Startseite Determinants of synergistic cell-cell interactions in bacteria
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Determinants of synergistic cell-cell interactions in bacteria

  • Benedikt Pauli ORCID logo , Shiksha Ajmera ORCID logo und Christian Kost ORCID logo EMAIL logo
Veröffentlicht/Copyright: 2. März 2023

Abstract

Bacteria are ubiquitous and colonize virtually every conceivable habitat on earth. To achieve this, bacteria require different metabolites and biochemical capabilities. Rather than trying to produce all of the needed materials by themselves, bacteria have evolved a range of synergistic interactions, in which they exchange different commodities with other members of their local community. While it is widely acknowledged that synergistic interactions are key to the ecology of both individual bacteria and entire microbial communities, the factors determining their establishment remain poorly understood. Here we provide a comprehensive overview over our current knowledge on the determinants of positive cell-cell interactions among bacteria. Taking a holistic approach, we review the literature on the molecular mechanisms bacteria use to transfer commodities between bacterial cells and discuss to which extent these mechanisms favour or constrain the successful establishment of synergistic cell-cell interactions. In addition, we analyse how these different processes affect the specificity among interaction partners. By drawing together evidence from different disciplines that study the focal question on different levels of organisation, this work not only summarizes the state of the art in this exciting field of research, but also identifies new avenues for future research.


Corresponding author: Christian Kost, Department of Ecology, School of Biology/Chemistry, Osnabrück University, D-49076 Osnabrück, Germany; and Center of Cellular Nanoanalytics (CellNanOs), Osnabrück University, Barbarastrasse 11, D-49076 Osnabrück, Germany, E-mail:
Benedikt Pauli and Shiksha Ajmera contributed equally to this work.

Funding source: Volkswagen Foundation

Award Identifier / Grant number: Az: 9B831

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: KO 3909/2-1

Award Identifier / Grant number: KO 3909/4-1

Award Identifier / Grant number: KO 3909/6-1

Award Identifier / Grant number: KO 3909/9-1

Award Identifier / Grant number: SFB 944, P19

Acknowledgements

The authors would like to thank all members of the Kostlab (past and present) as well as the SFB 944 for valuable discussion. This work was funded by the German Research Foundation (DFG: SFB 944, P19, KO 3909/2-1, KO 3909/4-1, KO 3909/6-1, KO 3909/9-1) and the Volkswagen Foundation (Az: 9B831).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financiallly supported by the German Research Foundation (Grant number: DFG: SFB 944, P19), Deutsche Forschungsgemeinschaft (Grant number: KO 3909/2-1, KO 3909/4-1, KO 3909/6-1, KO 3909/9-1), Volkswagen Foundation (Grant number: Az: 9B831).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abisado, R.G., Benomar, S., Klaus, J.R., Dandekar, A.A., and Chandler, J.R. (2018). Bacterial quorum sensing and microbial community interactions. mBio 9: e02331-17, https://doi.org/10.1128/mbio.02331-17.Suche in Google Scholar PubMed PubMed Central

Alteri, C.J. and Mobley, H.L.T. (2016). The versatile type VI secretion system. In: Kudva, I.T., Cornick, N.A., Plummer, P.J., Zhang, Q., Nicholson, T.L., Bannantine, J.P., and Bellaire, B.H. (Eds.), Virulence mechanisms of bacterial pathogens. John Wiley & Sons, Washington, DC, USA, pp. 337–356.10.1128/9781555819286.ch12Suche in Google Scholar

Amin, S.A., Green, D.H., Hart, M.C., Küpper, F.C., Sunda, W.G., and Carrano, C.J. (2009). Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc. Natl. Acad. Sci. USA 106: 17071–17076, https://doi.org/10.1073/pnas.0905512106.Suche in Google Scholar PubMed PubMed Central

Aoki, S.K., Pamma, R., Hernday, A.D., Bickham, J.E., Braaten, B.A., and Low, D.A. (2005). Contact-dependent inhibition of growth in Escherichia coli. Science 309: 1245–1248, https://doi.org/10.1126/science.1115109.Suche in Google Scholar PubMed

Aranda-Díaz, A., Obadia, B., Dodge, R., Thomsen, T., Hallberg, Z.F., Güvener, Z.T., Ludington, W.B., and Huang, K.C. (2020). Bacterial interspecies interactions modulate pH-mediated antibiotic tolerance. eLife 9: e51493, https://doi.org/10.7554/elife.51493.Suche in Google Scholar PubMed PubMed Central

Ayrapetyan, M., Williams, T.C., and Oliver, J.D. (2014). Interspecific quorum sensing mediates the resuscitation of viable but nonculturable vibrios. Appl. Environ. Microbiol. 80: 2478–2483, https://doi.org/10.1128/aem.00080-14.Suche in Google Scholar PubMed PubMed Central

Be'er, A., Zhang, H., Florin, E.-L., Payne, S.M., Ben-Jacob, E., and Swinney, H.L. (2009). Deadly competition between sibling bacterial colonies. Proc. Natl. Acad. Sci. USA 106: 428–433, https://doi.org/10.1073/pnas.0811816106.Suche in Google Scholar PubMed PubMed Central

Beier, S. and Bertilsson, S. (2013). Bacterial chitin degradation-mechanisms and ecophysiological strategies. Front. Microbiol. 4: 149, https://doi.org/10.3389/fmicb.2013.00149.Suche in Google Scholar PubMed PubMed Central

Benomar, S., Ranava, D., Cardenas, M.L., Trably, E., Rafrafi, Y., Ducret, A., Hamelin, J., Lojou, E., Steyer, J.P., and Giudici-Orticoni, M.T. (2015). Nutritional stress induces exchange of cell material and energetic coupling between bacterial species. Nat. Commun. 6: 6283, https://doi.org/10.1038/ncomms7283.Suche in Google Scholar PubMed

Berleman, J.E., Allen, S., Danielewicz, M.A., Remis, J.P., Gorur, A., Cunha, J., Hadi, M.Z., Zusman, D.R., Northen, T.R., Witkowska, H.E., et al.. (2014). The lethal cargo of Myxococcus xanthus outer membrane vesicles. Front. Microbiol. 5: 474, https://doi.org/10.3389/fmicb.2014.00474.Suche in Google Scholar PubMed PubMed Central

Bernier, S.P., Létoffé, S., Delepierre, M., and Ghigo, J.M. (2011). Biogenic ammonia modifies antibiotic resistance at a distance in physically separated bacteria. Mol. Microbiol. 81: 705–716, https://doi.org/10.1111/j.1365-2958.2011.07724.x.Suche in Google Scholar PubMed

