Home Neprilysin 4: an essential peptidase with multifaceted physiological relevance
Article
Licensed
Unlicensed Requires Authentication

Neprilysin 4: an essential peptidase with multifaceted physiological relevance

  • Annika Buhr , Ronja Schiemann and Heiko Meyer ORCID logo EMAIL logo
Published/Copyright: January 19, 2023

Abstract

Neprilysins are highly conserved ectoenzymes that hydrolyze and thus inactivate signaling peptides in the extracellular space. Herein, we focus on Neprilysin 4 from Drosophila melanogaster and evaluate the existing knowledge on the physiological relevance of the peptidase. Particular attention is paid to the role of the neprilysin in regulating feeding behavior and the expression of insulin-like peptides in the central nervous system. In addition, we assess the function of the peptidase in controlling the activity of the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase in myocytes, as well as the underlying molecular mechanism in detail.


Corresponding author: Heiko Meyer, Department of Biology/Chemistry, Zoology and Developmental Biology Section, Osnabruck University, Barbarastrasse 11, D-49076 Osnabruck, Germany; and Center for Cellular Nanoanalytics (CellNanOs), Barbarastrasse 11, D-49076 Osnabruck, Germany, E-mail:

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: SFB 944 - P21

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by the German Research Foundation (SFB 944: Physiology and Dynamics of Cellular Microcompartments, P21, HM), and by a stipend from the Hans Mühlenhoff Foundation (RS).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abrol, N., Smolin, N., Armanious, G., Ceholski, D.K., Trieber, C.A., Young, H.S., and Robia, S.L. (2014). Phospholamban C-terminal residues are critical determinants of the structure and function of the calcium ATPase regulatory complex. J. Biol. Chem. 289: 25855–25866, https://doi.org/10.1074/jbc.m114.562579.Search in Google Scholar PubMed PubMed Central

Anderson, D.M., Makarewich, C.A., Anderson, K.M., Shelton, J.M., Bezprozvannaya, S., Bassel-Duby, R., and Olson, E.N. (2016). Widespread control of calcium signaling by a family of SERCA-inhibiting micropeptides. Sci. Signal. 9: ra119, https://doi.org/10.1126/scisignal.aaj1460.Search in Google Scholar PubMed PubMed Central

Bavishi, C., Messerli, F.H., Kadosh, B., Ruilope, L.M., and Kario, K. (2015). Role of neprilysin inhibitor combinations in hypertension: insights from hypertension and heart failure trials. Eur. Heart J. 36: 1967–1973, https://doi.org/10.1093/eurheartj/ehv142.Search in Google Scholar PubMed

Bayes-Genis, A., Barallat, J., and Richards, A.M. (2016). A test in context: neprilysin: function, inhibition, and biomarker. J. Am. Coll. Cardiol. 68: 639–653, https://doi.org/10.1016/j.jacc.2016.04.060.Search in Google Scholar PubMed

Bland, N.D., Pinney, J.W., Thomas, J.E., Turner, A.J., and Isaac, R.E. (2008). Bioinformatic analysis of the neprilysin (M13) family of peptidases reveals complex evolutionary and functional relationships. BMC Evol. Biol. 8: 16, https://doi.org/10.1186/1471-2148-8-16.Search in Google Scholar PubMed PubMed Central

Bland, N.D., Thomas, J.E., Audsley, N., Shirras, A.D., Turner, A.J., and Isaac, R.E. (2007). Expression of NEP2, a soluble neprilysin-like endopeptidase, during embryogenesis in Drosophila melanogaster. Peptides 28: 127–135, https://doi.org/10.1016/j.peptides.2006.08.032.Search in Google Scholar PubMed

Brogiolo, W., Stocker, H., Ikeya, T., Rintelen, F., Fernandez, R., and Hafen, E. (2001). An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11: 213–221, https://doi.org/10.1016/s0960-9822(01)00068-9.Search in Google Scholar PubMed

Broughton, S.J., Piper, M.D., Ikeya, T., Bass, T.M., Jacobson, J., Driege, Y., Martinez, P., Hafen, E., Withers, D.J., Leevers, S.J., et al.. (2005). Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc. Natl. Acad. Sci. U.S.A. 102: 3105–3110, https://doi.org/10.1073/pnas.0405775102.Search in Google Scholar PubMed PubMed Central

