Home Thermodynamic modeling of the Bi–Ca and Bi–Zr systems
Article
Licensed
Unlicensed Requires Authentication

Thermodynamic modeling of the Bi–Ca and Bi–Zr systems

  • Fengyang Gao , Yuling Liu EMAIL logo , Peng Zhou , Dandan Huang , Taibai Fu EMAIL logo , Shuyan Zhang and Yong Du
Published/Copyright: April 28, 2022
Become an author with De Gruyter Brill

Abstract

In the literature, there are no reliable thermodynamic descriptions for the Bi–Ca and Bi–Zr systems. In the present work, by means of the CALPHAD (calculation of phase diagrams) method, the thermodynamic assessments of the Bi–Ca and Bi–Zr systems were carried out based on the available data. The Gibbs energies of the liquid, bcc and hcp phases in these two binary systems were described by the substitutional solution model with the Redlich–Kister equation, and the intermetallic compounds (αBi10Ca11, βBi10Ca11, Bi3Ca5, Bi2Zr, Bi1.62Zr, BiZr, Bi2Zr3, and BiZr2 phases) were treated as stoichiometric phases. A good agreement between the calculated results and experimental data is obtained for both systems. The presently obtained thermodynamic parameters for the Bi–Ca and Bi–Zr systems are of interest for the development of Bi-based alloys.


Corresponding authors: Yuling Liu and Taibai Fu, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, P. R. China, E-mail: (Y. Liu), (T. Fu)

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The financial supports from the National Natural Science Foundation of China (Grant No. 52031017) and the Material Gene Engineering Project of Yunnan Province (Grant No. 2019ZE001-1) are greatly acknowledged.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Goldsmid, H. J. Materials 2014, 7, 2577. https://doi.org/10.3390/ma7042577.Search in Google Scholar PubMed PubMed Central

2. Yang, J., Chen, R., Fan, X. A., Bao, S., Zhu, W. J. Alloys Compd. 2006, 407, 330. https://doi.org/10.1016/j.jallcom.2005.06.041.Search in Google Scholar

3. Hor, Y. S., Richardella, A., Roushan, P., Xia, Y., Checkelsky, J. G., Yazdani, A., Hasan, M. Z., Ong, N. P., Cava, R. J. Phys. Rev. B Condens. Matter 2009, 79, 195208. https://doi.org/10.1103/PhysRevB.79.195208.Search in Google Scholar

4. Muzaffar, M. U., Zhu, B., Yang, Q., Zhou, Y., Zhang, S., Zhang, Z., He, J. Mater. Today Phys. 2019, 9, 100130. https://doi.org/10.1016/j.mtphys.2019.100130.Search in Google Scholar

5. Gaul, A., Peng, Q., Singh, D. J., Borca-Tasciuc, T., Ramanath, G. J. Appl. Phys. 2019, 125, 165101. https://doi.org/10.1063/1.5081438.Search in Google Scholar

6. Hohl, H., Ramirez, A. P., Goldmann, C., Ernst, G., Wölfing, B., Bucher, E. J. Phys. Condens. Matter 1999, 11, 1697. https://doi.org/10.1088/0953-8984/11/7/004.Search in Google Scholar

7. Ponnambalam, V., Zhang, B., Tritt, T. M., Poon, S. J. J. Electron. Mater. 2007, 36, 732. https://doi.org/10.1007/s11664-007-0153-1.Search in Google Scholar

8. Singh, S., Zeeshan, M., van den Brink, J., Kandpal, H. C. arXiv pre-print server 2019. DOI arxiv:1904.02488.Search in Google Scholar

9. Zhao, D., Zuo, M., Bo, L., Wang, Y. Materials 2018, 11, 728. https://doi.org/10.3390/ma11050728.Search in Google Scholar PubMed PubMed Central

10. Dong, X., Fan, C. Sci. Rep. 2015, 5, 9326. https://doi.org/10.1038/srep09326.Search in Google Scholar PubMed PubMed Central