Biller, S.J., Schubotz, F., Roggensack, S.E., Thompson, A.W., Summons, R.E., and Chisholm, S.W. (2014). Bacterial vesicles in marine ecosystems. Science 343: 183–186, https://doi.org/10.1126/science.1243457.Suche in Google Scholar PubMed

Bradshaw, D., Homer, K., Marsh, P., and Beighton, D. (1994). Metabolic cooperation in oral microbial communities during growth on mucin. Microbiology 140: 3407–3412, https://doi.org/10.1099/13500872-140-12-3407.Suche in Google Scholar PubMed

Bridges, A.A. and Bassler, B.L. (2019). The intragenus and interspecies quorum-sensing autoinducers exert distinct control over Vibrio cholerae biofilm formation and dispersal. PLoS Biol. 17: e3000429, https://doi.org/10.1371/journal.pbio.3000429.Suche in Google Scholar PubMed PubMed Central

Brown, L., Wolf, J.M., Prados-Rosales, R., and Casadevall, A. (2015). Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat. Rev. Microbiol. 13: 620–630, https://doi.org/10.1038/nrmicro3480.Suche in Google Scholar PubMed PubMed Central

Burdman, S., Jurkevitch, E., Schwartsburd, B., Hampel, M., and Okon, Y. (1998). Aggregation in Azospirillum brasilense: effects of chemical and physical factors and involvement of extracellular components. Microbiology 144: 1989–1999, https://doi.org/10.1099/00221287-144-7-1989.Suche in Google Scholar PubMed

Butaite, E., Kramer, J., and Kümmerli, R. (2021). Local adaptation, geographical distance and phylogenetic relatedness: assessing the drivers of siderophore-mediated social interactions in natural bacterial communities. J. Evol. Biol. 34: 1266–1278, https://doi.org/10.1111/jeb.13883.Suche in Google Scholar PubMed PubMed Central

Cadotte, M.W., Davies, T.J., and Peres-Neto, P.R. (2017). Why phylogenies do not always predict ecological differences. Ecol. Monogr. 87: 535–551, https://doi.org/10.1002/ecm.1267.Suche in Google Scholar

Cao, P., Dey, A., Vassallo, C.N., and Wall, D. (2015). How myxobacteria cooperate. J. Mol. Biol. 427: 3709–3721, https://doi.org/10.1016/j.jmb.2015.07.022.Suche in Google Scholar PubMed PubMed Central

Cao, P. and Wall, D. (2017). Self-identity reprogrammed by a single residue switch in a cell surface receptor of a social bacterium. Proc. Natl. Acad. Sci. USA 114: 3732–3737, https://doi.org/10.1073/pnas.1700315114.Suche in Google Scholar PubMed PubMed Central

Cao, Z., Casabona, M.G., Kneuper, H., Chalmers, J.D., and Palmer, T. (2016). The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat. Microbiol. 2: 1–11, https://doi.org/10.1038/nmicrobiol.2016.183.Suche in Google Scholar PubMed PubMed Central

Caspi, R., Helinski, D.R., Pacek, M., and Konieczny, I. (2000). Interactions of DnaA proteins from distantly related bacteria with the replication origin of the broad host range plasmid RK2. J. Biol. Chem. 275: 18454–18461, https://doi.org/10.1074/jbc.m000552200.Suche in Google Scholar

Charubin, K., Modla, S., Caplan, J.L., and Papoutsakis, E.T. (2020). Interspecies microbial fusion and large-scale exchange of cytoplasmic proteins and RNA in a syntrophic Clostridium coculture. mBio 11: e02030-20, https://doi.org/10.1128/mbio.02030-20.Suche in Google Scholar

Cheng, Q. and Call, D.F. (2016). Hardworking microbes via direct interspecies electron transfer: mechanisms and applications. Environ. Sci. Process. Impacts 18: 968–980, https://doi.org/10.1039/c6em00219f.Suche in Google Scholar PubMed

Cook, L.C. and Federle, M.J. (2014). Peptide pheromone signaling in Streptococcus and Enterococcus. FEMS Microbiol. Rev. 38: 473–492, https://doi.org/10.1111/1574-6976.12046.Suche in Google Scholar PubMed PubMed Central

Cordero, O.X. and Datta, M.S. (2016). Microbial interactions and community assembly at microscales. Curr. Opin. Microbiol. 31: 227–234, https://doi.org/10.1016/j.mib.2016.03.015.Suche in Google Scholar PubMed PubMed Central

Crisan, C.V. and Hammer, B.K. (2020). The Vibrio cholerae type VI secretion system: toxins, regulators and consequences. Environ. Microbiol. 22: 4112–4122, https://doi.org/10.1111/1462-2920.14976.Suche in Google Scholar PubMed

Cubillos-Ruiz, A., Alcantar, M.A., Donghia, N.M., Cárdenas, P., Avila-Pacheco, J., and Collins, J.J. (2022). An engineered live biotherapeutic for the prevention of antibiotic-induced dysbiosis. Nat. Biomed. Eng. 6: 910–921, https://doi.org/10.1038/s41551-022-00871-9.Suche in Google Scholar PubMed

Culotti, A. and Packman, A.I. (2014). Pseudomonas aeruginosa promotes Escherichia coli biofilm formation in nutrient-limited medium. PLoS One 9: e107186, https://doi.org/10.1371/journal.pone.0107186.Suche in Google Scholar PubMed PubMed Central

Curtiss III, R., Caro, L.G., Allison, D.P., and Stallions, D.R. (1969). Early stages of conjugation in Escherichia coli. J. Bacteriol. 100: 1091–1104, https://doi.org/10.1128/jb.100.2.1091-1104.1969.Suche in Google Scholar PubMed PubMed Central

D’Souza, G., Shitut, S., Preussger, D., Yousif, G., Waschina, S., and Kost, C. (2018). Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat. Prod. Rep. 35: 455–488, https://doi.org/10.1039/c8np00009c.Suche in Google Scholar PubMed

Dahl, P.J., Yi, S.M., Gu, Y., Acharya, A., Shipps, C., Neu, J., O’Brien, J.P., Morzan, U.N., Chaudhuri, S., Guberman-Pfeffer, M.J., et al.. (2022). A 300-fold conductivity increase in microbial cytochrome nanowires due to temperature-induced restructuring of hydrogen bonding networks. Sci. Adv. 8: eabm7193, https://doi.org/10.1126/sciadv.abm7193.Suche in Google Scholar PubMed PubMed Central

Delgado-Baquerizo, M., Maestre, F.T., Reich, P.B., Jeffries, T.C., Gaitan, J.J., Encinar, D., Berdugo, M., Campbell, C.D., and Singh, B.K. (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7: 1–8, https://doi.org/10.1038/ncomms10541.Suche in Google Scholar PubMed PubMed Central

