Abstract
The phase constituents of Co–Cr–Fe–Ni–Ti alloys at 1000 °C, with Cr and Fe each fixed at 20 at.%, were investigated using X-ray diffraction and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. A series of alloys were prepared via the arc-melting method and annealed at 1000 °C for 30 d. None of the alloys were in the single-phase region. The σ- and χ-(Cr13Fe35Ni3Ti7) phases were confirmed to exist in the center of the system. The alloys with more than 15 at.% Ti were composed of two or more intermetallic phases, and no fcc solid solution was present. Eight phase regions were found near the center of the Co–Cr–Fe–Ni–Ti system, i.e., fcc + D024, fcc + D024 + σ, σ + D024 + C14, fcc + D024 + σ + χ(Cr13Fe35Ni3Ti7), D024 + σ + χ + C14, bcc + D024 + C14, D024 + C14 + bcc + B2 and fcc + C15 + fcc#2. All detected phases contained 5 elements and had their own unique compositions. Moreover, comparing the experimental results with thermodynamic calculations based on the PANHEA database showed that the present database cannot satisfactorily predict the phase constituents in the center of the Co–Cr–Fe–Ni–Ti system. The result presented will be helpful in phase composition analysis and in composition design of related systems.
Acknowledgements
The authors would like to thank Xuehui An in CompuTherm LLC for thermodynamic calculation.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The authors gratefully acknowledge the financial support from National Natural Science Foundation of China (Nos. 51771035 and 51871030), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Tsau, C. H., Chang, S. Y. Adv. Eng. Mater. 2004, 6, 299. https://doi.org/10.1002/adem.200300567.Search in Google Scholar
2. Cantor, B., Chang, I. T. H., Knight, P., Vincent, A. J. B. Mater. Sci. Eng., A 2004, 375–377, 213. https://doi.org/10.1016/j.msea.2003.10.257.Search in Google Scholar
3. Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., Lu, Z. P. Prog. Mater. Sci. 2014, 61, 1. https://doi.org/10.1016/j.pmatsci.2013.10.001.Search in Google Scholar
4. Zhang, W., Liaw, P. K., Zhang, Y. Sci. China Mater. 2018, 61, 2. https://doi.org/10.1007/s40843-017-9195-8.Search in Google Scholar
5. Zhang, Z., Mao, M. M., Wang, J., Gludovatz, B., Zhang, Z., Mao, S. X., George, E. P., Yu, Q., Ritchie, R. O. Nat. Commun. 2015, 6, 10143. https://doi.org/10.1038/ncomms10143.Search in Google Scholar PubMed PubMed Central
6. Jin, K., Lu, C., Wang, L. M., Qu, J., Weber, W. J., Zhang, Y., Bei, H. Scripta Mater. 2016, 119, 65. https://doi.org/10.1016/j.scriptamat.2016.03.030.Search in Google Scholar
7. Chen, D., Tong, Y., Li, H., Wang, J., Zhao, Y. L., Hu, A., Kai, J. J. J. Nucl. Mater. 2018, 501, 208. https://doi.org/10.1016/j.jnucmat.2018.01.041.Search in Google Scholar
8. Lu, C., Niu, L., Chen, N., Jin, K., Yang, T., Xiu, P., Zhang, Y., Gao, F., Bei, H., Shi, S., He, M.-R., Robertson, I. M., Weber, W. J., Wang, L. Nat. Commun. 2016, 7, 13564. https://doi.org/10.1038/ncomms13564.Search in Google Scholar PubMed PubMed Central
9. Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E. H., George, E. P., Ritchie, R. O. Science 2014, 345, 1153. https://doi.org/10.1126/science.1254581.Search in Google Scholar PubMed
10. Wu, Z., Bei, H., Otto, F., Pharr, G. M., George, E. P. Intermetallics 2014, 46, 131. https://doi.org/10.1016/j.intermet.2013.10.024.Search in Google Scholar
11. Li, D., Li, C., Feng, T., Zhang, Y., Sha, G., Lewandowski, J. J., Liaw, P. K., Zhang, Y. Acta Mater. 2017, 123, 285. https://doi.org/10.1016/j.actamat.2016.10.038.Search in Google Scholar
12. Shun, T.-T., Chang, L.-Y., Shiu, M.-H. Mater. Sci. Eng., A 2012, 556, 170. https://doi.org/10.1016/j.msea.2012.06.075.Search in Google Scholar
13. Nandal, V., Sarvesha, R., Singh, S. S., Huang, E. W., Chang, Y.-J., Yeh, A.-C., Neelakantan, S., Jain, J. J. Alloys Compd. 2021, 855, 157521. https://doi.org/10.1016/j.jallcom.2020.157521.Search in Google Scholar
14. Moravcik, I., Cizek, J., Zapletal, J., Kovacova, Z., Vesely, J., Minarik, P., Kitzmantel, M., Neubauer, E., Dlouhy, I. Mater. Des. 2017, 119, 141. https://doi.org/10.1016/j.matdes.2017.01.036.Search in Google Scholar