Coates, D., Siviter, R., and Isaac, R.E. (2000). Exploring the Caenorhabditis elegans and Drosophila melanogaster genomes to understand neuropeptide and peptidase function. Biochem. Soc. Trans. 28: 464–469, https://doi.org/10.1042/bst0280464.Search in Google Scholar

Fink, M., Callol-Massot, C., Chu, A., Ruiz-Lozano, P., Izpisua Belmonte, J.C., Giles, W., Bodmer, R., and Ocorr, K. (2009). A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts. Biotechniques 46: 101–113, https://doi.org/10.2144/000113078.Search in Google Scholar PubMed PubMed Central

Gafford, J.T., Skidgel, R.A., Erdos, E.G., and Hersh, L.B. (1983). Human kidney “enkephalinase”, a neutral metalloendopeptidase that cleaves active peptides. Biochemistry 22: 3265–3271, https://doi.org/10.1021/bi00282a035.Search in Google Scholar PubMed

Gramolini, A.O., Kislinger, T., Asahi, M., Li, W., Emili, A., and MacLennan, D.H. (2004). Sarcolipin retention in the endoplasmic reticulum depends on its C-terminal RSYQY sequence and its interaction with sarco(endo)plasmic Ca2+-ATPases. Proc. Natl. Acad. Sci. U.S.A. 101: 16807–16812, https://doi.org/10.1073/pnas.0407815101.Search in Google Scholar PubMed PubMed Central

Hallier, B., Schiemann, R., Cordes, E., Vitos-Faleato, J., Walter, S., Heinisch, J.J., Malmendal, A., Paululat, A., and Meyer, H. (2016). Drosophila neprilysins control insulin signaling and food intake via cleavage of regulatory peptides. Elife 5: e19430, https://doi.org/10.7554/elife.19430.Search in Google Scholar PubMed PubMed Central

Ikeya, T., Galic, M., Belawat, P., Nairz, K., and Hafen, E. (2002). Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr. Biol. 12: 1293–1300, https://doi.org/10.1016/s0960-9822(02)01043-6.Search in Google Scholar PubMed

Isaac, R.E., Johnson, E.C., Audsley, N., and Shirras, A.D. (2007). Metabolic inactivation of the circadian transmitter, pigment dispersing factor (PDF), by neprilysin-like peptidases in Drosophila. J. Exp. Biol. 210: 4465–4470, https://doi.org/10.1242/jeb.012088.Search in Google Scholar PubMed

Iwata, N., Tsubuki, S., Takaki, Y., Shirotani, K., Lu, B., Gerard, N.P., Gerard, C., Hama, E., Lee, H.J., and Saido, T.C. (2001). Metabolic regulation of brain Aβ by neprilysin. Science 292: 1550–1552, https://doi.org/10.1126/science.1059946.Search in Google Scholar PubMed

Jessup, M. (2014). Neprilysin inhibition-a novel therapy for heart failure. N. Engl. J. Med. 371: 1062–1064, https://doi.org/10.1056/nejme1409898.Search in Google Scholar

Lee, K.S., Kwon, O.Y., Lee, J.H., Kwon, K., Min, K.J., Jung, S.A., Kim, A.K., You, K.H., Tatar, M., and Yu, K. (2008). Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nat. Cell Biol. 10: 468–475, https://doi.org/10.1038/ncb1710.Search in Google Scholar PubMed

Liu, A.Y., Aguayo-Ortiz, R., Guerrero-Serna, G., Wang, N., Blin, M.G., Goldstein, D.R., and Michel Espinoza-Fonseca, L. (2022). Homologous cardiac calcium pump regulators phospholamban and sarcolipin adopt distinct oligomeric states in the membrane. Comput. Struct. Biotechnol. J. 20: 380–384, https://doi.org/10.1016/j.csbj.2021.12.031.Search in Google Scholar PubMed PubMed Central

