Home Viscosity of glass at high contact pressure during indentation experiments
Article
Licensed
Unlicensed Requires Authentication

Viscosity of glass at high contact pressure during indentation experiments

  • Holger Meinhard and Peter Grau EMAIL logo
Published/Copyright: February 1, 2022
Become an author with De Gruyter Brill

Abstract

The mechanism of plastic deformation of glasses by indentation near room temperature has not been understood completely up to now. For the analysis of indentation experiments with a Vickers pyramid and spherical indenter, respectively, viscoelastic deformation behaviour is assumed for the complete temperature range from room temperature to the transformation temperature. Therefore, the rheological analysis of all experiments was performed with the help of a simple Maxwell model. The results of indentation experiments were compared with cylinder compression experiments, which were analysed by the same rheological principles. Additionally, some indents were analysed by topographical investigation to get the first hints of viscoelastic deformation behaviour below the transformation temperature of glass.


Prof. Dr. Peter Grau Martin-Luther-Universität Halle –Wittenberg, FB Physik Friedemann-Bach-Platz 6, D-06108 Halle, Germany Tel.: +49 345 55 25525 Fax: +49 345 55 27159

  1. The authors wish to thank Prof. Dr. James R. Varner, Alfred University, Alfred, NY, USA, for critical reading of the manuscript.

References

[1] D.B. Marsh: Proc. Roy. Soc. A 279 (1964) 420; K.L. Johnson: Contact Mechanics, Cambridge University Press, Cambridge (1985).Search in Google Scholar

[2] H. Hertz: J. für reine und angewandte Mathematik 92 (1882) 156.10.1515/9783112342404-004Search in Google Scholar

[3] F.M. Gao, J.L. He, E.D. Wu, S.M. Liu, D.L. Yu, D.C. Li, S.Y. Zhang, Y.J. Tian: Phys. Rev. Lett. 91 (2003) 015502; J.J. Gilman: Phil. Mag. 82 (10) (2002) 1811.10.1103/PhysRevLett.91.015502Search in Google Scholar

[4] S.G. Corcoran, R.J. Colton, E. Lilleodden, W.W. Gerberich: Phys. Rev. B 55 (1997) R16057.10.1103/PhysRevB.55.R16057Search in Google Scholar

[5] T.A. Michalske, J.E. Houston: Acta mater. 46 (1998) 391.10.1016/S1359-6454(97)00270-XSearch in Google Scholar

[6] D.F. Bahr, D.E. Kramer, W.W. Gerberich: Acta mater. 46 (1998) 3605.10.1016/S1359-6454(98)00024-XSearch in Google Scholar

[7] A. Zeckzer: Ph.D. Thesis, University of Halle ( 2002); H.S. Leipner, D. Lorenz, A. Zeckzer, P. Grau: Phys. Stat. Sol. (a) 183 (2001 R4.10.1002/1521-396X(200102)183:2<R4::AID-PSSA99994>3.0.CO;2-#Search in Google Scholar

[8] S. Pronk, D. Frenkel: Phys. Rev. Lett. 90 (2003) 255501.10.1103/PhysRevLett.90.255501Search in Google Scholar

[9] G.M. Pharr, W.C. Oliver, D.R. Clarke: Scripta metall. 23 (1989) 1999.10.1016/0036-9748(89)90488-2Search in Google Scholar

[10] A. Kailer, Y.G. Gogotsi, K.G. Nickel: J. Appl. Phys. 81 (1997) 3057.10.1063/1.364340Search in Google Scholar

[11] D. Lorenz: Ph.D. Thesis, University of Halle (2001); D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen, H.S. Leipner: Phys. Rev. B 67 (2003) 172101.Search in Google Scholar

[12] H. Saka, A. Shimatani, M. Suganuma: Phil. Mag. A 82 (2002) 1971.10.1080/01418610208235709Search in Google Scholar

[13] A.B. Mann, D. van Heerden, J.B. Pethika, P. Bowes, T.P. Weihs: Phil. Mag. A 82 (2002) 1921.10.1080/01418610208235704Search in Google Scholar

[14] H. Vogel: Physik. Z. 22 (1921) 645.Search in Google Scholar

[15] G.S. Fulcher: J. Am. Ceram. Soc. 8 (1925) 339 and 789.10.1111/j.1151-2916.1925.tb16731.xSearch in Google Scholar

[16] G. Tammann, W. Hesse: Z. anorg. allg. Chem. 156 (1926) 245.10.1002/zaac.19261560121Search in Google Scholar

[17] G. Tammann: Der Glaszustand, Voss, Leipzig (1933).Search in Google Scholar

[18] S. Enders: Ph.D. Thesis, University of Halle (2000); S. Enders, P. Grau, H.M. Hawthorne: Mater. Res. Soc. Symp. Proc. 649 (2001) Q3.6.1.Search in Google Scholar

[19] F. Celarie, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, C. Marliere: Phys. Rev Lett. 90 (2003) 075504.10.1103/PhysRevLett.90.075504Search in Google Scholar

[20] H. Meinhard: Ph.D. Thesis, University of Halle (1999); P. Grau, G. Berg, H. Meinhard, S. Mosch: J. Am. Ceram. Soc. 81 (1998) 1557.10.1111/j.1151-2916.1998.tb02516.xSearch in Google Scholar

