P. K., Zhang, Y. Sci. China Mater. 2018, 61, 2. https://doi.org/10.1007/s40843-017-9195-8.Search in Google Scholar

5. Zhang, Z., Mao, M. M., Wang, J., Gludovatz, B., Zhang, Z., Mao, S. X., George, E. P., Yu, Q., Ritchie, R. O. Nat. Commun. 2015, 6, 10143. https://doi.org/10.1038/ncomms10143.Search in Google Scholar PubMed PubMed Central

6. Jin, K., Lu, C., Wang, L. M., Qu, J., Weber, W. J., Zhang, Y., Bei, H. Scripta Mater. 2016, 119, 65. https://doi.org/10.1016/j.scriptamat.2016.03.030.Search in Google Scholar

7. Chen, D., Tong, Y., Li, H., Wang, J., Zhao, Y. L., Hu, A., Kai, J. J. J. Nucl. Mater. 2018, 501, 208. https://doi.org/10.1016/j.jnucmat.2018.01.041.Search in Google Scholar

8. Lu, C., Niu, L., Chen, N., Jin, K., Yang, T., Xiu, P., Zhang, Y., Gao, F., Bei, H., Shi, S., He, M.-R., Robertson, I. M., Weber, W. J., Wang, L. Nat. Commun. 2016, 7, 13564. https://doi.org/10.1038/ncomms13564.Search in Google Scholar PubMed PubMed Central

9. Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E. H., George, E. P., Ritchie, R. O. Science 2014, 345, 1153. https://doi.org/10.1126/science.1254581.Search in Google Scholar PubMed

10. Wu, Z., Bei, H., Otto, F., Pharr, G. M., George, E. P. Intermetallics 2014, 46, 131. https://doi.org/10.1016/j.intermet.2013.10.024.Search in Google Scholar

11. Li, D., Li, C., Feng, T., Zhang, Y., Sha, G., Lewandowski, J. J., Liaw, P. K., Zhang, Y. Acta Mater. 2017, 123, 285. https://doi.org/10.1016/j.actamat.2016.10.038.Search in Google Scholar

12. Shun, T.-T., Chang, L.-Y., Shiu, M.-H. Mater. Sci. Eng., A 2012, 556, 170. https://doi.org/10.1016/j.msea.2012.06.075.Search in Google Scholar

13. Nandal, V., Sarvesha, R., Singh, S. S., Huang, E. W., Chang, Y.-J., Yeh, A.-C., Neelakantan, S., Jain, J. J. Alloys Compd. 2021, 855, 157521. https://doi.org/10.1016/j.jallcom.2020.157521.Search in Google Scholar

14. Moravcik, I., Cizek, J., Zapletal, J., Kovacova, Z., Vesely, J., Minarik, P., Kitzmantel, M., Neubauer, E., Dlouhy, I. Mater. Des. 2017, 119, 141. https://doi.org/10.1016/j.matdes.2017.01.036.Search in Google Scholar

15. Jang, Y., Zhou, G., Li, X., Cheng, S. Mater. Sci. Eng. Powder Met. 2019, 24, 444.Search in Google Scholar

16. Han, B., Wei, J., Tong, Y., Chen, D., Zhao, Y., Wang, J., He, F., Yang, T., Zhao, C., Shimizu, Y., Inoue, K., Nagai, Y., Hu, A., Liu, C. T., Kai, J. J. Scripta Mater. 2018, 148, 42. https://doi.org/10.1016/j.scriptamat.2018.01.025.Search in Google Scholar

17. Shun, T. T., Hsieh, C. Y., Hung, W. J., Lee, C. F. Mater. Trans. 2018, 59, 730. https://doi.org/10.2320/matertrans.M2017418.Search in Google Scholar

18. Jiang, L., Lu, Y., Dong, Y., Wang, T., Cao, Z., Li, T. Intermetallics 2014, 44, 37. https://doi.org/10.1016/j.intermet.2013.08.016.Search in Google Scholar

