Startseite Technique for measuring the residual strain in strained Si/SiGe MOSFET structures using Raman spectroscopy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Technique for measuring the residual strain in strained Si/SiGe MOSFET structures using Raman spectroscopy

  • P. Dobrosz , S. J. Bull EMAIL logo , S. H. Olsen und A. G. O’Neill
Veröffentlicht/Copyright: 1. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A measurement technique for studying the strain in Si/SiGe layers has been developed based on Raman spectroscopy using a laser microprobe. The Si/SiGe layers were grown by ultra-low pressure chemical vapour deposition in a modified molecular beam epitaxy system. The structures consisted of a strained Si grown on relaxed Si1– xGex (x = 0.1, 0.15 . . . 0.35), where the Si channel thickness was varied between 5 and 10 nm. Raman spectroscopy using a 514 nm laser indicated a significant shift in the Si peak from the SiGe layer; the position of this peak is related to the strain in the layer and strongly depends on Ge content, decreasing with increasing Ge in the virtual substrate. However, the strained Si peak shows a considerable overlap with the Si in SiGe peak and is difficult to deconvolute by conventional peak fitting approaches. The residual strain in the thin heterostructure Si/SiGe layers was, therefore, investigated before and after selectively etching the Si. The strain in the channel increased with Ge content in the underlying SiGe as expected, confirming that the high-temperature device processing did not degrade the channel macrostrain.


Prof. S. J. Bull Herschel Building University of Newcastle Upon Tyne Newcastle Upon Tyne, NE1 7RU, U. K. Tel.: +44 191 222 7913 Fax: +44 191 222 8563

  1. The authors would like to thank J. Zhang for material growth, Southampton University Microfabrication facility for MOSFET processing and H. Yuk for Si cap removal. P. Dobrosz acknowledges the financial support provided through the European Community’s Human Potential Programme under contract HPRN-CT-2002-00209.

References

[1] S. Takagi, T. Tezuka, N. Sugiyama: Mater. Sci. Eng. B 89 (2002) 426.10.1016/S0921-5107(01)00851-0Suche in Google Scholar

[2] Z.Y. Cheng, M.T. Currie, C.W. Leitz, G. Taraschi, E.A. Fitzgerald, J.L. Hoyt, D.A. Antoniadas: IEEE Electron Device Lett. 22 (2001) 321.10.1109/55.930678Suche in Google Scholar

[3] F. Schaffler: Semiconductor Sci. Technol. 12 (1997) 1515.10.1088/0268-1242/12/12/001Suche in Google Scholar

[4] T.E. Whall, E.H.C. Parker: J. Phys. D: Appl. Phys. 31 (1998) 1397.10.1088/0022-3727/31/12/003Suche in Google Scholar

[5] E.A. Fitzgerald, Y.A. Xie, D. Monroe, P.J. Silverman, J.M. Kuo, A.R. Kortan, F.A. Thiel, B.E. Weir: J. Vac. Sci. Technol. B 10 (1992) 1807.10.1116/1.586204Suche in Google Scholar

[6] B.S. Meyerson, D.L. Harame, J. Stork, E. Crabbe, J. Comfort, G. Patton: Int. J. High Speed Electron. Syst. 5 (1994) 473.10.1142/S012915649400019XSuche in Google Scholar

[7] J.W. Matthews, A.E. Blakeslee: J. Cryst. Growth 27 (1974) 118.10.1016/S0022-0248(74)80055-2Suche in Google Scholar

[8] K. Kimoto, K. Usami, H. Sakata, M. Tanaka: Jpn. J. Appl. Phys. 32 (1993) L211.10.1143/JJAP.32.L211Suche in Google Scholar

[9] P.A. Flinn, G.A. Waychunas: J. Vac. Sci. Technol. B 6 (1988) 1749.10.1116/1.584172Suche in Google Scholar

[10] S.M. Hu: J. Appl. Phys. 70 (1991) R53.10.1063/1.349282Suche in Google Scholar

[11] R. Zeyfang: Solid-State Electron. 14 (1971) 1035.10.1016/0038-1101(71)90172-9Suche in Google Scholar

[12] A. Mezin, J.P. Chambard, J. Lepage, M. Nivoit: Thin Solid Films 185 (1990) 57.10.1016/0040-6090(90)90006-YSuche in Google Scholar

[13] A. Atkinson, T. Johnson, A.H. Harker, S.C. Jain: Thin Solid Films 274 (1996) 106.10.1016/0040-6090(95)07090-7Suche in Google Scholar

[14] E. Anastassakis, A. Pinczuk, E. Burstein, F.H. Pollak, M. Cardona: Solid State Commun. 8 (1970) 133.10.1016/0038-1098(70)90588-0Suche in Google Scholar

[15] S.H. Olsen, L.S. Driscoll, K.S.K. Kwa, S. Chattopadhyay, A.G. O’Neill: Proc. Solid State Devices and Materials (2003) 722, published as an Extended Abstract.Suche in Google Scholar

