Home Purification of Eucalyptus globulus water prehydrolyzates using the HiTAC process (high-temperature adsorption on activated charcoal)
Article
Licensed
Unlicensed Requires Authentication

Purification of Eucalyptus globulus water prehydrolyzates using the HiTAC process (high-temperature adsorption on activated charcoal)

11th EWLP, Hamburg, Germany, August 16–19, 2010
  • Jenny Sabrina Gütsch and Herbert Sixta EMAIL logo
Published/Copyright: April 6, 2011
Become an author with De Gruyter Brill
Holzforschung
From the journal Volume 65 Issue 4

Abstract

The implementation of biorefinery concepts into existing pulp and paper mills is a key step for a sustainable utilization of the natural resource wood. Water prehydrolysis of wood is an interesting process for the recovery of xylo-oligosaccharides and derivatives thereof, while at the same time cellulose is preserved to a large extent for subsequent dissolving pulp production. The recovery of value-added products out of autohydrolyzates is frequently hindered by extensive lignin precipitation, especially at high temperatures. In this study, a new high-temperature adsorption process (HiTAC process) was developed, where lignin is removed directly after the autohydrolysis, which enables further processing of the autohydrolyzates. The suitability of activated charcoals as a selective adsorbent for lignin under process-relevant conditions (150 and 170°C) has not been considered up to now, because former experiments showed decreasing efficiency of charcoal adsorption of lignin with increasing temperature in the range 20–80°C. In contrast to these results, we demonstrated that the adsorption of lignin at 170°C directly after autohydrolysis is even more efficient than after cooling the hydrolyzate to room temperature. The formation of lignin precipitation and incrustations can thus be efficiently prevented by the HiTAC process. The carbohydrates in the autohydrolysis liquor remain unaffected over a wide charcoal concentration range and can be further processed to yield valuable products.


Corresponding author. Lenzing AG, Werkstraße 1, 4860 Lenzing, Austria Phone: +358 50 384 1764 Fax: +358 9 451 4259

Received: 2010-11-18
Accepted: 2011-2-18
Published Online: 2011-04-06
Published Online: 2011-04-6
Published in Print: 2011-06-01

©2011 by Walter de Gruyter Berlin Boston

Articles in the same Issue

  1. Editorial
  2. EWLP 2010, 16th–19th August 2010, Hamburg, Germany
  3. Review
  4. Bio based fuels and fuel additives from lignocellulose feedstock via the production of levulinic acid and furfural
  5. Original Papers
  6. Optimization of steam pretreatment conditions for enzymatic hydrolysis of poplar wood
  7. Fungal pretreatment of pine wood to reduce the emission of volatile organic compounds
  8. Dilute acid pretreatment of starch-containing rice hulls for ethanol production
  9. Studies of the chemoenzymatic modification of cellulosic pulps by the laccase-TEMPO system
  10. Development of an integrated thermal and enzymatic hydrolysis for lignocellulosic biomass in fixed-bed reactors
  11. A larch based biorefinery: pre-extraction and extract fermentation to lactic acid
  12. Lignins as agents for bio-protection of wood
  13. Isolation and characterization of the phenolic fractions of wood pyrolytic oil
  14. Purification of Eucalyptus globulus water prehydrolyzates using the HiTAC process (high-temperature adsorption on activated charcoal)
  15. Disintegration and dissolution kinetics of wood chips in ionic liquids
  16. Ionic liquids as media for biomass processing: opportunities and restrictions
  17. Autohydrolysis of birch wood
  18. Solvent extraction as a means of preparing homogeneous lignin fractions
  19. Conditioning of SO2-ethanol-water spent liquor from spruce for the production of chemicals by ABE fermentation
  20. Total mass balances of SO2-ethanol-water (SEW) fractionation of forest biomass
  21. Lignin oxidation mechanisms under oxygen delignification conditions. Part 1. Results from direct analyses
  22. Lignin oxidation mechanisms under oxygen delignification conditions. Part 2: Advanced methods for the detailed characterization of lignin oxidation mechanisms
  23. Lignin oxidation mechanisms under oxygen delignification conditions. Part 3. Reaction pathways and modeling
  24. Simplified determination of total lignin content in kraft lignin samples and black liquors
  25. Xylan deposition onto eucalypt pulp fibers during oxygen delignification
  26. Dissolution of dissolving pulp in alkaline solvents after steam explosion pretreatments
  27. Structure and antioxidant activity of diarylheptanoids extracted from bark of grey alder (Alnus incana) and potential of biorefinery-based bark processing of European trees
  28. Short Note
  29. Binding affinities of different metal ions to unbleached hardwood kraft pulp
  30. Meetings
  31. Meetings
Downloaded on 2.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hf.2011.065/html
Scroll to top button