Dell’Annunziata, F., Folliero, V., Giugliano, R., De Filippis, A., Santarcangelo, C., Izzo, V., Daglia, M., Galdiero, M., Arciola, C.R., and Franci, G. (2021). Gene transfer potential of outer membrane vesicles of Gram-negative bacteria. Int. J. Mol. Sci. 22: 5985, https://doi.org/10.3390/ijms22115985.Suche in Google Scholar PubMed PubMed Central

Drescher, K., Nadell, C.D., Stone, H.A., Wingreen, N.S., and Bassler, B.L. (2014). Solutions to the public goods dilemma in bacterial biofilms. Curr. Biol. 24: 50–55, https://doi.org/10.1016/j.cub.2013.10.030.Suche in Google Scholar PubMed PubMed Central

Dragoš, A., Kiesewalter, H., Martin, M., Hsu, C.-Y., Hartmann, R., Wechsler, T., Eriksen, C., Brix, S., Drescher, K., Stanley-Wall, N., et al.. (2018). Division of labor during biofilm matrix production. Curr. Biol. 28: 1903–1913.e5, https://doi.org/10.1016/j.cub.2018.04.046.Suche in Google Scholar PubMed PubMed Central

Dubey, G.P. and Ben-Yehuda, S. (2011). Intercellular nanotubes mediate bacterial communication. Cell 144: 590–600, https://doi.org/10.1016/j.cell.2011.01.015.Suche in Google Scholar PubMed

Dubey, G.P., Malli Mohan, G.B., Dubrovsky, A., Amen, T., Tsipshtein, S., Rouvinski, A., Rosenberg, A., Kaganovich, D., Sherman, E., Medalia, O., et al.. (2016). Architecture and characteristics of bacterial nanotubes. Dev. Cell 36: 453–461, https://doi.org/10.1016/j.devcel.2016.01.013.Suche in Google Scholar PubMed

Ducret, A., Fleuchot, B., Bergam, P., and Mignot, T. (2013). Direct live imaging of cell-cell protein transfer by transient outer membrane fusion in Myxococcus xanthus. eLife 2: e00868, https://doi.org/10.7554/elife.00868.Suche in Google Scholar PubMed PubMed Central

Federle, M.J. and Bassler, B.L. (2003). Interspecies communication in bacteria. J. Clin. Investig. 112: 1291–1299, https://doi.org/10.1172/jci20195.Suche in Google Scholar

Fischer, T., Schorb, M., Reintjes, G., Kolovou, A., Santarella-Mellwig, R., Markert, S., Rhiel, E., Littmann, S., Becher, D., Schweder, T., et al.. (2019). Biopearling of interconnected outer membrane vesicle chains by a marine flavobacterium. Appl. Environ. Microbiol. 85: e00829-19, https://doi.org/10.1128/aem.00829-19.Suche in Google Scholar PubMed PubMed Central

Flemming, H.-C. and Wingender, J. (2010). The biofilm matrix. Nat. Rev. Microbiol. 8: 623–633, https://doi.org/10.1038/nrmicro2415.Suche in Google Scholar PubMed

Friedlander, R.S., Vlamakis, H., Kim, P., Khan, M., Kolter, R., and Aizenberg, J. (2013). Bacterial flagella explore microscale hummocks and hollows to increase adhesion. Proc. Natl. Acad. Sci. USA 110: 5624–5629, https://doi.org/10.1073/pnas.1219662110.Suche in Google Scholar PubMed PubMed Central

Fritschie, K.J., Cardinale, B.J., Alexandrou, M.A., and Oakley, T.H. (2014). Evolutionary history and the strength of species interactions: testing the phylogenetic limiting similarity hypothesis. Ecology 95: 1407–1417, https://doi.org/10.1890/13-0986.1.Suche in Google Scholar PubMed

Fritts, R.K., McCully, A.L., and McKinlay, J.B. (2021). Extracellular metabolism sets the table for microbial cross-feeding. Microbiol. Mol. Biol. Rev. 85: e00135-20, https://doi.org/10.1128/mmbr.00135-20.Suche in Google Scholar PubMed PubMed Central

Fronzes, R., Remaut, H., and Waksman, G. (2008). Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria. EMBO J. 27: 2271–2280, https://doi.org/10.1038/emboj.2008.155.Suche in Google Scholar PubMed PubMed Central

Ghoul, M. and Mitri, S. (2016). The ecology and evolution of microbial competition. Trends Microbiol. 24: 833–845, https://doi.org/10.1016/j.tim.2016.06.011.Suche in Google Scholar PubMed

Gilbertie, J.M., Schnabel, L.V., Hickok, N.J., Jacob, M.E., Conlon, B.P., Shapiro, I.M., Parvizi, J., and Schaer, T.P. (2019). Equine or porcine synovial fluid as a novel ex vivo model for the study of bacterial free-floating biofilms that form in human joint infections. PLoS One 14: e0221012, https://doi.org/10.1371/journal.pone.0221012.Suche in Google Scholar PubMed PubMed Central

Giri, S., Ona, L., Waschina, S., Shitut, S., Yousif, G., Kaleta, C., and Kost, C. (2021). Metabolic dissimilarity determines the establishment of cross-feeding interactions in bacteria. Curr. Biol. 31: 5547–5557 e5546, https://doi.org/10.1016/j.cub.2021.10.019.Suche in Google Scholar PubMed

Giri, S., Shitut, S., and Kost, C. (2020). Harnessing ecological and evolutionary principles to guide the design of microbial production consortia. Curr. Opin. Biotechnol. 62: 228–238, https://doi.org/10.1016/j.copbio.2019.12.012.Suche in Google Scholar PubMed

Goberna, M., Montesinos-Navarro, A., Valiente-Banuet, A., Colin, Y., Gómez-Fernández, A., Donat, S., Navarro-Cano, J.A., and Verdú, M. (2019). Incorporating phylogenetic metrics to microbial co-occurrence networks based on amplicon sequences to discern community assembly processes. Mol. Ecol. Resour. 19: 1552–1564, https://doi.org/10.1111/1755-0998.13079.Suche in Google Scholar PubMed

Gogarten, J.P., Doolittle, W.F., and Lawrence, J.G. (2002). Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol. 19: 2226–2238, https://doi.org/10.1093/oxfordjournals.molbev.a004046.Suche in Google Scholar PubMed

Granato, E.T. and Foster, K.R. (2020). The evolution of mass cell suicide in bacterial warfare. Curr. Biol. 30: 2836–2843.e3, https://doi.org/10.1016/j.cub.2020.05.007.Suche in Google Scholar PubMed PubMed Central

