Abstract
Neprilysins are highly conserved ectoenzymes that hydrolyze and thus inactivate signaling peptides in the extracellular space. Herein, we focus on Neprilysin 4 from Drosophila melanogaster and evaluate the existing knowledge on the physiological relevance of the peptidase. Particular attention is paid to the role of the neprilysin in regulating feeding behavior and the expression of insulin-like peptides in the central nervous system. In addition, we assess the function of the peptidase in controlling the activity of the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase in myocytes, as well as the underlying molecular mechanism in detail.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: SFB 944 - P21
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research was funded by the German Research Foundation (SFB 944: Physiology and Dynamics of Cellular Microcompartments, P21, HM), and by a stipend from the Hans Mühlenhoff Foundation (RS).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abrol, N., Smolin, N., Armanious, G., Ceholski, D.K., Trieber, C.A., Young, H.S., and Robia, S.L. (2014). Phospholamban C-terminal residues are critical determinants of the structure and function of the calcium ATPase regulatory complex. J. Biol. Chem. 289: 25855–25866, https://doi.org/10.1074/jbc.m114.562579.Search in Google Scholar PubMed PubMed Central
Anderson, D.M., Makarewich, C.A., Anderson, K.M., Shelton, J.M., Bezprozvannaya, S., Bassel-Duby, R., and Olson, E.N. (2016). Widespread control of calcium signaling by a family of SERCA-inhibiting micropeptides. Sci. Signal. 9: ra119, https://doi.org/10.1126/scisignal.aaj1460.Search in Google Scholar PubMed PubMed Central
Bavishi, C., Messerli, F.H., Kadosh, B., Ruilope, L.M., and Kario, K. (2015). Role of neprilysin inhibitor combinations in hypertension: insights from hypertension and heart failure trials. Eur. Heart J. 36: 1967–1973, https://doi.org/10.1093/eurheartj/ehv142.Search in Google Scholar PubMed
Bayes-Genis, A., Barallat, J., and Richards, A.M. (2016). A test in context: neprilysin: function, inhibition, and biomarker. J. Am. Coll. Cardiol. 68: 639–653, https://doi.org/10.1016/j.jacc.2016.04.060.Search in Google Scholar PubMed
Bland, N.D., Pinney, J.W., Thomas, J.E., Turner, A.J., and Isaac, R.E. (2008). Bioinformatic analysis of the neprilysin (M13) family of peptidases reveals complex evolutionary and functional relationships. BMC Evol. Biol. 8: 16, https://doi.org/10.1186/1471-2148-8-16.Search in Google Scholar PubMed PubMed Central
Bland, N.D., Thomas, J.E., Audsley, N., Shirras, A.D., Turner, A.J., and Isaac, R.E. (2007). Expression of NEP2, a soluble neprilysin-like endopeptidase, during embryogenesis in Drosophila melanogaster. Peptides 28: 127–135, https://doi.org/10.1016/j.peptides.2006.08.032.Search in Google Scholar PubMed
Brogiolo, W., Stocker, H., Ikeya, T., Rintelen, F., Fernandez, R., and Hafen, E. (2001). An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11: 213–221, https://doi.org/10.1016/s0960-9822(01)00068-9.Search in Google Scholar PubMed
Broughton, S.J., Piper, M.D., Ikeya, T., Bass, T.M., Jacobson, J., Driege, Y., Martinez, P., Hafen, E., Withers, D.J., Leevers, S.J., et al.. (2005). Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc. Natl. Acad. Sci. U.S.A. 102: 3105–3110, https://doi.org/10.1073/pnas.0405775102.Search in Google Scholar PubMed PubMed Central
Coates, D., Siviter, R., and Isaac, R.E. (2000). Exploring the Caenorhabditis elegans and Drosophila melanogaster genomes to understand neuropeptide and peptidase function. Biochem. Soc. Trans. 28: 464–469, https://doi.org/10.1042/bst0280464.Search in Google Scholar
