Startseite Modulation of self-organizing circuits at deforming membranes by intracellular and extracellular factors
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Modulation of self-organizing circuits at deforming membranes by intracellular and extracellular factors

  • Anastasiia Sokolova ORCID logo und Milos Galic ORCID logo EMAIL logo
Veröffentlicht/Copyright: 12. Januar 2023

Abstract

Mechanical forces exerted to the plasma membrane induce cell shape changes. These transient shape changes trigger, among others, enrichment of curvature-sensitive molecules at deforming membrane sites. Strikingly, some curvature-sensing molecules not only detect membrane deformation but can also alter the amplitude of forces that caused to shape changes in the first place. This dual ability of sensing and inducing membrane deformation leads to the formation of curvature-dependent self-organizing signaling circuits. How these cell-autonomous circuits are affected by auxiliary parameters from inside and outside of the cell has remained largely elusive. Here, we explore how such factors modulate self-organization at the micro-scale and its emerging properties at the macroscale.


Corresponding author: Milos Galic, Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Straße 31, 48149 Münster, Germany; and ‘Cells in Motion’ Interfaculty Centre, University of Münster, Röntgenstraße 16, 48149 Münster, German, E-mail:

Funding source: Interdisziplinäres Zentrum für Klinische Forschung, Universitätsklinikum Münster

Award Identifier / Grant number: IZKF Ga3/016/21

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: CRC1348/A06

Award Identifier / Grant number: CRC944/P22

Award Identifier / Grant number: GA-2268-4/1

Acknowledgments

We would thank the members of the Galic group for critical feedback on the manuscript.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors acknowledge funding from the CIM-IMRS graduate school Münster (to A.S.), the Medical Faculty of the University of Münster (to MG: IZKF Ga3/016/21), and the German Research Council (to MG: CRC944/P22, CRC1348/A06, GA-2268-4/1).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abaurrea-Velasco, C., Auth, T., and Gompper, G. (2019). Vesicles with internal active filaments: self-organized propulsion controls shape, motility, and dynamical response. New J. Phys. 21: 123024, https://doi.org/10.1088/1367-2630/ab5c70.Suche in Google Scholar

Abe, K., Katsuno, H., Toriyama, M., Baba, K., Mori, T., Hakoshima, T., Kanemura, Y., Watanabe, R., and Inagaki, N. (2018). Grip and slip of L1-CAM on adhesive substrates direct growth cone haptotaxis. Proc. Natl. Acad. Sci. U.S.A. 115: 2764–2769, https://doi.org/10.1073/pnas.1711667115.Suche in Google Scholar PubMed PubMed Central

Adibhatla, R.M. and Hatcher, J.F. (2008). Altered lipid metabolism in brain injury and disorders. Sub Cell. Biochem. 49: 241–268.10.1007/978-1-4020-8831-5_9Suche in Google Scholar PubMed PubMed Central

Agrawal, H., Zelisko, M., Liu, L., and Sharma, P. (2016). Rigid proteins and softening of biological membranes-with application to HIV-induced cell membrane softening. Sci. Rep. 6: 25412, https://doi.org/10.1038/srep25412.Suche in Google Scholar PubMed PubMed Central

Ahmed, S., Goh, W.I., and Bu, W. (2010). I-BAR domains, IRSp53 and filopodium formation. Semin. Cell Dev. Biol. 21: 350–356, https://doi.org/10.1016/j.semcdb.2009.11.008.Suche in Google Scholar PubMed

Baralle, F.E. and Giudice, J. (2017). Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 18: 437–451, https://doi.org/10.1038/nrm.2017.27.Suche in Google Scholar PubMed PubMed Central

Bavi, O., Cox, C.D., Vossoughi, M., Naghdabadi, R., Jamali, Y., and Martinac, B. (2016). Influence of global and local membrane curvature on mechanosensitive ion channels: a finite element approach. Membranes 6: 1–16, https://doi.org/10.3390/membranes6010014.Suche in Google Scholar PubMed PubMed Central

Begemann, I., Saha, T., Lamparter, L., Rathmann, I., Grill, D., Golbach, L., Rasch, C., Keller, U., Trappmann, B., Matis, M., et al.. (2019). Mechanochemical self-organization determines search pattern in migratory cells. Nat. Phys. 15: 848–857, https://doi.org/10.1038/s41567-019-0505-9.Suche in Google Scholar