11. Sturza, M., Han, F., Malliakas, C. D., Chung, D. Y., Claus, H., Kanatzidis, M. G. Phys. Rev. B Condens. Matter 2014, 89, 054512. https://doi.org/10.1103/physrevb.89.054512.Search in Google Scholar

12. Winiarski, M. J., Wiendlocha, B., Gołąb, S., Kushwaha, S. K., Wiśniewski, P., Kaczorowski, D., Thompson, J. D., Cava, R. J., Klimczuk, T. Phys. Chem. Chem. Phys. 2016, 18, 21737. https://doi.org/10.1039/c6cp02856j.Search in Google Scholar

13. Kaufman, L., Bernstein, H. Computer Calculation of Phase Diagrams; Academic Press: New York, 1970.Search in Google Scholar

14. Kurzyniec, E. Bull. Intern. Acad. Polonaise 1931, 1931A, 31.Search in Google Scholar

15. Hoesel, S. Z. Phys. Chem. 1962, 219, 205.10.1515/zpch-1962-21923Search in Google Scholar

16. Smirnov, M. P., Rudnichenko, V. E. Zh. Neorg. Khim. 1963, 8, 1402.Search in Google Scholar

17. Okamoto, H. In Binary Alloy Phase Diagrams; Massalski, T. B., Ed. ASM International: USA, 1990, 2nd ed.; p. 720.Search in Google Scholar

18. Predel, B. Bi-Ca (Bismuth-Calcium): Datasheet from Landolt-Börnstein-Group IV Physical Chemistry, vol. 5B: “B-Ba-C-Zr” in Springer Materials; Springer-Verlag: Berlin, Heidelberg, 1992.Search in Google Scholar

19. Notin, M., Mejbar, J., Bouhajib, A., Charles, J., Hertz, J. J. Alloys Compd. 1995, 220, 62. https://doi.org/10.1016/0925-8388(94)06001-0.Search in Google Scholar

20. Delcet, J., Delgado-Brune, A., Egan, J. J. In Calculation of Phase Diagrams and Thermochemistry of Alloy Phases, Proc. AIME, Fall Meet; Chang, Y. A., Smith, J. F., Eds. AIME: Milwaukee, WI, 1979; p. 275.Search in Google Scholar

21. Bouhajib, D. A. Doctorat, Université de Nancy I, Sep., 1990.Search in Google Scholar

22. Kim, H., Boysen, D. A., Bradwell, D. J., Chung, B., Jiang, K., Tomaszowska, A. A., Wang, K., Wei, W., Sadoway, D. R. Electrochim. Acta 2012, 60, 154. https://doi.org/10.1016/j.electacta.2011.11.023.Search in Google Scholar

23. Deller, K., Eisenmann, B. Z. Naturforsch. B 1976, 31, 29. https://doi.org/10.1515/znb-1976-0105.Search in Google Scholar

24. Martinez-Ripoll, M., Haase, A., Brauer, G. Acta Crystallogr. B 1974, 30, 2004. https://doi.org/10.1107/S0567740874006273.Search in Google Scholar

25. Saal, J. E., Kirklin, S., Aykol, M., Meredig, B., Wolverton, C. Jom 2013, 65, 1501. https://doi.org/10.1007/s11837-013-0755-4.Search in Google Scholar

26. Delcet, J., Delgado-Brune, A., Egan, J. J., Eds. Coulometric Titrations Using CaF2 and BaF2 Solid Electrolytes to Study Alloy Phases. Metall. Soc. AIME: United States, 1979.Search in Google Scholar

27. Weeks, J. R., Klamut, C. J., Silberberg, M., Miller, W. E., Gurinsky, D. H., Eds. Corrosion Problems with Bismuth Uranium Fuels. U.N.: Geneva, 1955.Search in Google Scholar