[21] H. Meinhard, W. Fränzel, P. Grau: Glastech. Ber. Glass Sci. Technol. 74 (2001) 6.Search in Google Scholar

[22] I.N. Sneddon: Int. J. Eng. Sci. 3 (1965) 47.10.1016/0020-7225(65)90019-4Search in Google Scholar

[23] Y. Murakami, K. Tanaka, M. Itokazu, A. Shimamoto: Phil. Mag. A 69 (1994) 1131.10.1080/01418619408242244Search in Google Scholar

[24] E.H. Lee, J.R.M. Radok: J. Appl. Mech. 27 (1960) 438.10.1115/1.3644020Search in Google Scholar

[25] R. Brückner, Y. Yue, A. Habeck: Glastech. Ber. Glass Sci. Technol. 70 (1997) 261.Search in Google Scholar

[26] S. Bark–Zollmann, G. Kluge, K Heide: Glastech. Ber. Glass Sci. Technol. 71 (1998) 57.Search in Google Scholar

[27] G.H. Frischat, in: S. Lohmeyer (Ed.): Werkstoff Glas I, expert, Ehningen (1987) 47.Search in Google Scholar

[28] W.C. Macosco: Rheology – principles, measurements and applications, VCH, New York (1994).Search in Google Scholar

[29] R. Kohlrausch: Pogg. Ann. Phys. 91 (1854) 179.10.1002/andp.18541670203Search in Google Scholar

[30] G. Williams, D.C. Watts: Trans. Faraday Soc. 66 (1970) 80.10.1039/tf9706600080Search in Google Scholar

Received: 2003-09-25
Accepted: 2004-03-09
Published Online: 2022-02-01

© 2004 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Challenges and interesting observations associated with feedback-controlled nanoindentation
  4. Nanoscratching on surfaces: the relationships between lateral force, normal force and normal displacement
  5. Nano-scratch testing on thin diamond-like carbon coatings for microactuators: friction, wear and elastic-plastic deformation
  6. Comparison of hardness and Young’s modulus by single indentation and multiple unloading indentation
  7. Nanomechanical characterization of Ti-base nanostructure-dendrite composite
  8. Surface topography and nanomechanical/tribological behaviour of ultrathin nitride films on silicon
  9. Viscosity of glass at high contact pressure during indentation experiments
  10. Dynamic indentation measurements on amorphous materials
  11. Technique for measuring the residual strain in strained Si/SiGe MOSFET structures using Raman spectroscopy
  12. Partial atomic volumes of early transition metals in A10 metal-based solid solutions
  13. Effects of an external electric field applied during the solution heat treatment of the Al-Mg-Si-Cu alloy AA6111
  14. Fatigue crack propagation in pseudoelastic TiNi smart microcomponents
  15. Microstructure evolution in immiscible alloys during rapid directional solidification
  16. The creep performance of a sand-cast Mg–2.8 Nd–0.8 Zn–0.5 Zr–0.3 Gd alloy at 241 to 262°C
  17. Punch-shear tests and size effects for evaluating the shear strength of machinable ceramics
  18. Study of Ti–Si in situ composite processing by multi-stage eutectic solidification
  19. Twin-roll cast Al–Mg –Si sheet for automotive applications
  20. Thermodynamics and surface properties of Fe–V and Fe–Ti liquid alloys
  21. Personal/ Personelles
  22. Press/ Presse
  23. Books/Bücher
  24. Conferences / Konferenzen
  25. Frontmatter
  26. Editorial
  27. Editorial
  28. Articles Basic
  29. Challenges and interesting observations associated with feedback-controlled nanoindentation
  30. Nanoscratching on surfaces: the relationships between lateral force, normal force and normal displacement
  31. Nano-scratch testing on thin diamond-like carbon coatings for microactuators: friction, wear and elastic-plastic deformation
  32. Comparison of hardness and Young’s modulus by single indentation and multiple unloading indentation
  33. Nanomechanical characterization of Ti-base nanostructure-dendrite composite
  34. Surface topography and nanomechanical/tribological behaviour of ultrathin nitride films on silicon
  35. Viscosity of glass at high contact pressure during indentation experiments
  36. Dynamic indentation measurements on amorphous materials
  37. Technique for measuring the residual strain in strained Si/SiGe MOSFET structures using Raman spectroscopy
  38. Partial atomic volumes of early transition metals in A10 metal-based solid solutions
  39. Effects of an external electric field applied during the solution heat treatment of the Al-Mg-Si-Cu alloy AA6111
  40. Fatigue crack propagation in pseudoelastic TiNi smart microcomponents
  41. Microstructure evolution in immiscible alloys during rapid directional solidification
  42. The creep performance of a sand-cast Mg–2.8 Nd–0.8 Zn–0.5 Zr–0.3 Gd alloy at 241 to 262°C
  43. Articles Applied
  44. Punch-shear tests and size effects for evaluating the shear strength of machinable ceramics
  45. Study of Ti–Si in situ composite processing by multi-stage eutectic solidification
  46. Twin-roll cast Al–Mg –Si sheet for automotive applications
  47. Thermodynamics and surface properties of Fe–V and Fe–Ti liquid alloys
  48. Notifications/Mitteilungen
  49. Personal/ Personelles
  50. Books/Bücher
  51. Press/ Presse
  52. Conferences / Konferenzen
Downloaded on 30.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2004-0070/html
Scroll to top button