Bhatia, V.K., Madsen, K.L., Bolinger, P.Y., Kunding, A., Hedegård, P., Gether, U., and Stamou, D. (2009). Amphipathic motifs in BAR domains are essential for membrane curvature sensing. EMBO J. 28: 3303–3314, https://doi.org/10.1038/emboj.2009.261.Suche in Google Scholar PubMed PubMed Central

Blanchoin, L., Boujemaa-Paterski, R., Sykes, C., and Plastino, J. (2014). Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 94: 235–263, https://doi.org/10.1152/physrev.00018.2013.Suche in Google Scholar PubMed

Busch, D.J., Houser, J.R., Hayden, C.C., Sherman, M.B., Lafer, E.M., and Stachowiak, J.C. (2015). Intrinsically disordered proteins drive membrane curvature. Nat. Commun. 6: 7875, https://doi.org/10.1038/ncomms8875.Suche in Google Scholar PubMed PubMed Central

Chavent, M., Karia, D., Kalli, A.C., Domański, J., Duncan, A.L., Hedger, G., Stansfeld, P.J., Seiradake, E., Jones, E.Y., and Sansom, M.S.P. (2018). Interactions of the EphA2 kinase domain with PIPs in membranes: implications for receptor function. Structure 26: 1025–1034.e2, https://doi.org/10.1016/j.str.2018.05.003.Suche in Google Scholar PubMed PubMed Central

Chen, Q., Pan, Z., Zhao, M., Wang, Q., Qiao, C., Miao, L., and Ding, X. (2018). High cholesterol in lipid rafts reduces the sensitivity to EGFR-TKI therapy in non-small cell lung cancer. J. Cell. Physiol. 233: 6722–6732, https://doi.org/10.1002/jcp.26351.Suche in Google Scholar PubMed

Cheng, Y., LeGall, T., Oldfield, C.J., Dunker, A.K., and Uversky, V.N. (2006). Abundance of intrinsic disorder in protein associated with cardiovascular disease. Biochemistry 45: 10448–10460, https://doi.org/10.1021/bi060981d.Suche in Google Scholar PubMed

Clarkson, E., Costa, C.F., and Machesky, L.M. (2004). Congenital myopathies: diseases of the actin cytoskeleton. J. Pathol. 204: 407–417, https://doi.org/10.1002/path.1648.Suche in Google Scholar PubMed

Croteau, L.P., Kao, T.J., and Kania, A. (2019). Ephrin-A5 potentiates netrin-1 axon guidance by enhancing Neogenin availability. Sci. Rep. 9: 12009, https://doi.org/10.1038/s41598-019-48519-0.Suche in Google Scholar PubMed PubMed Central

Cunningham, F., Allen, J.E., Allen, J., Alvarez-Jarreta, J., Amode, M.R., Armean, I.M., Austine-Orimoloye, O., Azov, A.G., Barnes, I., Bennett, R., et al.. (2022). Ensembl 2022. Nucleic Acids Res. 50: D988–D995, https://doi.org/10.1093/nar/gkab1049.Suche in Google Scholar PubMed PubMed Central

D’Alessandro, M., Hnia, K., Gache, V., Koch, C., Gavriilidis, C., Rodriguez, D., Nicot, A.S., Romero, N.B., Schwab, Y., Gomes, E., et al.. (2015). Amphiphysin 2 orchestrates nucleus positioning and shape by linking the nuclear envelope to the actin and microtubule cytoskeleton. Dev. Cell 35: 186–198, https://doi.org/10.1016/j.devcel.2015.09.018.Suche in Google Scholar PubMed

Darling, T.K. and Lamb, T.J. (2019). Emerging roles for Eph receptors and ephrin ligands in immunity. Front. Immunol. 10: 1473, https://doi.org/10.3389/fimmu.2019.01473.Suche in Google Scholar PubMed PubMed Central

Doolin, M.T., Smith, I.M., and Stroka, K.M. (2021). Fibroblast to myofibroblast transition is enhanced by increased cell density. Mol. Biol. Cell 32: ar41, https://doi.org/10.1091/mbc.e20-08-0536.Suche in Google Scholar