15. Jang, Y., Zhou, G., Li, X., Cheng, S. Mater. Sci. Eng. Powder Met. 2019, 24, 444.Search in Google Scholar
16. Han, B., Wei, J., Tong, Y., Chen, D., Zhao, Y., Wang, J., He, F., Yang, T., Zhao, C., Shimizu, Y., Inoue, K., Nagai, Y., Hu, A., Liu, C. T., Kai, J. J. Scripta Mater. 2018, 148, 42. https://doi.org/10.1016/j.scriptamat.2018.01.025.Search in Google Scholar
17. Shun, T. T., Hsieh, C. Y., Hung, W. J., Lee, C. F. Mater. Trans. 2018, 59, 730. https://doi.org/10.2320/matertrans.M2017418.Search in Google Scholar
18. Jiang, L., Lu, Y., Dong, Y., Wang, T., Cao, Z., Li, T. Intermetallics 2014, 44, 37. https://doi.org/10.1016/j.intermet.2013.08.016.Search in Google Scholar
19. Dong, Y., Chen, Q., Lu, Y., Zhang, P., Li, T. J. Mater. Sci. Forum 2014, 789, 48. https://doi.org/10.4028/www.scientific.net/MSF.789.48.Search in Google Scholar
20. Yeh, A.-C., Chang, Y.-J., Tsai, C.-W., Wang, Y.-C., Yeh, J.-W., Kuo, C.-M. Metall. Mater. Trans. 2014, 45, 184. https://doi.org/10.1007/s11661-013-2097-9.Search in Google Scholar
21. Zhang, K. B., Fu, Z. Y., Zhang, J. Y., Wang, W. M., Lee, S. W., Niihara, K. IOP Conf. Ser. Mater. Sci. Eng. 2011, 20, 012009. https://doi.org/10.1088/1757-899x/20/1/012009.Search in Google Scholar
22. Lu, J., Wu, C., Zeng, J., Tu, H., Wang, J., Su, X. Mater. Res. Express 2019, 6, 056527. https://doi.org/10.1088/2053-1591/ab0398.Search in Google Scholar
23. Fan, A.-C., Li, J.-H., Tsai, M.-H. J. Mater. Res. Technol. 2020, 9, 11231. https://doi.org/10.1016/j.jmrt.2020.07.056.Search in Google Scholar
24. Daoud, H. M., Manzoni, A. M., Wanderka, N., Glatzel, U. J. Occup. Med. 2015, 67, 2271. https://doi.org/10.1007/s11837-015-1484-7.Search in Google Scholar
25. Du, W. D., Liu, N., Peng, Z., Zhou, P. J., Xiang, H. F., Wang, X. J. Mater. Sci. Technol. 2018, 34, 473. https://doi.org/10.1080/02670836.2017.1407554.Search in Google Scholar
26. Li, B. S., Wang, Y. P., Ren, M. X., Yang, C., Fu, H. Z. Mater. Sci. Eng., A 2008, 498, 482. https://doi.org/10.1016/j.msea.2008.08.025.Search in Google Scholar
27. Jain, R., Rahul, M. R., Samal, S., Kumar, V., Phanikumar, G. J. Alloys Compd. 2020, 822, 153609. https://doi.org/10.1016/j.jallcom.2019.153609.Search in Google Scholar
28. He, F., Wang, Z., Wu, Q., Niu, S., Li, J., Wang, J., Liu, C. T. Scripta Mater. 2017, 131, 42. https://doi.org/10.1016/j.scriptamat.2016.12.033.Search in Google Scholar
29. Wu, C., Sun, Y., Liu, Y., Tu, H. Materials 2019, 12, 1700. https://doi.org/10.3390/ma12101700.Search in Google Scholar PubMed PubMed Central
30. Wang, S., Wang, K., Chen, G., Li, Z., Qin, Z., Lu, X., Li, C. Calphad 2017, 56, 160. https://doi.org/10.1016/j.calphad.2016.12.007.Search in Google Scholar
31. Zeng, L., Liu, L., Huang, S., Zhang, L. Calphad 2017, 58, 58. https://doi.org/10.1016/j.calphad.2017.05.006.Search in Google Scholar
32. Pan, Y., Chen, C., Du, Y., Yuan, C., Luo, F. J. Phase Equilibria Diffus. 2017, 38, 5. https://doi.org/10.1007/s11669-016-0505-8.Search in Google Scholar
33. Zhou, C., Guo, C., Li, C., Du, Z. Calphad 2018, 63, 61. https://doi.org/10.1016/j.calphad.2018.08.011.Search in Google Scholar
34. Zhou, C., Guo, C., Li, J., Li, C., Du, Z. J. Alloys Compd. 2018, 754, 268. https://doi.org/10.1016/j.jallcom.2018.04.253.Search in Google Scholar
35. Yuan, C., Chen, C., Peng, Y., Lu, X., Du, Y., Li, K. Int. J. Mater. Res. 2015, 106, 841. https://doi.org/10.3139/146.111240.Search in Google Scholar
36. Hu, B., Du, Y., Schuster, J. C., Sun, W., Liu, S., Tang, C. Thermochim. Acta 2014, 578, 35. https://doi.org/10.1016/j.tca.2014.01.002.Search in Google Scholar
37. De Keyzer, J., Cacciamani, G., Dupin, N., Wollants, P. Calphad 2009, 33, 109. https://doi.org/10.1016/j.calphad.2008.10.003.Search in Google Scholar
38. Zhou, P., Peng, Y., Hu, B., Liu, S., Du, Y., Wang, S., Wen, G., Xie, W. Calphad 2013, 41, 42. https://doi.org/10.1016/j.calphad.2013.02.001.Search in Google Scholar
39. Tan, Y.-h., Xu, H.-h., Du, Y. Trans. Nonferrous Metals Soc. China 2007, 17, 711. https://doi.org/10.1016/S1003-6326(07)60161-7.Search in Google Scholar