Grandclement, C., Tannieres, M., Morera, S., Dessaux, Y., and Faure, D. (2016). Quorum quenching: role in nature and applied developments. FEMS Microbiol. Rev. 40: 86–116, https://doi.org/10.1093/femsre/fuv038.Suche in Google Scholar PubMed

Griffith, F. (1928). The significance of pneumococcal types. Epidemiol. Infect. 27: 113–159, https://doi.org/10.1017/s0022172400031879.Suche in Google Scholar PubMed PubMed Central

Harcombe, W.R., Riehl, W.J., Dukovski, I., Granger, B.R., Betts, A., Lang, A.H., Bonilla, G., Kar, A., Leiby, N., Mehta, P., et al.. (2014). Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 7: 1104–1115, https://doi.org/10.1016/j.celrep.2014.03.070.Suche in Google Scholar PubMed PubMed Central

Hawver, L.A., Jung, S.A., and Ng, W.-L. (2016). Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiol. Rev. 40: 738–752, https://doi.org/10.1093/femsre/fuw014.Suche in Google Scholar PubMed PubMed Central

Hobley, L., Harkins, C., MacPhee, C.E., and Stanley-Wall, N.R. (2015). Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol. Rev. 39: 649–669, https://doi.org/10.1093/femsre/fuv015.Suche in Google Scholar PubMed PubMed Central

Horner-Devine, M.C. and Bohannan, B.J. (2006). Phylogenetic clustering and overdispersion in bacterial communities. Ecology 87: S100–S108, https://doi.org/10.1890/0012-9658(2006)87[100:pcaoib]2.0.co;2.10.1890/0012-9658(2006)87[100:PCAOIB]2.0.CO;2Suche in Google Scholar

Ishii, S.i., Kosaka, T., Hori, K., Hotta, Y., and Watanabe, K. (2005). Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus. Appl. Environ. Microbiol. 71: 7838–7845, https://doi.org/10.1128/aem.71.12.7838-7845.2005.Suche in Google Scholar

Jiang, Z., Zhang, S., Klausen, L.H., Song, J., Li, Q., Wang, Z., Stokke, B.T., Huang, Y., Besenbacher, F., Nielsen, L.P., et al.. (2018). In vitro single-cell dissection revealing the interior structure of cable bacteria. Proc. Natl. Acad. Sci. USA 115: 8517–8522, https://doi.org/10.1073/pnas.1807562115.Suche in Google Scholar PubMed PubMed Central

John, M., Trzcinski, A.P., Zhou, Y., and Ng, W.J. (2017). Microbial stress mediated intercellular nanotubes in an anaerobic microbial consortium digesting cellulose. Sci. Rep. 7: 18006, https://doi.org/10.1038/s41598-017-18198-w.Suche in Google Scholar PubMed PubMed Central

Kalamara, M., Spacapan, M., Mandic-Mulec, I., and Stanley-Wall, N.R. (2018). Social behaviours by Bacillus subtilis: quorum sensing, kin discrimination and beyond. Mol. Microbiol. 110: 863–878, https://doi.org/10.1111/mmi.14127.Suche in Google Scholar PubMed PubMed Central

Kaplan, M., Chreifi, G., Metskas, L.A., Liedtke, J., Wood, C.R., Oikonomou, C.M., Nicolas, W.J., Subramanian, P., Zacharoff, L.A., Wang, Y., et al.. (2021). In situ imaging of bacterial outer membrane projections and associated protein complexes using electron cryo-tomography. eLife 10: e73099, https://doi.org/10.7554/elife.73099.Suche in Google Scholar

Kato, S., Hashimoto, K., and Watanabe, K. (2012). Microbial interspecies electron transfer via electric currents through conductive minerals. Proc. Natl. Acad. Sci. USA 109: 10042–10046, https://doi.org/10.1073/pnas.1117592109.Suche in Google Scholar PubMed PubMed Central

Keegstra, J.M., Carrara, F., and Stocker, R. (2022). The ecological roles of bacterial chemotaxis. Nat. Rev. Microbiol. 20: 491–504, https://doi.org/10.1038/s41579-022-00709-w.Suche in Google Scholar PubMed

Kehe, J., Ortiz, A., Kulesa, A., Gore, J., Blainey, P.C., and Friedman, J. (2021). Positive interactions are common among culturable bacteria. Sci. Adv. 7: eabi7159, https://doi.org/10.1126/sciadv.abi7159.Suche in Google Scholar PubMed PubMed Central

Kent, A.G., Vill, A.C., Shi, Q., Satlin, M.J., and Brito, I.L. (2020). Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C. Nat. Commun. 11: 1–9, https://doi.org/10.1038/s41467-020-18164-7.Suche in Google Scholar PubMed PubMed Central

Kim, H.J., Boedicker, J.Q., Choi, J.W., and Ismagilov, R.F. (2008). Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc. Natl. Acad. Sci. USA 105: 18188–18193, https://doi.org/10.1073/pnas.0807935105.Suche in Google Scholar PubMed PubMed Central

Kim, J.H., Lee, J., Park, J., and Gho, Y.S. (2015). Gram-negative and Gram-positive bacterial extracellular vesicles. Semin. Cell Dev. Biol. 40: 97–104, https://doi.org/10.1016/j.semcdb.2015.02.006.Suche in Google Scholar PubMed

Kline, K.A., Dodson, K.W., Caparon, M.G., and Hultgren, S.J. (2010). A tale of two pili: assembly and function of pili in bacteria. Trends Microbiol. 18: 224–232, https://doi.org/10.1016/j.tim.2010.03.002.Suche in Google Scholar PubMed PubMed Central

Kolenbrander, P.E., Palmer, R.J.Jr, Rickard, A.H., Jakubovics, N.S., Chalmers, N.I., and Diaz, P.I. (2006). Bacterial interactions and successions during plaque development. Periodontology 42: 47–79, https://doi.org/10.1111/j.1600-0757.2006.00187.x.Suche in Google Scholar PubMed

Kraigher, B., Butolen, M., Stefanic, P., and Mandic Mulec, I. (2022). Kin discrimination drives territorial exclusion during Bacillus subtilis swarming and restrains exploitation of surfactin. ISME J. 16: 833–841, https://doi.org/10.1038/s41396-021-01124-4.Suche in Google Scholar PubMed PubMed Central

Laganenka, L. and Sourjik, V. (2018). Autoinducer 2-dependent Escherichia coli biofilm formation is enhanced in a dual-species coculture. Appl. Environ. Microbiol. 84: e02638-17, https://doi.org/10.1128/aem.02638-17.Suche in Google Scholar PubMed PubMed Central