MacLennan, D.H. and Kranias, E.G. (2003). Phospholamban: a crucial regulator of cardiac contractility. Nat. Rev. Mol. Cell Biol. 4: 566–577, https://doi.org/10.1038/nrm1151.Search in Google Scholar PubMed

Magny, E.G., Pueyo, J.I., Pearl, F.M., Cespedes, M.A., Niven, J.E., Bishop, S.A., and Couso, J.P. (2013). Conserved regulation of cardiac calcium uptake by peptides encoded in small open reading frames. Science 341: 1116–1120, https://doi.org/10.1126/science.1238802.Search in Google Scholar PubMed

Matthews, B.W. (1988). Structural basis of the action of thermolysin and related zinc peptidases. Accounts Chem. Res. 21: 333–340, https://doi.org/10.1021/ar00153a003.Search in Google Scholar

McMurray, J.J., Packer, M., and Solomon, S.D. (2014). Neprilysin inhibition for heart failure. N. Engl. J. Med. 371: 2336–2337, https://doi.org/10.1056/NEJMc1412654.Search in Google Scholar PubMed

Meyer, H., Buhr, A., Callaerts, P., Schiemann, R., Wolfner, M.F., and Marygold, S.J. (2021). Identification and bioinformatic analysis of neprilysin and neprilysin-like metalloendopeptidases in Drosophila melanogaster. MicroPubl Biol 2021: 410–410, https://doi.org/10.17912/micropub.biology.000410. PMID: 34189422.Search in Google Scholar PubMed PubMed Central

Meyer, H., Panz, M., Albrecht, S., Drechsler, M., Wang, S., Husken, M., Lehmacher, C., and Paululat, A. (2011). Drosophila metalloproteases in development and differentiation: the role of ADAM proteins and their relatives. Eur. J. Cell Biol. 90: 770–778, https://doi.org/10.1016/j.ejcb.2011.04.015.Search in Google Scholar PubMed

Meyer, H., Panz, M., Zmojdzian, M., Jagla, K., and Paululat, A. (2009). Neprilysin 4, a novel endopeptidase from Drosophila melanogaster, displays distinct substrate specificities and exceptional solubility states. J. Exp. Biol. 212: 3673–3683, https://doi.org/10.1242/jeb.034272.Search in Google Scholar PubMed

Minamisawa, S., Hoshijima, M., Chu, G., Ward, C.A., Frank, K., Gu, Y., Martone, M.E., Wang, Y., Ross, J.Jr., Kranias, E.G., et al.. (1999). Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell 99: 313–322, https://doi.org/10.1016/s0092-8674(00)81662-1.Search in Google Scholar PubMed

Minamisawa, S., Wang, Y., Chen, J., Ishikawa, Y., Chien, K.R., and Matsuoka, R. (2003). Atrial chamber-specific expression of sarcolipin is regulated during development and hypertrophic remodeling. J. Biol. Chem. 278: 9570–9575, https://doi.org/10.1074/jbc.m213132200.Search in Google Scholar PubMed

Molinaro, G., Rouleau, J.L., and Adam, A. (2002). Vasopeptidase inhibitors: a new class of dual zinc metallopeptidase inhibitors for cardiorenal therapeutics. Curr. Opin. Pharmacol. 2: 131–141, https://doi.org/10.1016/s1471-4892(02)00138-8.Search in Google Scholar PubMed

Nalivaeva, N.N., Zhuravin, I.A., and Turner, A.J. (2020). Neprilysin expression and functions in development, ageing and disease. Mech. Ageing Dev. 192: 111363, https://doi.org/10.1016/j.mad.2020.111363.Search in Google Scholar PubMed PubMed Central

Nassel, D.R., Kubrak, O.I., Liu, Y., Luo, J., and Lushchak, O.V. (2013). Factors that regulate insulin producing cells and their output in Drosophila. Front. Physiol. 4: 252, https://doi.org/10.3389/fphys.2013.00252.Search in Google Scholar PubMed PubMed Central

Oefner, C., D’Arcy, A., Hennig, M., Winkler, F.K., and Dale, G.E. (2000). Structure of human neutral endopeptidase (Neprilysin) complexed with phosphoramidon. J. Mol. Biol. 296: 341–349, https://doi.org/10.1006/jmbi.1999.3492.Search in Google Scholar PubMed