40. Wang, P., Hu, B., Huang, X., Zheng, C. Calphad 2021, 73, 102252. https://doi.org/10.1016/j.calphad.2021.102252.Search in Google Scholar
41. https://computherm.com/panhea.Search in Google Scholar
42. Tian, M., Wu, C., Liu, Y., Peng, H., Wang, J., Su, X. J. Alloys Compd. 2019, 811, 152025. https://doi.org/10.1016/j.jallcom.2019.152025.Search in Google Scholar
43. Guo, S., Liu, C. T. Prog. Nat. Sci.: Met. Mater. Int. 2011, 21, 433. https://doi.org/10.1016/S1002-0071(12)60080-X.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Preface of the issue of the 19th national symposium on phase diagram and materials design
- Review
- Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram
- Original Papers
- Diffusivities and atomic mobilities in the Ni-rich fcc Ni–Al–Cu alloys: experiment and modeling
- Composition-dependent interdiffusivity matrices of ordered bcc_B2 phase in ternary Ni–Al–Ru system at 1273∼1473 K
- Investigation of interdiffusion behavior in the Ti–Zr–Cu ternary system
- Measurement of the diffusion coefficient in Mg–Sn and Mg–Sc binary alloys
- Thermodynamic calculation of phase equilibria of rare earth metals with boron binary systems
- Thermodynamic modeling of the Bi–Ca and Bi–Zr systems
- Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys
- Experimental determination of the isothermal sections and liquidus surface projection of the Mo–Si–V ternary system
- Experimental determination of isothermal sections of the Hf–Nb–Ni system at 950 and 1100 °C
- Experimental investigation and thermodynamic assessment of the Al–Ca–Y ternary system
- Phase equilibria of the Ni–Cr–Y ternary system at 900 °C
- Phase constituents near the center of the Co–Cr–Fe–Ni–Ti system at 1000 °C
- Metastable phase diagram of the Gd2O3–SrO–CoO x ternary system
- Crystallization kinetic and dielectric properties of CaO–MgO–Al2O3–SiO2 glass/Al2O3 composites
- Investigation of the phase relation of the Bi2O3–Fe2O3–Nd2O3 system at 973 K and the microwave absorption performance of NdFeO3/Bi25FeO40 with different mass ratios
- The influence of SrCl2 on the corrosion behavior of magnesium
- Retraction
- Retraction of: Electrolytic synthesis of ZrSi/ZrC nanocomposites from ZrSiO4 and carbon black powder in molten salt
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Editorial
- Preface of the issue of the 19th national symposium on phase diagram and materials design
- Review
- Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram
- Original Papers
- Diffusivities and atomic mobilities in the Ni-rich fcc Ni–Al–Cu alloys: experiment and modeling
- Composition-dependent interdiffusivity matrices of ordered bcc_B2 phase in ternary Ni–Al–Ru system at 1273∼1473 K
- Investigation of interdiffusion behavior in the Ti–Zr–Cu ternary system
- Measurement of the diffusion coefficient in Mg–Sn and Mg–Sc binary alloys
- Thermodynamic calculation of phase equilibria of rare earth metals with boron binary systems
- Thermodynamic modeling of the Bi–Ca and Bi–Zr systems
- Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys
- Experimental determination of the isothermal sections and liquidus surface projection of the Mo–Si–V ternary system
- Experimental determination of isothermal sections of the Hf–Nb–Ni system at 950 and 1100 °C
- Experimental investigation and thermodynamic assessment of the Al–Ca–Y ternary system
- Phase equilibria of the Ni–Cr–Y ternary system at 900 °C
- Phase constituents near the center of the Co–Cr–Fe–Ni–Ti system at 1000 °C
- Metastable phase diagram of the Gd2O3–SrO–CoO x ternary system
- Crystallization kinetic and dielectric properties of CaO–MgO–Al2O3–SiO2 glass/Al2O3 composites
- Investigation of the phase relation of the Bi2O3–Fe2O3–Nd2O3 system at 973 K and the microwave absorption performance of NdFeO3/Bi25FeO40 with different mass ratios
- The influence of SrCl2 on the corrosion behavior of magnesium
- Retraction
- Retraction of: Electrolytic synthesis of ZrSi/ZrC nanocomposites from ZrSiO4 and carbon black powder in molten salt
- News
- DGM – Deutsche Gesellschaft für Materialkunde