Lambert, B.S., Fernandez, V.I., and Stocker, R. (2019). Motility drives bacterial encounter with particles responsible for carbon export throughout the ocean. Limnol. Oceanogr. Lett. 4: 113–118, https://doi.org/10.1002/lol2.10113.Suche in Google Scholar

Lawrence, J.G. and Hendrickson, H. (2003). Lateral gene transfer: when will adolescence end? Mol. Microbiol. 50: 739–749, https://doi.org/10.1046/j.1365-2958.2003.03778.x.Suche in Google Scholar PubMed

Lederberg, J. (1952). Cell genetics and hereditary symbiosis. Physiol. Rev. 32: 403–430, https://doi.org/10.1152/physrev.1952.32.4.403.Suche in Google Scholar PubMed

Lederberg, J. and Tatum, E.L. (1946). Gene recombination in Escherichia coli. Nature 158: 558, https://doi.org/10.1038/158558a0.Suche in Google Scholar PubMed

Lilja, E.E. and Johnson, D.R. (2016). Segregating metabolic processes into different microbial cells accelerates the consumption of inhibitory substrates. ISME J. 10: 1568–1578, https://doi.org/10.1038/ismej.2015.243.Suche in Google Scholar PubMed PubMed Central

López-García, P. and Moreira, D. (2021). Physical connections: prokaryotes parasitizing their kin. Environ. Microbiol. Rep. 13: 54–61, https://doi.org/10.1111/1758-2229.12910.Suche in Google Scholar PubMed

Lovley, D.R. (2017). Happy together: microbial communities that hook up to swap electrons. ISME J. 11: 327–336, https://doi.org/10.1038/ismej.2016.136.Suche in Google Scholar PubMed PubMed Central

Low, W.W., Wong, J.L., Beltran, L.C., Seddon, C., David, S., Kwong, H.-S., Bizeau, T., Wang, F., Peña, A., Costa, T.R., et al.. (2022). Mating pair stabilization mediates bacterial conjugation species specificity. Nat. Microbiol. 7: 1016–1027, https://doi.org/10.1038/s41564-022-01146-4.Suche in Google Scholar PubMed PubMed Central

Madsen, J.S., Roder, H.L., Russel, J., Sørensen, H., Burmølle, M., and Sørensen, S.J. (2016). Coexistence facilitates interspecific biofilm formation in complex microbial communities. Environ. Microbiol. 18: 2565–2574, https://doi.org/10.1111/1462-2920.13335.Suche in Google Scholar PubMed

Mahon, M.B., Jennings, D.E., Civitello, D.J., Lajeunesse, M.J., and Rohr, J.R. (2021). Functional similarity, not phylogenetic relatedness, predicts the relative strength of competition. bioRxiv, https://doi.org/10.1101/2021.07.21.453226.Suche in Google Scholar

Marchal, M., Goldschmidt, F., Derksen-Muller, S.N., Panke, S., Ackermann, M., and Johnson, D.R. (2017). A passive mutualistic interaction promotes the evolution of spatial structure within microbial populations. BMC Evol. Biol. 17: 106, https://doi.org/10.1186/s12862-017-0950-y.Suche in Google Scholar PubMed PubMed Central

Marx, C.J. (2009). Getting in touch with your friends. Science 324: 1150–1151, https://doi.org/10.1126/science.1173088.Suche in Google Scholar PubMed

McCaig, W.D., Koller, A., and Thanassi, D.G. (2013). Production of outer membrane vesicles and outer membrane tubes by Francisella novicida. J. Bacteriol. 195: 1120–1132, https://doi.org/10.1128/jb.02007-12.Suche in Google Scholar PubMed PubMed Central

McNally, L., Bernardy, E., Thomas, J., Kalziqi, A., Pentz, J., Brown, S.P., Hammer, B.K., Yunker, P.J., and Ratcliff, W.C. (2017). Killing by Type VI secretion drives genetic phase separation and correlates with increased cooperation. Nat. Commun. 8: 1–11, https://doi.org/10.1038/ncomms14371.Suche in Google Scholar PubMed PubMed Central

Meysman, F.J., Cornelissen, R., Trashin, S., Bonné, R., Martinez, S.H., van der Veen, J., Blom, C.J., Karman, C., Hou, J.-L., Eachambadi, R.T., et al.. (2019). A highly conductive fibre network enables centimetre-scale electron transport in multicellular cable bacteria. Nat. Commun. 10: 1–8, https://doi.org/10.1038/s41467-019-12115-7.Suche in Google Scholar PubMed PubMed Central

Meysman, F.J.R. (2018). Cable bacteria take a new breath using long-distance electricity. Trends Microbiol. 26: 411–422, https://doi.org/10.1016/j.tim.2017.10.011.Suche in Google Scholar PubMed

Moore-Ott, J.A., Chiu, S., Amchin, D.B., Bhattacharjee, T., and Datta, S.S. (2022). A biophysical threshold for biofilm formation. eLife 11: e76380, https://doi.org/10.7554/elife.76380.Suche in Google Scholar

Morris, B.E., Henneberger, R., Huber, H., and Moissl-Eichinger, C. (2013). Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37: 384–406, https://doi.org/10.1111/1574-6976.12019.Suche in Google Scholar PubMed

Mould, D.L., Botelho, N.J., and Hogan, D.A. (2020). Intraspecies signaling between common variants of Pseudomonas aeruginosa increases production of quorum-sensing-controlled virulence factors. mBio 11: e01865-20, e0186501820, https://doi.org/10.1128/mbio.01865-20.Suche in Google Scholar

Muok, A.R., Claessen, D., and Briegel, A. (2021). Microbial hitchhiking: how Streptomyces spores are transported by motile soil bacteria. ISME J. 15: 2591–2600, https://doi.org/10.1038/s41396-021-00952-8.Suche in Google Scholar PubMed PubMed Central

Nadell, C.D., Drescher, K., and Foster, K.R. (2016). Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14: 589–600, https://doi.org/10.1038/nrmicro.2016.84.Suche in Google Scholar PubMed

Netzker, T., Shepherdson, E.M., Zambri, M.P., and Elliot, M.A. (2020). Bacterial volatile compounds: functions in communication, cooperation, and competition. Annu. Rev. Microbiol. 74: 409–430, https://doi.org/10.1146/annurev-micro-011320-015542.Suche in Google Scholar PubMed

Niehus, R., Oliveira, N.M., Li, A., Fletcher, A.G., and Foster, K.R. (2021). The evolution of strategy in bacterial warfare via the regulation of bacteriocins and antibiotics. eLife 10: e69756, https://doi.org/10.7554/elife.69756.Suche in Google Scholar PubMed PubMed Central