Oefner, C., Roques, B.P., Fournie-Zaluski, M.C., and Dale, G.E. (2004). Structural analysis of neprilysin with various specific and potent inhibitors. Acta Crystallogr D Biol Crystallogr 60: 392–396, https://doi.org/10.1107/s0907444903027410.Search in Google Scholar

Ohsako, T., Shirakami, M., Oiwa, K., Ibaraki, K., Karr, T.L., Tomaru, M., Sanuki, R., and Takano-Shimizu-Kouno, T. (2021). The Drosophila neprilysin 4 gene is essential for sperm function following sperm transfer to females. Genes Genet. Syst. 96: 177–186, https://doi.org/10.1266/ggs.21-00024.Search in Google Scholar PubMed

Panz, M., Vitos-Faleato, J., Jendretzki, A., Heinisch, J.J., Paululat, A., and Meyer, H. (2012). A novel role for the non-catalytic intracellular domain of Neprilysins in muscle physiology. Biol. Cell. 104: 553–568, https://doi.org/10.1111/boc.201100069.Search in Google Scholar PubMed

Papandreou, C.N., Usmani, B., Geng, Y., Bogenrieder, T., Freeman, R., Wilk, S., Finstad, C.L., Reuter, V.E., Powell, C.T., Scheinberg, D., et al.. (1998). Neutral endopeptidase 24.11 loss in metastatic human prostate cancer contributes to androgen-independent progression. Nat. Med. 4: 50–57, https://doi.org/10.1038/nm0198-050.Search in Google Scholar PubMed

Periasamy, M., Bhupathy, P., and Babu, G.J. (2008). Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovasc. Res. 77: 265–273, https://doi.org/10.1093/cvr/cvm056.Search in Google Scholar PubMed

Pool, A.H. and Scott, K. (2014). Feeding regulation in Drosophila. Curr. Opin. Neurobiol. 29: 57–63, https://doi.org/10.1016/j.conb.2014.05.008.Search in Google Scholar PubMed PubMed Central

Revuelta-Lopez, E., Nunez, J., Gastelurrutia, P., Cediel, G., Januzzi, J.L., Ibrahim, N.E., Emdin, M., VanKimmenade, R., Pascual-Figal, D., Nunez, E., et al.. (2020). Neprilysin inhibition, endorphin dynamics, and early symptomatic improvement in heart failure: a pilot study. ESC Heart Fail 7: 559–566, https://doi.org/10.1002/ehf2.12607.Search in Google Scholar PubMed PubMed Central

Roques, B.P. (1993). Zinc metallopeptidases: active site structure and design of selective and mixed inhibitors: new approaches in the search for analgesics and anti-hypertensives. Biochem. Soc. Trans. 21: 678–685, https://doi.org/10.1042/bst0210678.Search in Google Scholar PubMed

Roques, B.P. and Beaumont, A. (1990). Neutral endopeptidase-24.11 inhibitors: from analgesics to antihypertensives? Trends Pharmacol. Sci. 11: 245–249, https://doi.org/10.1016/0165-6147(90)90252-4.Search in Google Scholar PubMed

Roques, B.P., Noble, F., Dauge, V., Fournie-Zaluski, M.C., and Beaumont, A. (1993). Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol. Rev. 45: 87–146.Search in Google Scholar

Rose, C., Voisin, S., Gros, C., Schwartz, J.C., and Ouimet, T. (2002). Cell-specific activity of neprilysin 2 isoforms and enzymic specificity compared with neprilysin. Biochem. J. 363: 697–705, https://doi.org/10.1042/bj3630697.Search in Google Scholar

Rulifson, E.J., Kim, S.K., and Nusse, R. (2002). Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296: 1118–1120, https://doi.org/10.1126/science.1070058.Search in Google Scholar PubMed

Salazar, J., Rojas-Quintero, J., Cano, C., Perez, J.L., Ramirez, P., Carrasquero, R., Torres, W., Espinoza, C., Chacin-Gonzalez, M., and Bermudez, V. (2020). Neprilysin: a potential therapeutic target of arterial hypertension? Curr. Cardiol. Rev. 16: 25–35, https://doi.org/10.2174/18756557otky2mtaptcvy.Search in Google Scholar