Doss, B.L., Pan, M., Gupta, M., Grenci, G., Mège, R.M., Lim, C.T., Sheetz, M.P., Voituriez, R., and Ladoux, B. (2020). Cell response to substrate rigidity is regulated by active and passive cytoskeletal stress. Proc. Natl. Acad. Sci. U.S.A. 117: 12817–12825, https://doi.org/10.1073/pnas.1917555117.Suche in Google Scholar PubMed PubMed Central

Dyson, H. and Wright, P.E. (2002). Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 12: 54–60, https://doi.org/10.1016/s0959-440x(02)00289-0.Suche in Google Scholar PubMed

Elkin, B.S., Azeloglu, E.U., Costa, K.D., and Morrison, B. (2007). Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J. Neurotrauma 24: 812–822, https://doi.org/10.1089/neu.2006.0169.Suche in Google Scholar PubMed

Engler, A.J., Sen, S., Sweeney, H.L., and Discher, D.E. (2006). Matrix elasticity directs stem cell lineage specification. Cell 126: 677–689, https://doi.org/10.1016/j.cell.2006.06.044.Suche in Google Scholar PubMed

Flaugh, S.L., Kosinski-Collins, M.S., and King, J. (2005). Interdomain side-chain interactions in human gammaD crystallin influencing folding and stability. Protein Sci. 14: 2030–2043, https://doi.org/10.1110/ps.051460505.Suche in Google Scholar PubMed PubMed Central

Fošnarič, M., Penič, S., Iglič, A., Kralj-Iglič, V., Drab, M., and Gov, N.S. (2019). Theoretical study of vesicle shapes driven by coupling curved proteins and active cytoskeletal forces. Soft Matter 15: 5319–5330, https://doi.org/10.1039/c8sm02356e.Suche in Google Scholar PubMed

Frigini, E.N., Barrera, E.E., Pantano, S., and Porasso, R.D. (2020). Role of membrane curvature on the activation/deactivation of Carnitine Palmitoyltransferase 1A: a coarse grain molecular dynamic study. Biochim. Biophys. Acta Biomembr. 1862: 183094, https://doi.org/10.1016/j.bbamem.2019.183094.Suche in Google Scholar PubMed

Galic, M., Jeong, S., Tsai, F.C., Joubert, L.M., Wu, Y.I., Hahn, K.M., Cui, Y., and Meyer, T. (2012). External push and internal pull forces recruit curvature-sensing N-BAR domain proteins to the plasma membrane. Nat. Cell Biol. 14: 874–881, https://doi.org/10.1038/ncb2533.Suche in Google Scholar PubMed PubMed Central

Galic, M., Tsai, F.C., Collins, S.R., Matis, M., Bandara, S., and Meyer, T. (2014). Dynamic recruitment of the curvature-sensitive protein ArhGAP44 to nanoscale membrane deformations limits exploratory filopodia initiation in neurons. Elife 3: e03116, https://doi.org/10.7554/elife.03116.Suche in Google Scholar PubMed PubMed Central

Gavriljuk, K., Scocozza, B., Ghasemalizadeh, F., Seidel, H., Nandan, A.P., Campos-Medina, M., Schmick, M., Koseska, A., and Bastiaens, P.I.H. (2021). A self-organized synthetic morphogenic liposome responds with shape changes to local light cues. Nat. Commun. 12: 1548, https://doi.org/10.1038/s41467-021-21679-2.Suche in Google Scholar PubMed PubMed Central

Gov, N.S. and Gopinathan, A. (2006). Dynamics of membranes driven by actin polymerization. Biophys. J. 90: 454–469, https://doi.org/10.1529/biophysj.105.062224.Suche in Google Scholar PubMed PubMed Central

Halim, K.B.A., Koldsø, H., and Sansom, M.S.P. (2015). Interactions of the EGFR juxtamembrane domain with PIP2-containing lipid bilayers: insights from multiscale molecular dynamics simulations. Biochim. Biophys. Acta 1850: 1017–1025, https://doi.org/10.1016/j.bbagen.2014.09.006.Suche in Google Scholar PubMed PubMed Central