Odom, J.M. and Wall, J.D. (1983). Photoproduction of H2 from cellulose by an anaerobic bacterial coculture. Appl. Environ. Microbiol. 45: 1300–1305, https://doi.org/10.1128/aem.45.4.1300-1305.1983.Suche in Google Scholar PubMed PubMed Central

Ona, L., Giri, S., Avermann, N., Kreienbaum, M., Thormann, K.M., and Kost, C. (2021). Obligate cross-feeding expands the metabolic niche of bacteria. Nat. Ecol. Evol. 5: 1224–1232, https://doi.org/10.1038/s41559-021-01505-0.Suche in Google Scholar PubMed

Pacheco, A.R., Moel, M., and Segre, D. (2019). Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat. Commun. 10: 103, https://doi.org/10.1038/s41467-018-07946-9.Suche in Google Scholar PubMed PubMed Central

Palmer, R.J.Jr, Kazmerzak, K., Hansen, M.C., and Kolenbrander, P.E. (2001). Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect. Iimmun. 69: 5794–5804, https://doi.org/10.1128/iai.69.9.5794-5804.2001.Suche in Google Scholar

Pande, S., Kaftan, F., Lang, S., Svatos, A., Germerodt, S., and Kost, C. (2016). Privatization of cooperative benefits stabilizes mutualistic cross-feeding interactions in spatially structured environments. ISME J. 10: 1413–1423, https://doi.org/10.1038/ismej.2015.212.Suche in Google Scholar PubMed PubMed Central

Pande, S. and Kost, C. (2017). Bacterial unculturability and the formation of intercellular metabolic networks. Trends Microbiol. 25: 349–361, https://doi.org/10.1016/j.tim.2017.02.015.Suche in Google Scholar PubMed

Pande, S., Shitut, S., Freund, L., Westermann, M., Bertels, F., Colesie, C., Bischofs, I.B., and Kost, C. (2015). Metabolic cross-feeding via intercellular nanotubes among bacteria. Nat. Commun. 6: 6238, https://doi.org/10.1038/ncomms7238.Suche in Google Scholar PubMed

Peterson, S.B., Bertolli, S.K., and Mougous, J.D. (2020). The central role of interbacterial antagonism in bacterial life. Curr. Biol. 30: R1203–R1214, https://doi.org/10.1016/j.cub.2020.06.103.Suche in Google Scholar PubMed PubMed Central

Pfeffer, C., Larsen, S., Song, J., Dong, M., Besenbacher, F., Meyer, R.L., Kjeldsen, K.U., Schreiber, L., Gorby, Y.A., El-Naggar, M.Y., et al.. (2012). Filamentous bacteria transport electrons over centimetre distances. Nature 491: 218–221, https://doi.org/10.1038/nature11586.Suche in Google Scholar PubMed

Pirbadian, S., Barchinger, S.E., Leung, K.M., Byun, H.S., Jangir, Y., Bouhenni, R.A., Reed, S.B., Romine, M.F., Saffarini, D.A., Shi, L., et al.. (2014). Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl. Acad. Sci. USA 111: 12883–12888, https://doi.org/10.1073/pnas.1410551111.Suche in Google Scholar PubMed PubMed Central

Polz, M.F., Alm, E.J., and Hanage, W.P. (2013). Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet. 29: 170–175, https://doi.org/10.1016/j.tig.2012.12.006.Suche in Google Scholar PubMed PubMed Central

Ranava, D., Backes, C., Karthikeyan, G., Ouari, O., Soric, A., Guiral, M., Cárdenas, M.L., and Giudici-Orticoni, M.T. (2021). Metabolic exchange and energetic coupling between nutritionally stressed bacterial species: role of quorum-sensing molecules. mBio 12: e02758-20, https://doi.org/10.1128/mbio.02758-20.Suche in Google Scholar PubMed PubMed Central

Rees, D.C., Johnson, E., and Lewinson, O. (2009). ABC transporters: the power to change. Nat. Rev. Mol. Cell Biol. 10: 218–227, https://doi.org/10.1038/nrm2646.Suche in Google Scholar PubMed PubMed Central

Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T., and Lovley, D.R. (2005). Extracellular electron transfer via microbial nanowires. Nature 435: 1098–1101, https://doi.org/10.1038/nature03661.Suche in Google Scholar PubMed

Remis, J.P., Wei, D., Gorur, A., Zemla, M., Haraga, J., Allen, S., Witkowska, H.E., Costerton, J.W., Berleman, J.E., and Auer, M. (2014). Bacterial social networks: structure and composition of Myxococcus xanthus outer membrane vesicle chains. Environ. Microbiol. 16: 598–610, https://doi.org/10.1111/1462-2920.12187.Suche in Google Scholar PubMed PubMed Central

Ren, D., Madsen, J.S., Sørensen, S.J., and Burmølle, M. (2015). High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. ISME J. 9: 81–89, https://doi.org/10.1038/ismej.2014.96.Suche in Google Scholar PubMed PubMed Central

Rendueles, O. and Ghigo, J.-M. (2012). Multi-species biofilms: how to avoid unfriendly neighbors. FEMS Microbiol. Rev. 36: 972–989, https://doi.org/10.1111/j.1574-6976.2012.00328.x.Suche in Google Scholar PubMed

Rickard, A.H., Gilbert, P., High, N.J., Kolenbrander, P.E., and Handley, P.S. (2003). Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol. 11: 94–100, https://doi.org/10.1016/s0966-842x(02)00034-3.Suche in Google Scholar PubMed

Russel, J., Roder, H.L., Madsen, J.S., Burmølle, M., and Sørensen, S.J. (2017). Antagonism correlates with metabolic similarity in diverse bacteria. Proc. Natl. Acad. Sci. USA 114: 10684–10688, https://doi.org/10.1073/pnas.1706016114.Suche in Google Scholar PubMed PubMed Central

Sah, G.P. and Wall, D. (2020). Kin recognition and outer membrane exchange (OME) in myxobacteria. Curr. Opin. Microbiol. 56: 81–88, https://doi.org/10.1016/j.mib.2020.07.003.Suche in Google Scholar PubMed PubMed Central

Salles, J.F., Le Roux, X., and Poly, F. (2012). Relating phylogenetic and functional diversity among denitrifiers and quantifying their capacity to predict community functioning. Front. Microbiol. 3: 209, https://doi.org/10.3389/fmicb.2012.00209.Suche in Google Scholar PubMed PubMed Central

San Millan, A. and Maclean, R.C. (2017). Fitness costs of plasmids: a limit to plasmid transmission. Microbiol. Spectr. 5: MTBP- 0016-2017, https://doi.org/10.1128/microbiolspec.MTBP-0016-2017.Suche in Google Scholar PubMed

