Home Lignin oxidation mechanisms under oxygen delignification conditions. Part 1. Results from direct analyses
Article
Licensed
Unlicensed Requires Authentication

Lignin oxidation mechanisms under oxygen delignification conditions. Part 1. Results from direct analyses

11th EWLP, Hamburg, Germany, August 16–19, 2010
  • Anna Kalliola EMAIL logo , Susanna Kuitunen , Tiina Liitiä , Stella Rovio , Taina Ohra-aho , Tapani Vuorinen and Tarja Tamminen
Published/Copyright: June 10, 2011
Become an author with De Gruyter Brill
Holzforschung
From the journal Volume 65 Issue 4

Abstract

Oxidation of softwood and hardwood kraft lignins was observed under conditions of oxygen delignification (90°C and 110°C; 0.6 and 0.9 MPa) as a function of time by means of a number of analysis techniques and quantitative information was obtained on the degradation and formation of various compounds and structures. The decrease in reactor pressure was monitored during a 4-h reaction period. During the first 60 min, lignin reactivity was high, while a very intense stage took place during the first 20 min. The reactions decelerated after the first 60 min and after 120 min the reactions did not significantly advance. The oxygen consumption after 4-h reaction was 1.3–1.5 mole O2 per 1 mole lignin depending on the conditions. In the first 20 min, 50%–60% of the oxygen was consumed and the consumption increased only slightly after 60 min. At 90°C, the changes in all observed quantities were smaller throughout the whole 4-h reaction period than at 110°C. Under the studied conditions, increasing the reaction temperature, rather than the pressure, had primary significance in the increasing rate of lignin degradation. Hardwood kraft lignin was more reactive than softwood kraft lignin. The results obtained in this study are the basis for the development of a mechanistic model for the oxygen delignification process of pulps to be published in subsequent papers.


Corresponding author. VTT Technical Research Center of Finland, VTT, P.O. Box 1000, FI-02044 VTT, Finland

Received: 2010-10-30
Accepted: 2011-5-6
Published Online: 2011-06-10
Published in Print: 2011-06-01

©2011 by Walter de Gruyter Berlin Boston

Articles in the same Issue

  1. Editorial
  2. EWLP 2010, 16th–19th August 2010, Hamburg, Germany
  3. Review
  4. Bio based fuels and fuel additives from lignocellulose feedstock via the production of levulinic acid and furfural
  5. Original Papers
  6. Optimization of steam pretreatment conditions for enzymatic hydrolysis of poplar wood
  7. Fungal pretreatment of pine wood to reduce the emission of volatile organic compounds
  8. Dilute acid pretreatment of starch-containing rice hulls for ethanol production
  9. Studies of the chemoenzymatic modification of cellulosic pulps by the laccase-TEMPO system
  10. Development of an integrated thermal and enzymatic hydrolysis for lignocellulosic biomass in fixed-bed reactors
  11. A larch based biorefinery: pre-extraction and extract fermentation to lactic acid
  12. Lignins as agents for bio-protection of wood
  13. Isolation and characterization of the phenolic fractions of wood pyrolytic oil
  14. Purification of Eucalyptus globulus water prehydrolyzates using the HiTAC process (high-temperature adsorption on activated charcoal)
  15. Disintegration and dissolution kinetics of wood chips in ionic liquids
  16. Ionic liquids as media for biomass processing: opportunities and restrictions
  17. Autohydrolysis of birch wood
  18. Solvent extraction as a means of preparing homogeneous lignin fractions
  19. Conditioning of SO2-ethanol-water spent liquor from spruce for the production of chemicals by ABE fermentation
  20. Total mass balances of SO2-ethanol-water (SEW) fractionation of forest biomass
  21. Lignin oxidation mechanisms under oxygen delignification conditions. Part 1. Results from direct analyses
  22. Lignin oxidation mechanisms under oxygen delignification conditions. Part 2: Advanced methods for the detailed characterization of lignin oxidation mechanisms
  23. Lignin oxidation mechanisms under oxygen delignification conditions. Part 3. Reaction pathways and modeling
  24. Simplified determination of total lignin content in kraft lignin samples and black liquors
  25. Xylan deposition onto eucalypt pulp fibers during oxygen delignification
  26. Dissolution of dissolving pulp in alkaline solvents after steam explosion pretreatments
  27. Structure and antioxidant activity of diarylheptanoids extracted from bark of grey alder (Alnus incana) and potential of biorefinery-based bark processing of European trees
  28. Short Note
  29. Binding affinities of different metal ions to unbleached hardwood kraft pulp
  30. Meetings
  31. Meetings
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hf.2011.101/html
Scroll to top button