Harayama, T. and Riezman, H. (2018). Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19: 281–296, https://doi.org/10.1038/nrm.2017.138.Suche in Google Scholar PubMed

Helfrich, W. (1973). Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C Biosci. 28: 693–703, https://doi.org/10.1515/znc-1973-11-1209.Suche in Google Scholar PubMed

Huang, X., Yang, N., Fiore, V.F., Barker, T.H., Sun, Y., Morris, S.W., Ding, Q., Thannickal, V.J., and Zhou, Y. (2012). Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction. Am. J. Respir. Cell Mol. Biol. 47: 340–348, https://doi.org/10.1165/rcmb.2012-0050oc.Suche in Google Scholar PubMed PubMed Central

Hui, K.L., Balagopalan, L., Samelson, L.E., and Upadhyaya, A. (2015). Cytoskeletal forces during signaling activation in Jurkat T-cells. Mol. Biol. Cell 26: 685–695, https://doi.org/10.1091/mbc.e14-03-0830.Suche in Google Scholar PubMed PubMed Central

Iakoucheva, L.M., Brown, C.J., Lawson, J., Obradović, Z., and Dunker, A. (2002). Intrinsic disorder in cell-signaling and cancer-associated proteins. J. Mol. Biol. 323: 573–584, https://doi.org/10.1016/s0022-2836(02)00969-5.Suche in Google Scholar PubMed

Jarsch, I.K., Daste, F., and Gallop, J.L. (2016). Membrane curvature in cell biology: an integration of molecular mechanisms. J. Cell Biol. 214: 375–387, https://doi.org/10.1083/jcb.201604003.Suche in Google Scholar PubMed PubMed Central

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596: 583–589, https://doi.org/10.1038/s41586-021-03819-2.Suche in Google Scholar PubMed PubMed Central

Kania, A. and Klein, R. (2016). Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat. Rev. Mol. Cell Biol. 17: 240–256, https://doi.org/10.1038/nrm.2015.16.Suche in Google Scholar PubMed

Karsenti, E. (2008). Self-organization in cell biology: a brief history. Nat. Rev. Mol. Cell Biol. 9: 255–262, https://doi.org/10.1038/nrm2357.Suche in Google Scholar PubMed

Käs, J. and Sackmann, E. (1991). Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes. Biophys. J. 60: 825–844, https://doi.org/10.1016/s0006-3495(91)82117-8.Suche in Google Scholar PubMed PubMed Central

Kast, D.J., Yang, C., Disanza, A., Boczkowska, M., Madasu, Y., Scita, G., Svitkina, T., and Dominguez, R. (2014). Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors. Nat. Struct. Mol. Biol. 21: 413–422, https://doi.org/10.1038/nsmb.2781.Suche in Google Scholar PubMed PubMed Central

Kelkar, M., Bohec, P., and Charras, G. (2020). Mechanics of the cellular actin cortex: from signalling to shape change. Curr. Opin. Cell Biol. 66: 69–78, https://doi.org/10.1016/j.ceb.2020.05.008.Suche in Google Scholar PubMed

Kluge, C., Pöhnl, M., and Böckmann, R.A. (2022). Spontaneous local membrane curvature induced by transmembrane proteins. Biophys. J. 121: 671–683, https://doi.org/10.1016/j.bpj.2022.01.029.Suche in Google Scholar PubMed PubMed Central

Lacovich, V., Espindola, S.L., Alloatti, M., Devoto, V.P., Cromberg, L.E., Čarná, M.E., Forte, G., Gallo, J.M., Bruno, L., Stokin, G.B., et al.. (2017). Tau isoforms imbalance impairs the axonal transport of the amyloid precursor protein in human neurons. J. Neurosci. 37: 58–69, https://doi.org/10.1523/jneurosci.2305-16.2016.Suche in Google Scholar PubMed PubMed Central

Lamparter, L. and Galic, M. (2020). Cellular membranes, a versatile adaptive composite material. Front. Cell Dev. Biol. 8: 684, https://doi.org/10.3389/fcell.2020.00684.Suche in Google Scholar PubMed PubMed Central

Leibler, S. (1986). Curvature instability in membranes. J. Phys. 47: 507–516, https://doi.org/10.1051/jphys:01986004703050700.10.1051/jphys:01986004703050700Suche in Google Scholar