19. Dong, Y., Chen, Q., Lu, Y., Zhang, P., Li, T. J. Mater. Sci. Forum 2014, 789, 48. https://doi.org/10.4028/www.scientific.net/MSF.789.48.Search in Google Scholar

20. Yeh, A.-C., Chang, Y.-J., Tsai, C.-W., Wang, Y.-C., Yeh, J.-W., Kuo, C.-M. Metall. Mater. Trans. 2014, 45, 184. https://doi.org/10.1007/s11661-013-2097-9.Search in Google Scholar

21. Zhang, K. B., Fu, Z. Y., Zhang, J. Y., Wang, W. M., Lee, S. W., Niihara, K. IOP Conf. Ser. Mater. Sci. Eng. 2011, 20, 012009. https://doi.org/10.1088/1757-899x/20/1/012009.Search in Google Scholar

22. Lu, J., Wu, C., Zeng, J., Tu, H., Wang, J., Su, X. Mater. Res. Express 2019, 6, 056527. https://doi.org/10.1088/2053-1591/ab0398.Search in Google Scholar

23. Fan, A.-C., Li, J.-H., Tsai, M.-H. J. Mater. Res. Technol. 2020, 9, 11231. https://doi.org/10.1016/j.jmrt.2020.07.056.Search in Google Scholar

24. Daoud, H. M., Manzoni, A. M., Wanderka, N., Glatzel, U. J. Occup. Med. 2015, 67, 2271. https://doi.org/10.1007/s11837-015-1484-7.Search in Google Scholar

25. Du, W. D., Liu, N., Peng, Z., Zhou, P. J., Xiang, H. F., Wang, X. J. Mater. Sci. Technol. 2018, 34, 473. https://doi.org/10.1080/02670836.2017.1407554.Search in Google Scholar

26. Li, B. S., Wang, Y. P., Ren, M. X., Yang, C., Fu, H. Z. Mater. Sci. Eng., A 2008, 498, 482. https://doi.org/10.1016/j.msea.2008.08.025.Search in Google Scholar

27. Jain, R., Rahul, M. R., Samal, S., Kumar, V., Phanikumar, G. J. Alloys Compd. 2020, 822, 153609. https://doi.org/10.1016/j.jallcom.2019.153609.Search in Google Scholar

28. He, F., Wang, Z., Wu, Q., Niu, S., Li, J., Wang, J., Liu, C. T. Scripta Mater. 2017, 131, 42. https://doi.org/10.1016/j.scriptamat.2016.12.033.Search in Google Scholar

29. Wu, C., Sun, Y., Liu, Y., Tu, H. Materials 2019, 12, 1700. https://doi.org/10.3390/ma12101700.Search in Google Scholar PubMed PubMed Central

30. Wang, S., Wang, K., Chen, G., Li, Z., Qin, Z., Lu, X., Li, C. Calphad 2017, 56, 160. https://doi.org/10.1016/j.calphad.2016.12.007.Search in Google Scholar

31. Zeng, L., Liu, L., Huang, S., Zhang, L. Calphad 2017, 58, 58. https://doi.org/10.1016/j.calphad.2017.05.006.Search in Google Scholar

32. Pan, Y., Chen, C., Du, Y., Yuan, C., Luo, F. J. Phase Equilibria Diffus. 2017, 38, 5. https://doi.org/10.1007/s11669-016-0505-8.Search in Google Scholar

33. Zhou, C., Guo, C., Li, C., Du, Z. Calphad 2018, 63, 61. https://doi.org/10.1016/j.calphad.2018.08.011.Search in Google Scholar

34. Zhou, C., Guo, C., Li, J., Li, C., Du, Z. J. Alloys Compd. 2018, 754, 268. https://doi.org/10.1016/j.jallcom.2018.04.253.Search in Google Scholar