Fink, M., Callol-Massot, C., Chu, A., Ruiz-Lozano, P., Izpisua Belmonte, J.C., Giles, W., Bodmer, R., and Ocorr, K. (2009). A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts. Biotechniques 46: 101–113, https://doi.org/10.2144/000113078.Search in Google Scholar PubMed PubMed Central
Gafford, J.T., Skidgel, R.A., Erdos, E.G., and Hersh, L.B. (1983). Human kidney “enkephalinase”, a neutral metalloendopeptidase that cleaves active peptides. Biochemistry 22: 3265–3271, https://doi.org/10.1021/bi00282a035.Search in Google Scholar PubMed
Gramolini, A.O., Kislinger, T., Asahi, M., Li, W., Emili, A., and MacLennan, D.H. (2004). Sarcolipin retention in the endoplasmic reticulum depends on its C-terminal RSYQY sequence and its interaction with sarco(endo)plasmic Ca2+-ATPases. Proc. Natl. Acad. Sci. U.S.A. 101: 16807–16812, https://doi.org/10.1073/pnas.0407815101.Search in Google Scholar PubMed PubMed Central
Hallier, B., Schiemann, R., Cordes, E., Vitos-Faleato, J., Walter, S., Heinisch, J.J., Malmendal, A., Paululat, A., and Meyer, H. (2016). Drosophila neprilysins control insulin signaling and food intake via cleavage of regulatory peptides. Elife 5: e19430, https://doi.org/10.7554/elife.19430.Search in Google Scholar PubMed PubMed Central
Ikeya, T., Galic, M., Belawat, P., Nairz, K., and Hafen, E. (2002). Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr. Biol. 12: 1293–1300, https://doi.org/10.1016/s0960-9822(02)01043-6.Search in Google Scholar PubMed
Isaac, R.E., Johnson, E.C., Audsley, N., and Shirras, A.D. (2007). Metabolic inactivation of the circadian transmitter, pigment dispersing factor (PDF), by neprilysin-like peptidases in Drosophila. J. Exp. Biol. 210: 4465–4470, https://doi.org/10.1242/jeb.012088.Search in Google Scholar PubMed
Iwata, N., Tsubuki, S., Takaki, Y., Shirotani, K., Lu, B., Gerard, N.P., Gerard, C., Hama, E., Lee, H.J., and Saido, T.C. (2001). Metabolic regulation of brain Aβ by neprilysin. Science 292: 1550–1552, https://doi.org/10.1126/science.1059946.Search in Google Scholar PubMed
Jessup, M. (2014). Neprilysin inhibition-a novel therapy for heart failure. N. Engl. J. Med. 371: 1062–1064, https://doi.org/10.1056/nejme1409898.Search in Google Scholar
Lee, K.S., Kwon, O.Y., Lee, J.H., Kwon, K., Min, K.J., Jung, S.A., Kim, A.K., You, K.H., Tatar, M., and Yu, K. (2008). Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nat. Cell Biol. 10: 468–475, https://doi.org/10.1038/ncb1710.Search in Google Scholar PubMed
Liu, A.Y., Aguayo-Ortiz, R., Guerrero-Serna, G., Wang, N., Blin, M.G., Goldstein, D.R., and Michel Espinoza-Fonseca, L. (2022). Homologous cardiac calcium pump regulators phospholamban and sarcolipin adopt distinct oligomeric states in the membrane. Comput. Struct. Biotechnol. J. 20: 380–384, https://doi.org/10.1016/j.csbj.2021.12.031.Search in Google Scholar PubMed PubMed Central
MacLennan, D.H. and Kranias, E.G. (2003). Phospholamban: a crucial regulator of cardiac contractility. Nat. Rev. Mol. Cell Biol. 4: 566–577, https://doi.org/10.1038/nrm1151.Search in Google Scholar PubMed
Magny, E.G., Pueyo, J.I., Pearl, F.M., Cespedes, M.A., Niven, J.E., Bishop, S.A., and Couso, J.P. (2013). Conserved regulation of cardiac calcium uptake by peptides encoded in small open reading frames. Science 341: 1116–1120, https://doi.org/10.1126/science.1238802.Search in Google Scholar PubMed
Matthews, B.W. (1988). Structural basis of the action of thermolysin and related zinc peptidases. Accounts Chem. Res. 21: 333–340, https://doi.org/10.1021/ar00153a003.Search in Google Scholar
McMurray, J.J., Packer, M., and Solomon, S.D. (2014). Neprilysin inhibition for heart failure. N. Engl. J. Med. 371: 2336–2337, https://doi.org/10.1056/NEJMc1412654.Search in Google Scholar PubMed
Meyer, H., Buhr, A., Callaerts, P., Schiemann, R., Wolfner, M.F., and Marygold, S.J. (2021). Identification and bioinformatic analysis of neprilysin and neprilysin-like metalloendopeptidases in Drosophila melanogaster. MicroPubl Biol 2021: 410–410, https://doi.org/10.17912/micropub.biology.000410. PMID: 34189422.Search in Google Scholar PubMed PubMed Central