Lemmon, M.A. and Schlessinger, J. (2010). Cell signaling by receptor tyrosine kinases. Cell 141: 1117–1134, https://doi.org/10.1016/j.cell.2010.06.011.Suche in Google Scholar PubMed PubMed Central

Li, Y. and Wolde, P.R.ten (2019). Shape transformations of vesicles induced by swim pressure. Phys. Rev. Lett. 123: 148003, https://doi.org/10.1103/physrevlett.123.148003.Suche in Google Scholar PubMed

Liu, A.P., Richmond, D.L., Maibaum, L., Pronk, S., Geissler, P.L., and Fletcher, D.A. (2008). Membrane-induced bundling of actin filaments. Nat. Phys. 4: 789–793, https://doi.org/10.1038/nphys1071.Suche in Google Scholar PubMed PubMed Central

Mancinelli, G., Lamparter, L., Nosov, G., Saha, T., Pawluchin, A., Kurre, R., Rasch, C., Ebrahimkutty, M., Klingauf, J., and Galic, M. (2021). Dendrite tapering actuates a self-organizing signaling circuit for stochastic filopodia initiation in neurons. Proc. Natl. Acad. Sci. U.S.A. 118: 1–9, https://doi.org/10.1073/pnas.2106921118.Suche in Google Scholar PubMed PubMed Central

Martinac, B., Bavi, N., Ridone, P., Nikolaev, Y.A., Martinac, A.D., Nakayama, Y., Rohde, P.R., and Bavi, O. (2018). Tuning ion channel mechanosensitivity by asymmetry of the transbilayer pressure profile. Biophys. Rev. 10: 1377–1384, https://doi.org/10.1007/s12551-018-0450-3.Suche in Google Scholar PubMed PubMed Central

Maxfield, F.R. and Tabas, I. (2005). Role of cholesterol and lipid organization in disease. Nature 438: 612–621, https://doi.org/10.1038/nature04399.Suche in Google Scholar PubMed

McMahon, H.T. and Boucrot, E. (2015). Membrane curvature at a glance. J. Cell Sci. 128: 1065–1070, https://doi.org/10.1242/jcs.114454.Suche in Google Scholar PubMed PubMed Central

Mills, J.P., Diez-Silva, M., Quinn, D.J., Dao, M., Lang, M.J., Tan, K.S.W., Lim, C.T., Milon, G., David, P.H., Mercereau-Puijalon, O., et al.. (2007). Effect of plasmodial RESA protein on deformability of human red blood cells harboring plasmodium falciparum. Proc. Natl. Acad. Sci. U.S.A. 104: 9213–9217, https://doi.org/10.1073/pnas.0703433104.Suche in Google Scholar PubMed PubMed Central

Mori, H., Takahashi, A., Horimoto, A., and Hara, M. (2013). Migration of glial cells differentiated from neurosphere-forming neural stem/progenitor cells depends on the stiffness of the chemically cross-linked collagen gel substrate. Neurosci. Lett. 555: 1–6, https://doi.org/10.1016/j.neulet.2013.09.012.Suche in Google Scholar PubMed

Nicot, A.S., Toussaint, A., Tosch, V., Kretz, C., Wallgren-Pettersson, C., Iwarsson, E., Kingston, H., Garnier, J.M., Biancalana, V., Oldfors, A., et al.. (2007). Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat. Genet. 39: 1134–1139, https://doi.org/10.1038/ng2086.Suche in Google Scholar PubMed

Niederman, R. and Pollard, T.D. (1975). Human platelet myosin. II. In vitro assembly and structure of myosin filaments. J. Cell Biol. 67: 72–92, https://doi.org/10.1083/jcb.67.1.72.Suche in Google Scholar PubMed PubMed Central

Noguchi, H. (2016a). Membrane tubule formation by banana-shaped proteins with or without transient network structure. Sci. Rep. 6: 20935, https://doi.org/10.1038/srep20935.Suche in Google Scholar PubMed PubMed Central

Noguchi, H. (2016b). Shape deformation of lipid membranes by banana-shaped protein rods: comparison with isotropic inclusions and membrane rupture. Phys. Rev. E 93: 52404, https://doi.org/10.1103/physreve.93.052404.Suche in Google Scholar