Sandy, M. and Butler, A. (2009). Microbial iron acquisition: marine and terrestrial siderophores. Chem. Rev. 109: 4580–4595, https://doi.org/10.1021/cr9002787.Suche in Google Scholar PubMed PubMed Central

Schwechheimer, C. and Kuehn, M.J. (2015). Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. 13: 605–619, https://doi.org/10.1038/nrmicro3525.Suche in Google Scholar PubMed PubMed Central

Sher, D., Thompson, J.W., Kashtan, N., Croal, L., and Chisholm, S.W. (2011). Response of Prochlorococcus ecotypes to co-culture with diverse marine bacteria. ISME J. 5: 1125–1132, https://doi.org/10.1038/ismej.2011.1.Suche in Google Scholar PubMed PubMed Central

Shi, L., Dong, H., Reguera, G., Beyenal, H., Lu, A., Liu, J., Yu, H.Q., and Fredrickson, J.K. (2016). Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 14: 651–662, https://doi.org/10.1038/nrmicro.2016.93.Suche in Google Scholar PubMed

Shimoyama, T., Kato, S., Ishii, S.i., and Watanabe, K. (2009). Flagellum mediates symbiosis. Science 323: 1574, https://doi.org/10.1126/science.1170086.Suche in Google Scholar PubMed

Silverman, M. and Simon, M.I. (1977). Bacterial flagella. Annu. Rev. Microbiol. 31: 397–419, https://doi.org/10.1146/annurev.mi.31.100177.002145.Suche in Google Scholar PubMed

Smith, P. and Schuster, M. (2019). Public goods and cheating in microbes. Curr. Biol. 29: R442–R447, https://doi.org/10.1016/j.cub.2019.03.001.Suche in Google Scholar PubMed

Sokolovskaya, O.M., Shelton, A.N., and Taga, M.E. (2020). Sharing vitamins: cobamides unveil microbial interactions. Science 369: eaba0165, https://doi.org/10.1126/science.aba0165.Suche in Google Scholar PubMed PubMed Central

Sorg, R.A., Lin, L., Van Doorn, G.S., Sorg, M., Olson, J., Nizet, V., and Veening, J.-W. (2016). Collective resistance in microbial communities by intracellular antibiotic deactivation. PLoS Biol. 14: e2000631, https://doi.org/10.1371/journal.pbio.2000631.Suche in Google Scholar PubMed PubMed Central

Souza, D.P., Oka, G.U., Alvarez-Martinez, C.E., Bisson-Filho, A.W., Dunger, G., Hobeika, L., Cavalcante, N.S., Alegria, M.C., Barbosa, L.R., Salinas, R.K., et al.. (2015). Bacterial killing via a type IV secretion system. Nat. Commun. 6: 1–9, https://doi.org/10.1038/ncomms7453.Suche in Google Scholar PubMed

Stams, A.J., De Bok, F.A., Plugge, C.M., Van Eekert, M.H., Dolfing, J., and Schraa, G. (2006). Exocellular electron transfer in anaerobic microbial communities. Environ. Microbiol. 8: 371–382, https://doi.org/10.1111/j.1462-2920.2006.00989.x.Suche in Google Scholar PubMed

Stams, A.J. and Plugge, C.M. (2009). Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat. Rev. Microbiol. 7: 568–577, https://doi.org/10.1038/nrmicro2166.Suche in Google Scholar PubMed

Strickland, M., Lauber, C., Fierer, N., and Bradford, M.A. (2009). Testing the functional significance of microbial community composition. Ecology 90: 441–451, https://doi.org/10.1890/08-0296.1.Suche in Google Scholar PubMed

Stempler, O., Baidya, A.K., Bhattacharya, S., Malli Mohan, G.B., Tzipilevich, E., Sinai, L., Mamou, G., and Ben-Yehuda, S. (2017). Interspecies nutrient extraction and toxin delivery between bacteria. Nat. Commun. 8: 1–9, https://doi.org/10.1038/s41467-017-00344-7.Suche in Google Scholar PubMed PubMed Central

Summers, Z.M., Fogarty, H.E., Leang, C., Franks, A.E., Malvankar, N.S., and Lovley, D.R. (2010). Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330: 1413–1415, https://doi.org/10.1126/science.1196526.Suche in Google Scholar PubMed

Tait, K. and Sutherland, I. (2002). Antagonistic interactions amongst bacteriocin-producing enteric bacteria in dual species biofilms. J. Appl. Microbiol. 93: 345–352, https://doi.org/10.1046/j.1365-2672.2002.01692.x.Suche in Google Scholar PubMed

Tashiro, Y., Hasegawa, Y., Shintani, M., Takaki, K., Ohkuma, M., Kimbara, K., and Futamata, H. (2017). Interaction of bacterial membrane vesicles with specific species and their potential for delivery to target cells. Front. Microbiol. 8: 571, https://doi.org/10.3389/fmicb.2017.00571.Suche in Google Scholar PubMed PubMed Central

Taylor, J.R. and Stocker, R. (2012). Trade-offs of chemotactic foraging in turbulent water. Science 338: 675–679, https://doi.org/10.1126/science.1219417.Suche in Google Scholar PubMed

Toyofuku, M., Morinaga, K., Hashimoto, Y., Uhl, J., Shimamura, H., Inaba, H., Schmitt-Kopplin, P., Eberl, L., and Nomura, N. (2017). Membrane vesicle-mediated bacterial communication. ISME J. 11: 1504–1509, https://doi.org/10.1038/ismej.2017.13.Suche in Google Scholar PubMed PubMed Central

Toyofuku, M., Nomura, N., and Eberl, L. (2019). Types and origins of bacterial membrane vesicles. Nat. Rev. Microbiol. 17: 13–24, https://doi.org/10.1038/s41579-018-0112-2.Suche in Google Scholar PubMed

Troselj, V., Cao, P., and Wall, D. (2018). Cell‐cell recognition and social networking in bacteria. Environ. Microbiol. 20: 923–933, https://doi.org/10.1111/1462-2920.14005.Suche in Google Scholar PubMed PubMed Central