28. Barton, P. J., Greenwood, G. W. J. Inst. Met. 1958, 86, 504.Search in Google Scholar

29. Bykov, V. N., Kazarnikov, V. V. Sov. Phys. Crystallogr. 1959, 4, 880.Search in Google Scholar

30. Schweitzer, D. G., Weeks, J. R. ASM Trans. Q. 1961, 54, 185.Search in Google Scholar

31. Wilhelm, H. A., Hamilton, C. B. US At. Energy Comm. 1961, IS-351, 36.Search in Google Scholar

32. Hamilton, C. B., Wilhelm, H. A. U.S. At. Energy Comm. 1964, IS-1269, 1.Search in Google Scholar

33. Okamoto, H. Bull. Alloy Phase Diagrams 1990, 11, 295. https://doi.org/10.1007/BF03029301.Search in Google Scholar

34. Eberle, D., Schubert, K. Z. Metallkd 1968, 59, 306.10.1080/00220973.1942.11018938Search in Google Scholar

35. Boström, M., Lind, H., Lidin, S., Niewa, R., Grin, Y. Solid State Sci. 2006, 8, 1173. https://doi.org/10.1016/j.solidstatesciences.2006.03.008.Search in Google Scholar

36. Meschel, S. V., Nash, P. Calphad 2019, 64, 131. https://doi.org/10.1016/j.calphad.2018.11.007.Search in Google Scholar

37. Dinsdale, A. T. Calphad 1991, 15, 317. https://doi.org/10.1016/0364-5916(91)90030-N.Search in Google Scholar

38. Redlich, O., Kister, A. T. Ind. Eng. Chem. Res. 1948, 40, 345. https://doi.org/10.1021/ie50458a036.Search in Google Scholar

39. Sundman, B., Jansson, B., Andersson, J.-O. Calphad 1985, 9, 153. https://doi.org/10.1016/0364-5916(85)90021-5.Search in Google Scholar

40. Okamoto, H. J. Phase Equil. 1991, 12, 623. https://doi.org/10.1007/BF02645160.Search in Google Scholar

Received: 2021-06-19
Revised: 2021-10-02
Accepted: 2021-08-28
Published Online: 2022-04-28
Published in Print: 2022-05-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Preface of the issue of the 19th national symposium on phase diagram and materials design
  4. Review
  5. Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram
  6. Original Papers
  7. Diffusivities and atomic mobilities in the Ni-rich fcc Ni–Al–Cu alloys: experiment and modeling
  8. Composition-dependent interdiffusivity matrices of ordered bcc_B2 phase in ternary Ni–Al–Ru system at 1273∼1473 K
  9. Investigation of interdiffusion behavior in the Ti–Zr–Cu ternary system
  10. Measurement of the diffusion coefficient in Mg–Sn and Mg–Sc binary alloys
  11. Thermodynamic calculation of phase equilibria of rare earth metals with boron binary systems
  12. Thermodynamic modeling of the Bi–Ca and Bi–Zr systems
  13. Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys
  14. Experimental determination of the isothermal sections and liquidus surface projection of the Mo–Si–V ternary system
  15. Experimental determination of isothermal sections of the Hf–Nb–Ni system at 950 and 1100 °C
  16. Experimental investigation and thermodynamic assessment of the Al–Ca–Y ternary system
  17. Phase equilibria of the Ni–Cr–Y ternary system at 900 °C
  18. Phase constituents near the center of the Co–Cr–Fe–Ni–Ti system at 1000 °C
  19. Metastable phase diagram of the Gd2O3–SrO–CoO x ternary system
  20. Crystallization kinetic and dielectric properties of CaO–MgO–Al2O3–SiO2 glass/Al2O3 composites
  21. Investigation of the phase relation of the Bi2O3–Fe2O3–Nd2O3 system at 973 K and the microwave absorption performance of NdFeO3/Bi25FeO40 with different mass ratios
  22. The influence of SrCl2 on the corrosion behavior of magnesium
  23. Retraction
  24. Retraction of: Electrolytic synthesis of ZrSi/ZrC nanocomposites from ZrSiO4 and carbon black powder in molten salt
  25. News
  26. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8428/html?lang=en
Scroll to top button