Noguchi, H. (2017). Acceleration and suppression of banana-shaped-protein-induced tubulation by addition of small membrane inclusions of isotropic spontaneous curvatures. Soft Matter 13: 7771–7779, https://doi.org/10.1039/c7sm01375b.Suche in Google Scholar PubMed

Noguchi, H. and Fournier, J.B. (2017). Membrane structure formation induced by two types of banana-shaped proteins. Soft Matter 13: 4099–4111, https://doi.org/10.1039/c7sm00305f.Suche in Google Scholar PubMed

Nucifora, F.C., Sasaki, M., Peters, M.F., Huang, H., Cooper, J.K., Yamada, M., Takahashi, H., Tsuji, S., Troncoso, J., Dawson, V.L., et al.. (2001). Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291: 2423–2428, https://doi.org/10.1126/science.1056784.Suche in Google Scholar PubMed

Oldfield, C.J., Cheng, Y., Cortese, M.S., Romero, P., Uversky, V.N., and Dunker, A.K. (2005). Coupled folding and binding with α-helix-forming molecular recognition elements. Biochemistry 44: 12454–12470, https://doi.org/10.1021/bi050736e.Suche in Google Scholar PubMed

Paoluzzi, M., Leonardo, R.D., Marchetti, M.C., and Angelani, L. (2016). Shape and displacement fluctuations in soft vesicles filled by active particles. Sci. Rep. 6: 1–10, https://doi.org/10.1038/srep34146.Suche in Google Scholar PubMed PubMed Central

Papp, H., Czifra, G., Bodó, E., Lázár, J., Kovács, I., Aleksza, M., Juhász, I., Acs, P., Sipka, S., Kovács, L., et al.. (2004). Opposite roles of protein kinase C isoforms in proliferation, differentiation, apoptosis, and tumorigenicity of human HaCaT keratinocytes. Cell. Mol. Life Sci. 61: 1095–1105, https://doi.org/10.1007/s00018-004-4014-2.Suche in Google Scholar PubMed

Parker, F., Baboolal, T.G., and Peckham, M. (2020). Actin mutations and their role in disease. Int. J. Mol. Sci. 21: 1–16, https://doi.org/10.3390/ijms21093371.Suche in Google Scholar PubMed PubMed Central

Parthasarathy, R. and Groves, J.T. (2006). Curvature and spatial organization in biological membranes. Soft Matter 3: 24–33, https://doi.org/10.1039/b608631d.Suche in Google Scholar PubMed

Peskin, C.S., Odell, G.M., and Oster, G.F. (1993). Cellular motions and thermal fluctuations: the brownian ratchet. Biophys. J. 65: 316–324, https://doi.org/10.1016/s0006-3495(93)81035-x.Suche in Google Scholar

Peter, B.J., Kent, H.M., Mills, I.G., Vallis, Y., Butler, P.J.G., Evans, P.R., and McMahon, H.T. (2004). BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303: 495–499, https://doi.org/10.1126/science.1092586.Suche in Google Scholar PubMed

Prévost, C., Zhao, H., Manzi, J., Lemichez, E., Lappalainen, P., Callan-Jones, A., and Bassereau, P. (2015). IRSp53 senses negative membrane curvature and phase separates along membrane tubules. Nat. Commun. 6: 8529, https://doi.org/10.1038/ncomms9529.Suche in Google Scholar PubMed PubMed Central

Qasba, P.K., Ramakrishnan, B., and Boeggeman, E. (2008). Structure and function of beta -1, 4-galactosyltransferase. Curr. Drug Targets 9: 292–309, https://doi.org/10.2174/138945008783954943.Suche in Google Scholar PubMed PubMed Central

Ramaswamy, S., Toner, J., and Prost, J. (2000). Nonequilibrium fluctuations, traveling waves, and instabilities in active membranes. Phys. Rev. Lett. 84: 3494–3497, https://doi.org/10.1103/physrevlett.84.3494.Suche in Google Scholar

Saha, T. and Galic, M. (2018). Self-organization across scales: from molecules to organisms. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373: 1–9, https://doi.org/10.1098/rstb.2017.0113.Suche in Google Scholar PubMed PubMed Central