Valdes, A.M., Walter, J., Segal, E., and Spector, T.D. (2018). Role of the gut microbiota in nutrition and health. Br. Med. J. 361: k2179, https://doi.org/10.1136/bmj.k2179.Suche in Google Scholar PubMed PubMed Central

van Tatenhove-Pel, R.J., de Groot, D.H., Bisseswar, A.S., Teusink, B., and Bachmann, H. (2021a). Population dynamics of microbial cross-feeding are determined by co-localization probabilities and cooperation-independent cheater growth. ISME J. 15: 3050–3061, https://doi.org/10.1038/s41396-021-00986-y.Suche in Google Scholar PubMed PubMed Central

van Tatenhove-Pel, R.J., Rijavec, T., Lapanje, A., van Swam, I., Zwering, E., Hernandez-Valdes, J.A., Kuipers, O.P., Picioreanu, C., Teusink, B., and Bachmann, H. (2021b). Microbial competition reduces metabolic interaction distances to the low µm-range. ISME J. 15: 688–701, https://doi.org/10.1038/s41396-020-00806-9.Suche in Google Scholar PubMed PubMed Central

Vassallo, C., Cao, P., Conklin, A., Finkelstein, H., Hayes, C., and Wall, D. (2018). Infectious polymorphic toxins delivered by outer membrane exchange discriminate kin in myxobacteria. eLife 6: e37049, https://doi.org/10.7554/eLife.29397.001.Suche in Google Scholar

Venail, P.A., Narwani, A., Fritschie, K., Alexandrou, M.A., Oakley, T.H., Cardinale, B.J., and Cahill, J. (2014). The influence of phylogenetic relatedness on species interactions among freshwater green algae in a mesocosm experiment. J. Ecol. 102: 1288–1299, https://doi.org/10.1111/1365-2745.12271.Suche in Google Scholar

Venail, P.A. and Vives, M.J. (2013). Phylogenetic distance and species richness interactively affect the productivity of bacterial communities. Ecology 94: 2529–2536, https://doi.org/10.1890/12-2002.1.Suche in Google Scholar PubMed

Vicuña, R. (1988). Bacterial degradation of lignin. Enzym. Microb. Technol. 10: 646–655, https://doi.org/10.1016/0141-0229(88)90055-5.Suche in Google Scholar

Vijay, A. and Valdes, A.M. (2022). Role of the gut microbiome in chronic diseases: a narrative review. Eur. J. Clin. Nutr. 76: 489–501, https://doi.org/10.1038/s41430-021-00991-6.Suche in Google Scholar PubMed PubMed Central

Virolle, C., Goldlust, K., Djermoun, S., Bigot, S., and Lesterlin, C. (2020). Plasmid transfer by conjugation in Gram-negative bacteria: from the cellular to the community level. Genes 11: 1239, https://doi.org/10.3390/genes11111239.Suche in Google Scholar PubMed PubMed Central

Wagg, C., Hautier, Y., Pellkofer, S., Banerjee, S., Schmid, B., and van der Heijden, M.G. (2021). Diversity and asynchrony in soil microbial communities stabilizes ecosystem functioning. eLife 10: e62813, https://doi.org/10.7554/elife.62813.Suche in Google Scholar

Walker, D.J.F., Nevin, K.P., Holmes, D.E., Rotaru, A.E., Ward, J.E., Woodard, T.L., Zhu, J., Ueki, T., Nonnenmann, S.S., McInerney, M.J., et al.. (2020). Syntrophus conductive pili demonstrate that common hydrogen-donating syntrophs can have a direct electron transfer option. ISME J. 14: 837–846, https://doi.org/10.1038/s41396-019-0575-9.Suche in Google Scholar PubMed PubMed Central

Wang, F., Gu, Y., O’Brien, J.P., Yi, S.M., Yalcin, S.E., Srikanth, V., Shen, C., Vu, D., Ing, N.L., Hochbaum, A.I., et al.. (2019). Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell 177: 361–369.e10, https://doi.org/10.1016/j.cell.2019.03.029.Suche in Google Scholar PubMed PubMed Central

Wang, J., Karnati, P.K., Takacs, C.M., Kowalski, J.C., and Derbyshire, K.M. (2005). Chromosomal DNA transfer in Mycobacterium smegmatis is mechanistically different from classical Hfr chromosomal DNA transfer. Mol. Microbiol. 58: 280–288, https://doi.org/10.1111/j.1365-2958.2005.04824.x.Suche in Google Scholar PubMed

Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H.E., and Boetius, A. (2015). Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526: 587–590, https://doi.org/10.1038/nature15733.Suche in Google Scholar PubMed

Wei, X., Vassallo, C.N., Pathak, D.T., and Wall, D. (2014). Myxobacteria produce outer membrane-enclosed tubes in unstructured environments. J. Bacteriol. 196: 1807–1814, https://doi.org/10.1128/jb.00850-13.Suche in Google Scholar PubMed PubMed Central

Woith, E., Fuhrmann, G., and Melzig, M.F. (2019). Extracellular vesicles-connecting kingdoms. Int. J. Mol. Sci. 22: 5695, https://doi.org/10.3390/ijms20225695.Suche in Google Scholar PubMed PubMed Central

Yawata, Y., Carrara, F., Menolascina, F., and Stocker, R. (2020). Constrained optimal foraging by marine bacterioplankton on particulate organic matter. Proc. Natl. Acad. Sci. USA 117: 25571–25579, https://doi.org/10.1073/pnas.2012443117.Suche in Google Scholar PubMed PubMed Central

Yurtsev, E.A., Conwill, A., and Gore, J. (2016). Oscillatory dynamics in a bacterial cross-protection mutualism. Proc. Natl. Acad. Sci. USA 113: 6236–6241, https://doi.org/10.1073/pnas.1523317113.Suche in Google Scholar PubMed PubMed Central

Zhang, Z., Du, C., de Barsy, F., Liem, M., Liakopoulos, A., van Wezel, G.P., Choi, Y.H., Claessen, D., and Rozen, D.E. (2020). Antibiotic production in Streptomyces is organized by a division of labor through terminal genomic differentiation. Sci. Adv. 6: eaay5781, https://doi.org/10.1126/sciadv.aay5781.Suche in Google Scholar PubMed PubMed Central

Zhu, H., Conibear, T.C., Bandara, R., Aliwarga, Y., Stapleton, F., and Willcox, M.D. (2006). Type III secretion system-associated toxins, proteases, serotypes, and antibiotic resistance of Pseudomonas aeruginosa isolates associated with keratitis. Curr. Eye Res. 31: 297–306, https://doi.org/10.1080/02713680500536746.Suche in Google Scholar PubMed

Zinder, N.D. and Lederberg, J. (1952). Genetic exchange in Salmonella. J. Bacteriol. 64: 679–699, https://doi.org/10.1128/jb.64.5.679-699.1952.Suche in Google Scholar PubMed PubMed Central


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/hsz-2022-0303).


Received: 2022-10-05
Accepted: 2023-02-08
Published Online: 2023-03-02
Published in Print: 2023-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2022-0303/pdf?lang=de
Button zum nach oben scrollen