Schiemann, R., Buhr, A., Cordes, E., Walter, S., Heinisch, J.J., Ferrero, P., Milting, H., Paululat, A., and Meyer, H. (2022). Neprilysins regulate muscle contraction and heart function via cleavage of SERCA-inhibitory micropeptides. Nat. Commun. 13: 4420, https://doi.org/10.1038/s41467-022-31974-1.Search in Google Scholar PubMed PubMed Central

Shipp, M.A., Tarr, G.E., Chen, C.Y., Switzer, S.N., Hersh, L.B., Stein, H., Sunday, M.E., and Reinherz, E.L. (1991). CD10/neutral endopeptidase 24.11 hydrolyzes bombesin-like peptides and regulates the growth of small cell carcinomas of the lung. Proc. Natl. Acad. Sci. USA 88: 10662–10666, https://doi.org/10.1073/pnas.88.23.10662.Search in Google Scholar PubMed PubMed Central

Sitnik, J.L., Francis, C., Hens, K., Huybrechts, R., Wolfner, M.F., and Callaerts, P. (2014). Neprilysins: an evolutionarily conserved family of metalloproteases that play important roles in reproduction in Drosophila. Genetics 196: 781–797, https://doi.org/10.1534/genetics.113.160945.Search in Google Scholar PubMed PubMed Central

Takaki, Y., Iwata, N., Tsubuki, S., Taniguchi, S., Toyoshima, S., Lu, B., Gerard, N.P., Gerard, C., Lee, H.J., Shirotani, K., et al.. (2000). Biochemical identification of the neutral endopeptidase family member responsible for the catabolism of amyloid beta peptide in the brain. J. Biochem. 128: 897–902, https://doi.org/10.1093/oxfordjournals.jbchem.a022839.Search in Google Scholar PubMed

Tennessen, J.M., Baker, K.D., Lam, G., Evans, J., and Thummel, C.S. (2011). The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth. Cell Metabol. 13: 139–148, https://doi.org/10.1016/j.cmet.2011.01.005.Search in Google Scholar PubMed PubMed Central

Tennessen, J.M., Bertagnolli, N.M., Evans, J., Sieber, M.H., Cox, J., and Thummel, C.S. (2014). Coordinated metabolic transitions during Drosophila embryogenesis and the onset of aerobic glycolysis. G3 (Bethesda) 4: 839–850, https://doi.org/10.1534/g3.114.010652.Search in Google Scholar PubMed PubMed Central

Thomas, J.E., Rylett, C.M., Carhan, A., Bland, N.D., Bingham, R.J., Shirras, A.D., Turner, A.J., and Isaac, R.E. (2005). Drosophila melanogaster NEP2 is a new soluble member of the neprilysin family of endopeptidases with implications for reproduction and renal function. Biochem. J. 386: 357–366, https://doi.org/10.1042/bj20041753.Search in Google Scholar PubMed PubMed Central

Turner, A.J., Isaac, R.E., and Coates, D. (2001). The neprilysin (NEP) family of zinc metalloendopeptidases: genomics and function. Bioessays 23: 261–269, https://doi.org/10.1002/1521-1878(200103)23:3<261::aid-bies1036>3.0.co;2-k.10.1002/1521-1878(200103)23:3<261::AID-BIES1036>3.0.CO;2-KSearch in Google Scholar

Turner, A.J. and Tanzawa, K. (1997). Mammalian membrane metallopeptidases: NEP, ECE, KELL, and PEX. Faseb. J. 11: 355–364, https://doi.org/10.1096/fasebj.11.5.9141502.Search in Google Scholar

Whitworth, J.A. (2003). Emerging drugs in the management of hypertension. Expert Opin. Emerg. Drugs 8: 377–388, https://doi.org/10.1517/14728214.8.2.377.Search in Google Scholar

Received: 2022-09-22
Accepted: 2022-12-27
Published Online: 2023-01-19
Published in Print: 2023-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2022-0286/html
Scroll to top button