Meyer, H., Panz, M., Albrecht, S., Drechsler, M., Wang, S., Husken, M., Lehmacher, C., and Paululat, A. (2011). Drosophila metalloproteases in development and differentiation: the role of ADAM proteins and their relatives. Eur. J. Cell Biol. 90: 770–778, https://doi.org/10.1016/j.ejcb.2011.04.015.Search in Google Scholar PubMed
Meyer, H., Panz, M., Zmojdzian, M., Jagla, K., and Paululat, A. (2009). Neprilysin 4, a novel endopeptidase from Drosophila melanogaster, displays distinct substrate specificities and exceptional solubility states. J. Exp. Biol. 212: 3673–3683, https://doi.org/10.1242/jeb.034272.Search in Google Scholar PubMed
Minamisawa, S., Hoshijima, M., Chu, G., Ward, C.A., Frank, K., Gu, Y., Martone, M.E., Wang, Y., Ross, J.Jr., Kranias, E.G., et al.. (1999). Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell 99: 313–322, https://doi.org/10.1016/s0092-8674(00)81662-1.Search in Google Scholar PubMed
Minamisawa, S., Wang, Y., Chen, J., Ishikawa, Y., Chien, K.R., and Matsuoka, R. (2003). Atrial chamber-specific expression of sarcolipin is regulated during development and hypertrophic remodeling. J. Biol. Chem. 278: 9570–9575, https://doi.org/10.1074/jbc.m213132200.Search in Google Scholar PubMed
Molinaro, G., Rouleau, J.L., and Adam, A. (2002). Vasopeptidase inhibitors: a new class of dual zinc metallopeptidase inhibitors for cardiorenal therapeutics. Curr. Opin. Pharmacol. 2: 131–141, https://doi.org/10.1016/s1471-4892(02)00138-8.Search in Google Scholar PubMed
Nalivaeva, N.N., Zhuravin, I.A., and Turner, A.J. (2020). Neprilysin expression and functions in development, ageing and disease. Mech. Ageing Dev. 192: 111363, https://doi.org/10.1016/j.mad.2020.111363.Search in Google Scholar PubMed PubMed Central
Nassel, D.R., Kubrak, O.I., Liu, Y., Luo, J., and Lushchak, O.V. (2013). Factors that regulate insulin producing cells and their output in Drosophila. Front. Physiol. 4: 252, https://doi.org/10.3389/fphys.2013.00252.Search in Google Scholar PubMed PubMed Central
Oefner, C., D’Arcy, A., Hennig, M., Winkler, F.K., and Dale, G.E. (2000). Structure of human neutral endopeptidase (Neprilysin) complexed with phosphoramidon. J. Mol. Biol. 296: 341–349, https://doi.org/10.1006/jmbi.1999.3492.Search in Google Scholar PubMed
Oefner, C., Roques, B.P., Fournie-Zaluski, M.C., and Dale, G.E. (2004). Structural analysis of neprilysin with various specific and potent inhibitors. Acta Crystallogr D Biol Crystallogr 60: 392–396, https://doi.org/10.1107/s0907444903027410.Search in Google Scholar
Ohsako, T., Shirakami, M., Oiwa, K., Ibaraki, K., Karr, T.L., Tomaru, M., Sanuki, R., and Takano-Shimizu-Kouno, T. (2021). The Drosophila neprilysin 4 gene is essential for sperm function following sperm transfer to females. Genes Genet. Syst. 96: 177–186, https://doi.org/10.1266/ggs.21-00024.Search in Google Scholar PubMed
Panz, M., Vitos-Faleato, J., Jendretzki, A., Heinisch, J.J., Paululat, A., and Meyer, H. (2012). A novel role for the non-catalytic intracellular domain of Neprilysins in muscle physiology. Biol. Cell. 104: 553–568, https://doi.org/10.1111/boc.201100069.Search in Google Scholar PubMed
Papandreou, C.N., Usmani, B., Geng, Y., Bogenrieder, T., Freeman, R., Wilk, S., Finstad, C.L., Reuter, V.E., Powell, C.T., Scheinberg, D., et al.. (1998). Neutral endopeptidase 24.11 loss in metastatic human prostate cancer contributes to androgen-independent progression. Nat. Med. 4: 50–57, https://doi.org/10.1038/nm0198-050.Search in Google Scholar PubMed
Periasamy, M., Bhupathy, P., and Babu, G.J. (2008). Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovasc. Res. 77: 265–273, https://doi.org/10.1093/cvr/cvm056.Search in Google Scholar PubMed