Salzer, U., Kostan, J., and Djinović-Carugo, K. (2017). Deciphering the BAR code of membrane modulators. Cell. Mol. Life Sci. 74: 2413–2438, https://doi.org/10.1007/s00018-017-2478-0.Suche in Google Scholar PubMed PubMed Central

Santiago, I. and Simmel, F.C. (2019). Self-propulsion strategies for artificial cell-like compartments. Nanomaterials 9: 1–14, https://doi.org/10.3390/nano9121680.Suche in Google Scholar PubMed PubMed Central

Santos, T.E., Schaffran, B., Broguière, N., Meyn, L., Zenobi-Wong, M., and Bradke, F. (2020). Axon growth of CNS neurons in three dimensions is amoeboid and independent of adhesions. Cell Rep. 32: 107907, https://doi.org/10.1016/j.celrep.2020.107907.Suche in Google Scholar PubMed

Schweisguth, F. and Corson, F. (2019). Self-organization in pattern formation. Dev. Cell 49: 659–677, https://doi.org/10.1016/j.devcel.2019.05.019.Suche in Google Scholar PubMed

Shlomovitz, R. and Gov, N.S. (2007). Membrane waves driven by actin and myosin. Phys. Rev. Lett. 98: 168103, https://doi.org/10.1103/physrevlett.98.168103.Suche in Google Scholar PubMed

Simon, C., Kusters, R., Caorsi, V., Allard, A., Abou-Ghali, M., Manzi, J., Cicco, A.D., Lévy, D., Lenz, M., Joanny, J.F., et al.. (2019). Actin dynamics drive cell-like membrane deformation. Nat. Phys. 15: 602–609, https://doi.org/10.1038/s41567-019-0464-1.Suche in Google Scholar

Simunovic, M., Evergren, E., Golushko, I., Prévost, C., Renard, H.F., Johannes, L., McMahon, H.T., Lorman, V., Voth, G.A., and Bassereau, P. (2016). How curvature-generating proteins build scaffolds on membrane nanotubes. Proc. Natl. Acad. Sci. U.S.A. 113: 11226–11231, https://doi.org/10.1073/pnas.1606943113.Suche in Google Scholar PubMed PubMed Central

Snead, W.T., Hayden, C.C., Gadok, A.K., Zhao, C., Lafer, E.M., Rangamani, P., and Stachowiak, J.C. (2017). Membrane fission by protein crowding. Proc. Natl. Acad. Sci. U.S.A. 114: E3258–E3267, https://doi.org/10.1073/pnas.1616199114.Suche in Google Scholar PubMed PubMed Central

Spector, A.A. and Yorek, M.A. (1985). Membrane lipid composition and cellular function. J. Lipid Res. 26: 1015–1035, https://doi.org/10.1016/s0022-2275(20)34276-0.Suche in Google Scholar

Stefanski, K.M., Russell, C.M., Westerfield, J.M., Lamichhane, R., and Barrera, F.N. (2021). PIP2 promotes conformation-specific dimerization of the EphA2 membrane region. J. Biol. Chem. 296: 100149, https://doi.org/10.1074/jbc.ra120.016423.Suche in Google Scholar

Stock, J. and Pauli, A. (2021). Self-organized cell migration across scales - from single cell movement to tissue formation. Development 148: 1–13, https://doi.org/10.1242/dev.191767.Suche in Google Scholar PubMed

Su, C.H. and Tarn, W.Y. (2018). Alternative splicing in neurogenesis and brain development. Front. Mol. Biosci. 5: 12, https://doi.org/10.3389/fmolb.2018.00012.Suche in Google Scholar PubMed PubMed Central

Tamemoto, N. and Noguchi, H. (2021). Reaction-diffusion waves coupled with membrane curvature. Soft Matter 17: 6589–6596, https://doi.org/10.1039/d1sm00540e.Suche in Google Scholar PubMed

Tan, X., Sun, Y., Thapa, N., Liao, Y., Hedman, A.C., and Anderson, R.A. (2015). LAPTM4B is a PtdIns(4, 5)P2 effector that regulates EGFR signaling, lysosomal sorting, and degradation. EMBO J. 34: 475–490, https://doi.org/10.15252/embj.201489425.Suche in Google Scholar PubMed PubMed Central

