Startseite Studies of the chemoenzymatic modification of cellulosic pulps by the laccase-TEMPO system
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Studies of the chemoenzymatic modification of cellulosic pulps by the laccase-TEMPO system

11th EWLP, Hamburg, Germany, August 16–19, 2010
  • Ilabahen Patel , Roland Ludwig , Dietmar Haltrich , Thomas Rosenau und Antje Potthast EMAIL logo
Veröffentlicht/Copyright: 25. Februar 2011
Veröffentlichen auch Sie bei De Gruyter Brill
Holzforschung
Aus der Zeitschrift Band 65 Heft 4

Abstract

The chemoenzymatic modification of cellulosic pulps by the laccase-mediator system (LMS) consisting of laccase (EC 1.10.3.2) and the 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) has been investigated. The reaction proceeds under mild aqueous conditions (sodium citrate buffer pH 6, 30°C) and introduces primarily aldehyde groups into cellulose so that carboxyl groups amount to one-third to one-fifth of the carbonyl groups only. LMS treatment caused uniform oxidation of the material, also in the high-molecular weight area, which is a non-typical behavior compared to other chemical oxidations of cellulose. Treatment of the pulp only with TEMPO or only with laccase caused no changes whatsoever, whereas treatment with the TEMPO-derived oxoammonium ion (in the absence of laccase) introduced carbonyl groups into the pulp, but no carboxyls. This chemoenzymatic approach was compared to the well-known chemical approach by means of TEMPO and hypohalite. Both approaches yielded comparable distributions of functional groups at the low oxidation degrees studied, indicating a similar reaction mechanism with the TEMPO-derived oxoammonium ion being the actual oxidant. The laccase is able to generate this oxoammonium ion, which in turn oxidized the 6-hydroxymethyl group into the corresponding aldehyde.


Corresponding author. Department of Chemistry, Division of Organic Chemistry, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, A-1190 Vienna, Austria

Received: 2010-9-24
Accepted: 2010-11-9
Published Online: 2011-02-25
Published Online: 2011-02-25
Published in Print: 2011-06-01

©2011 by Walter de Gruyter Berlin Boston

Artikel in diesem Heft

  1. Editorial
  2. EWLP 2010, 16th–19th August 2010, Hamburg, Germany
  3. Review
  4. Bio based fuels and fuel additives from lignocellulose feedstock via the production of levulinic acid and furfural
  5. Original Papers
  6. Optimization of steam pretreatment conditions for enzymatic hydrolysis of poplar wood
  7. Fungal pretreatment of pine wood to reduce the emission of volatile organic compounds
  8. Dilute acid pretreatment of starch-containing rice hulls for ethanol production
  9. Studies of the chemoenzymatic modification of cellulosic pulps by the laccase-TEMPO system
  10. Development of an integrated thermal and enzymatic hydrolysis for lignocellulosic biomass in fixed-bed reactors
  11. A larch based biorefinery: pre-extraction and extract fermentation to lactic acid
  12. Lignins as agents for bio-protection of wood
  13. Isolation and characterization of the phenolic fractions of wood pyrolytic oil
  14. Purification of Eucalyptus globulus water prehydrolyzates using the HiTAC process (high-temperature adsorption on activated charcoal)
  15. Disintegration and dissolution kinetics of wood chips in ionic liquids
  16. Ionic liquids as media for biomass processing: opportunities and restrictions
  17. Autohydrolysis of birch wood
  18. Solvent extraction as a means of preparing homogeneous lignin fractions
  19. Conditioning of SO2-ethanol-water spent liquor from spruce for the production of chemicals by ABE fermentation
  20. Total mass balances of SO2-ethanol-water (SEW) fractionation of forest biomass
  21. Lignin oxidation mechanisms under oxygen delignification conditions. Part 1. Results from direct analyses
  22. Lignin oxidation mechanisms under oxygen delignification conditions. Part 2: Advanced methods for the detailed characterization of lignin oxidation mechanisms
  23. Lignin oxidation mechanisms under oxygen delignification conditions. Part 3. Reaction pathways and modeling
  24. Simplified determination of total lignin content in kraft lignin samples and black liquors
  25. Xylan deposition onto eucalypt pulp fibers during oxygen delignification
  26. Dissolution of dissolving pulp in alkaline solvents after steam explosion pretreatments
  27. Structure and antioxidant activity of diarylheptanoids extracted from bark of grey alder (Alnus incana) and potential of biorefinery-based bark processing of European trees
  28. Short Note
  29. Binding affinities of different metal ions to unbleached hardwood kraft pulp
  30. Meetings
  31. Meetings
Heruntergeladen am 2.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hf.2011.035/html
Button zum nach oben scrollen