Pool, A.H. and Scott, K. (2014). Feeding regulation in Drosophila. Curr. Opin. Neurobiol. 29: 57–63, https://doi.org/10.1016/j.conb.2014.05.008.Search in Google Scholar PubMed PubMed Central
Revuelta-Lopez, E., Nunez, J., Gastelurrutia, P., Cediel, G., Januzzi, J.L., Ibrahim, N.E., Emdin, M., VanKimmenade, R., Pascual-Figal, D., Nunez, E., et al.. (2020). Neprilysin inhibition, endorphin dynamics, and early symptomatic improvement in heart failure: a pilot study. ESC Heart Fail 7: 559–566, https://doi.org/10.1002/ehf2.12607.Search in Google Scholar PubMed PubMed Central
Roques, B.P. (1993). Zinc metallopeptidases: active site structure and design of selective and mixed inhibitors: new approaches in the search for analgesics and anti-hypertensives. Biochem. Soc. Trans. 21: 678–685, https://doi.org/10.1042/bst0210678.Search in Google Scholar PubMed
Roques, B.P. and Beaumont, A. (1990). Neutral endopeptidase-24.11 inhibitors: from analgesics to antihypertensives? Trends Pharmacol. Sci. 11: 245–249, https://doi.org/10.1016/0165-6147(90)90252-4.Search in Google Scholar PubMed
Roques, B.P., Noble, F., Dauge, V., Fournie-Zaluski, M.C., and Beaumont, A. (1993). Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol. Rev. 45: 87–146.Search in Google Scholar
Rose, C., Voisin, S., Gros, C., Schwartz, J.C., and Ouimet, T. (2002). Cell-specific activity of neprilysin 2 isoforms and enzymic specificity compared with neprilysin. Biochem. J. 363: 697–705, https://doi.org/10.1042/bj3630697.Search in Google Scholar
Rulifson, E.J., Kim, S.K., and Nusse, R. (2002). Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296: 1118–1120, https://doi.org/10.1126/science.1070058.Search in Google Scholar PubMed
Salazar, J., Rojas-Quintero, J., Cano, C., Perez, J.L., Ramirez, P., Carrasquero, R., Torres, W., Espinoza, C., Chacin-Gonzalez, M., and Bermudez, V. (2020). Neprilysin: a potential therapeutic target of arterial hypertension? Curr. Cardiol. Rev. 16: 25–35, https://doi.org/10.2174/18756557otky2mtaptcvy.Search in Google Scholar
Schiemann, R., Buhr, A., Cordes, E., Walter, S., Heinisch, J.J., Ferrero, P., Milting, H., Paululat, A., and Meyer, H. (2022). Neprilysins regulate muscle contraction and heart function via cleavage of SERCA-inhibitory micropeptides. Nat. Commun. 13: 4420, https://doi.org/10.1038/s41467-022-31974-1.Search in Google Scholar PubMed PubMed Central
Shipp, M.A., Tarr, G.E., Chen, C.Y., Switzer, S.N., Hersh, L.B., Stein, H., Sunday, M.E., and Reinherz, E.L. (1991). CD10/neutral endopeptidase 24.11 hydrolyzes bombesin-like peptides and regulates the growth of small cell carcinomas of the lung. Proc. Natl. Acad. Sci. USA 88: 10662–10666, https://doi.org/10.1073/pnas.88.23.10662.Search in Google Scholar PubMed PubMed Central
Sitnik, J.L., Francis, C., Hens, K., Huybrechts, R., Wolfner, M.F., and Callaerts, P. (2014). Neprilysins: an evolutionarily conserved family of metalloproteases that play important roles in reproduction in Drosophila. Genetics 196: 781–797, https://doi.org/10.1534/genetics.113.160945.Search in Google Scholar PubMed PubMed Central
Takaki, Y., Iwata, N., Tsubuki, S., Taniguchi, S., Toyoshima, S., Lu, B., Gerard, N.P., Gerard, C., Lee, H.J., Shirotani, K., et al.. (2000). Biochemical identification of the neutral endopeptidase family member responsible for the catabolism of amyloid beta peptide in the brain. J. Biochem. 128: 897–902, https://doi.org/10.1093/oxfordjournals.jbchem.a022839.Search in Google Scholar PubMed
Tennessen, J.M., Baker, K.D., Lam, G., Evans, J., and Thummel, C.S. (2011). The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth. Cell Metabol. 13: 139–148, https://doi.org/10.1016/j.cmet.2011.01.005.Search in Google Scholar PubMed PubMed Central