Thelen, K., Kedar, V., Panicker, A.K., Schmid, R.S., Midkiff, B.R., and Maness, P.F. (2002). The neural cell adhesion molecule L1 potentiates integrin-dependent cell migration to extracellular matrix proteins. J. Neurosci. 22: 4918–4931, https://doi.org/10.1523/jneurosci.22-12-04918.2002.Suche in Google Scholar

Tian, W.D., Gu, Y., Guo, Y.K., and Chen, K. (2017). Anomalous boundary deformation induced by enclosed active particles. Chin. Phys. B 26: 100502, https://doi.org/10.1088/1674-1056/26/10/100502.Suche in Google Scholar

Tompa, P. (2005). The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett. 579: 3346–3354, https://doi.org/10.1016/j.febslet.2005.03.072.Suche in Google Scholar PubMed

Vutukuri, H.R., Hoore, M., Abaurrea-Velasco, C., van Buren, L., Dutto, A., Auth, T., Fedosov, D.A., Gompper, G., and Vermant, J. (2020). Active particles induce large shape deformations in giant lipid vesicles. Nature 586: 52–56, https://doi.org/10.1038/s41586-020-2730-x.Suche in Google Scholar PubMed

Wakatsuki, T., Kolodney, M.S., Zahalak, G.I., and Elson, E.L. (2000). Cell mechanics studied by a reconstituted model tissue. Biophys. J. 79: 2353–2368, https://doi.org/10.1016/s0006-3495(00)76481-2.Suche in Google Scholar PubMed PubMed Central

Welf, E.S., Miles, C.E., Huh, J., Sapoznik, E., Chi, J., Driscoll, M.K., Isogai, T., Noh, J., Weems, A.D., Pohlkamp, T., et al.. (2020). Actin-membrane release initiates cell protrusions. Dev. Cell 55: 723–736.e8, https://doi.org/10.1016/j.devcel.2020.11.024.Suche in Google Scholar PubMed PubMed Central

Wu, Z., Su, M., Tong, C., Wu, M., and Liu, J. (2018). Membrane shape-mediated wave propagation of cortical protein dynamics. Nat. Commun. 9: 136, https://doi.org/10.1038/s41467-017-02469-1.Suche in Google Scholar PubMed PubMed Central

Xu, N.J. and Henkemeyer, M. (2012). Ephrin reverse signaling in axon guidance and synaptogenesis. Semin. Cell Dev. Biol. 23: 58–64, https://doi.org/10.1016/j.semcdb.2011.10.024.Suche in Google Scholar PubMed PubMed Central

Xue, B., Brown, C.J., Dunker, A.K., and Uversky, V.N. (2013). Intrinsically disordered regions of p53 family are highly diversified in evolution. Biochim. Biophys. Acta 1834: 725–738, https://doi.org/10.1016/j.bbapap.2013.01.012.Suche in Google Scholar PubMed PubMed Central

Yang, S., Miao, X., Arnold, S., Li, B., Ly, A.T., Wang, H., Wang, M., Guo, X., Pathak, M.M., Zhao, W., et al.. (2022). Membrane curvature governs the distribution of Piezo1 in live cells. Nat. Commun. 13: 1–14.10.1038/s41467-022-35034-6Suche in Google Scholar PubMed PubMed Central

Yeung, T., Georges, P.C., Flanagan, L.A., Marg, B., Ortiz, M., Funaki, M., Zahir, N., Ming, W., Weaver, V., and Janmey, P.A. (2005). Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet. 60: 24–34, https://doi.org/10.1002/cm.20041.Suche in Google Scholar PubMed

Zeno, W.F., Snead, W.T., Thatte, A.S., and Stachowiak, J.C. (2019). Structured and intrinsically disordered domains within Amphiphysin1 work together to sense and drive membrane curvature. Soft Matter 15: 8706–8717, https://doi.org/10.1039/c9sm01495k.Suche in Google Scholar PubMed PubMed Central

Received: 2022-09-26
Accepted: 2022-12-16
Published Online: 2023-01-12
Published in Print: 2023-04-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2022-0290/html
Button zum nach oben scrollen