[16] N.J. Woods, G. Breton, H. Graoui, J. Zhang: J. Cryst. Growth 227 (2001) 735.10.1016/S0022-0248(01)00817-XSuche in Google Scholar

[17] J.T.L. Thong, W.K. Choi, C.W. Chong: Sensors and Actuators A 63 (1997) 243.10.1016/S0924-4247(97)80511-0Suche in Google Scholar

[18] I. De Wolf: Semiconduct. Sci. Technol. 11 (1996) 139.10.1088/0268-1242/11/2/001Suche in Google Scholar

[19] M. Siakavellas, E. Anastassakis, G. Kaltsas, A.G. Nassiopoulos: Microelectr. Eng. 41–42 (1998) 469.10.1016/S0167-9317(98)00109-9Suche in Google Scholar

[20] H. Talaat, S. Negm, H.E. Schaffer, G. Kaltsas and A.G. Nassio-poulou: J. Non–Cryst. Solids 266–269 (2000) 1345.10.1016/S0022-3093(99)00955-2Suche in Google Scholar

Received: 2003-10-31
Accepted: 2004-03-09
Published Online: 2022-02-01

© 2004 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Challenges and interesting observations associated with feedback-controlled nanoindentation
  4. Nanoscratching on surfaces: the relationships between lateral force, normal force and normal displacement
  5. Nano-scratch testing on thin diamond-like carbon coatings for microactuators: friction, wear and elastic-plastic deformation
  6. Comparison of hardness and Young’s modulus by single indentation and multiple unloading indentation
  7. Nanomechanical characterization of Ti-base nanostructure-dendrite composite
  8. Surface topography and nanomechanical/tribological behaviour of ultrathin nitride films on silicon
  9. Viscosity of glass at high contact pressure during indentation experiments
  10. Dynamic indentation measurements on amorphous materials
  11. Technique for measuring the residual strain in strained Si/SiGe MOSFET structures using Raman spectroscopy
  12. Partial atomic volumes of early transition metals in A10 metal-based solid solutions
  13. Effects of an external electric field applied during the solution heat treatment of the Al-Mg-Si-Cu alloy AA6111
  14. Fatigue crack propagation in pseudoelastic TiNi smart microcomponents
  15. Microstructure evolution in immiscible alloys during rapid directional solidification
  16. The creep performance of a sand-cast Mg–2.8 Nd–0.8 Zn–0.5 Zr–0.3 Gd alloy at 241 to 262°C
  17. Punch-shear tests and size effects for evaluating the shear strength of machinable ceramics
  18. Study of Ti–Si in situ composite processing by multi-stage eutectic solidification
  19. Twin-roll cast Al–Mg –Si sheet for automotive applications
  20. Thermodynamics and surface properties of Fe–V and Fe–Ti liquid alloys
  21. Personal/ Personelles
  22. Press/ Presse
  23. Books/Bücher
  24. Conferences / Konferenzen
  25. Frontmatter
  26. Editorial
  27. Editorial
  28. Articles Basic
  29. Challenges and interesting observations associated with feedback-controlled nanoindentation
  30. Nanoscratching on surfaces: the relationships between lateral force, normal force and normal displacement
  31. Nano-scratch testing on thin diamond-like carbon coatings for microactuators: friction, wear and elastic-plastic deformation
  32. Comparison of hardness and Young’s modulus by single indentation and multiple unloading indentation
  33. Nanomechanical characterization of Ti-base nanostructure-dendrite composite
  34. Surface topography and nanomechanical/tribological behaviour of ultrathin nitride films on silicon
  35. Viscosity of glass at high contact pressure during indentation experiments
  36. Dynamic indentation measurements on amorphous materials
  37. Technique for measuring the residual strain in strained Si/SiGe MOSFET structures using Raman spectroscopy
  38. Partial atomic volumes of early transition metals in A10 metal-based solid solutions
  39. Effects of an external electric field applied during the solution heat treatment of the Al-Mg-Si-Cu alloy AA6111
  40. Fatigue crack propagation in pseudoelastic TiNi smart microcomponents
  41. Microstructure evolution in immiscible alloys during rapid directional solidification
  42. The creep performance of a sand-cast Mg–2.8 Nd–0.8 Zn–0.5 Zr–0.3 Gd alloy at 241 to 262°C
  43. Articles Applied
  44. Punch-shear tests and size effects for evaluating the shear strength of machinable ceramics
  45. Study of Ti–Si in situ composite processing by multi-stage eutectic solidification
  46. Twin-roll cast Al–Mg –Si sheet for automotive applications
  47. Thermodynamics and surface properties of Fe–V and Fe–Ti liquid alloys
  48. Notifications/Mitteilungen
  49. Personal/ Personelles
  50. Books/Bücher
  51. Press/ Presse
  52. Conferences / Konferenzen
Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2004-0072/html
Button zum nach oben scrollen