Tennessen, J.M., Bertagnolli, N.M., Evans, J., Sieber, M.H., Cox, J., and Thummel, C.S. (2014). Coordinated metabolic transitions during Drosophila embryogenesis and the onset of aerobic glycolysis. G3 (Bethesda) 4: 839–850, https://doi.org/10.1534/g3.114.010652.Search in Google Scholar PubMed PubMed Central
Thomas, J.E., Rylett, C.M., Carhan, A., Bland, N.D., Bingham, R.J., Shirras, A.D., Turner, A.J., and Isaac, R.E. (2005). Drosophila melanogaster NEP2 is a new soluble member of the neprilysin family of endopeptidases with implications for reproduction and renal function. Biochem. J. 386: 357–366, https://doi.org/10.1042/bj20041753.Search in Google Scholar PubMed PubMed Central
Turner, A.J., Isaac, R.E., and Coates, D. (2001). The neprilysin (NEP) family of zinc metalloendopeptidases: genomics and function. Bioessays 23: 261–269, https://doi.org/10.1002/1521-1878(200103)23:3<261::aid-bies1036>3.0.co;2-k.10.1002/1521-1878(200103)23:3<261::AID-BIES1036>3.0.CO;2-KSearch in Google Scholar
Turner, A.J. and Tanzawa, K. (1997). Mammalian membrane metallopeptidases: NEP, ECE, KELL, and PEX. Faseb. J. 11: 355–364, https://doi.org/10.1096/fasebj.11.5.9141502.Search in Google Scholar
Whitworth, J.A. (2003). Emerging drugs in the management of hypertension. Expert Opin. Emerg. Drugs 8: 377–388, https://doi.org/10.1517/14728214.8.2.377.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Highlight: Physiology and Dynamics of Cellular Microcompartments
- Highlight: on the past and the future of cellular microcompartments
- Nuclear redox processes in land plant development and stress adaptation
- The readily retrievable pool of synaptic vesicles
- Loss of respiratory complex I subunit NDUFB10 affects complex I assembly and supercomplex formation
- Modulation of self-organizing circuits at deforming membranes by intracellular and extracellular factors
- Computational resolution in single molecule localization – impact of noise level and emitter density
- Setting up a data management infrastructure for bioimaging
- Molecular insights into endolysosomal microcompartment formation and maintenance
- The role of lysosomes in lipid homeostasis
- Membrane damage and repair: a thin line between life and death
- Neuronal stress granules as dynamic microcompartments: current concepts and open questions
- Molecular determinants of protein half-life in chloroplasts with focus on the Clp protease system
- Neprilysin 4: an essential peptidase with multifaceted physiological relevance
- Determinants of synergistic cell-cell interactions in bacteria
- Drosophila collagens in specialised extracellular matrices
Articles in the same Issue
- Frontmatter
- Highlight: Physiology and Dynamics of Cellular Microcompartments
- Highlight: on the past and the future of cellular microcompartments
- Nuclear redox processes in land plant development and stress adaptation
- The readily retrievable pool of synaptic vesicles
- Loss of respiratory complex I subunit NDUFB10 affects complex I assembly and supercomplex formation
- Modulation of self-organizing circuits at deforming membranes by intracellular and extracellular factors
- Computational resolution in single molecule localization – impact of noise level and emitter density
- Setting up a data management infrastructure for bioimaging
- Molecular insights into endolysosomal microcompartment formation and maintenance
- The role of lysosomes in lipid homeostasis
- Membrane damage and repair: a thin line between life and death
- Neuronal stress granules as dynamic microcompartments: current concepts and open questions
- Molecular determinants of protein half-life in chloroplasts with focus on the Clp protease system
- Neprilysin 4: an essential peptidase with multifaceted physiological relevance
- Determinants of synergistic cell-cell interactions in bacteria
- Drosophila collagens in specialised extracellular matrices