35. Yuan, C., Chen, C., Peng, Y., Lu, X., Du, Y., Li, K. Int. J. Mater. Res. 2015, 106, 841. https://doi.org/10.3139/146.111240.Search in Google Scholar

36. Hu, B., Du, Y., Schuster, J. C., Sun, W., Liu, S., Tang, C. Thermochim. Acta 2014, 578, 35. https://doi.org/10.1016/j.tca.2014.01.002.Search in Google Scholar

37. De Keyzer, J., Cacciamani, G., Dupin, N., Wollants, P. Calphad 2009, 33, 109. https://doi.org/10.1016/j.calphad.2008.10.003.Search in Google Scholar

38. Zhou, P., Peng, Y., Hu, B., Liu, S., Du, Y., Wang, S., Wen, G., Xie, W. Calphad 2013, 41, 42. https://doi.org/10.1016/j.calphad.2013.02.001.Search in Google Scholar

39. Tan, Y.-h., Xu, H.-h., Du, Y. Trans. Nonferrous Metals Soc. China 2007, 17, 711. https://doi.org/10.1016/S1003-6326(07)60161-7.Search in Google Scholar

40. Wang, P., Hu, B., Huang, X., Zheng, C. Calphad 2021, 73, 102252. https://doi.org/10.1016/j.calphad.2021.102252.Search in Google Scholar

41. https://computherm.com/panhea.Search in Google Scholar

42. Tian, M., Wu, C., Liu, Y., Peng, H., Wang, J., Su, X. J. Alloys Compd. 2019, 811, 152025. https://doi.org/10.1016/j.jallcom.2019.152025.Search in Google Scholar

43. Guo, S., Liu, C. T. Prog. Nat. Sci.: Met. Mater. Int. 2011, 21, 433. https://doi.org/10.1016/S1002-0071(12)60080-X.Search in Google Scholar

Received: 2021-06-29
Revised: 2022-03-08
Accepted: 2022-03-07
Published Online: 2022-04-07
Published in Print: 2022-05-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Preface of the issue of the 19th national symposium on phase diagram and materials design
  4. Review
  5. Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram
  6. Original Papers
  7. Diffusivities and atomic mobilities in the Ni-rich fcc Ni–Al–Cu alloys: experiment and modeling
  8. Composition-dependent interdiffusivity matrices of ordered bcc_B2 phase in ternary Ni–Al–Ru system at 1273∼1473 K
  9. Investigation of interdiffusion behavior in the Ti–Zr–Cu ternary system
  10. Measurement of the diffusion coefficient in Mg–Sn and Mg–Sc binary alloys
  11. Thermodynamic calculation of phase equilibria of rare earth metals with boron binary systems
  12. Thermodynamic modeling of the Bi–Ca and Bi–Zr systems
  13. Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys
  14. Experimental determination of the isothermal sections and liquidus surface projection of the Mo–Si–V ternary system
  15. Experimental determination of isothermal sections of the Hf–Nb–Ni system at 950 and 1100 °C
  16. Experimental investigation and thermodynamic assessment of the Al–Ca–Y ternary system
  17. Phase equilibria of the Ni–Cr–Y ternary system at 900 °C
  18. Phase constituents near the center of the Co–Cr–Fe–Ni–Ti system at 1000 °C
  19. Metastable phase diagram of the Gd2O3–SrO–CoO x ternary system
  20. Crystallization kinetic and dielectric properties of CaO–MgO–Al2O3–SiO2 glass/Al2O3 composites
  21. Investigation of the phase relation of the Bi2O3–Fe2O3–Nd2O3 system at 973 K and the microwave absorption performance of NdFeO3/Bi25FeO40 with different mass ratios
  22. The influence of SrCl2 on the corrosion behavior of magnesium
  23. Retraction
  24. Retraction of: Electrolytic synthesis of ZrSi/ZrC nanocomposites from ZrSiO4 and carbon black powder in molten salt
  25. News
  26. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8442/html?lang=en
Scroll to top button