Home Structure and antioxidant activity of diarylheptanoids extracted from bark of grey alder (Alnus incana) and potential of biorefinery-based bark processing of European trees
Article
Licensed
Unlicensed Requires Authentication

Structure and antioxidant activity of diarylheptanoids extracted from bark of grey alder (Alnus incana) and potential of biorefinery-based bark processing of European trees

11th EWLP, Hamburg, Germany, August 16–19, 2010
  • Galina Telysheva EMAIL logo , Tatiana Dizhbite , Oskars Bikovens , Jevgenija Ponomarenko , Sarmite Janceva and Jelena Krasilnikova
Published/Copyright: June 10, 2011
Become an author with De Gruyter Brill
Holzforschung
From the journal Volume 65 Issue 4

Abstract

The bark of trees has a big potential as a source of green chemicals. The aim of the present work was to valorise the potential of deciduous tree species with this regard. Three widely spread trees in Europe (grey alder, ash tree, aspen) were in focus as a source of polyphenols, and the yields of polyphenolic compound in the extracts were considered as evaluation criteria. The highest yields of hydrophilic extractives were found in barks of grey alder and aspen (36.8 and 22.9%, respectively). In the former, the highest antioxidant activity was found towards free radicals (DPPH and ABTS•+) and superoxide anion radical. Open chain diarylheptanoids, mainly oregonin, were identified as the major constituents of the grey alder hydrophilic extract. In addition to oregonin, the presence of 2 linear diarylheptanoids [platyphylloside and 1,7-bis-(3,4-dihydroxyphenyl)-heptane-5-O-β-D-glucopyranoside] was confirmed. For the first time, the compounds 1,7-bis-(3,4-dihydroxyphenyl)-3-hydroxyheptane-5-O-β-D-xylopyranoside and 1,7-bis-(3,4-dihydroxyphenyl)-heptane-3-one-5-O-β-D-glucopyranoside were detected in grey alder bark. The results of experiments in vitro and in vivo have shown the high potential for diarylheptanoids-containing extracts in prophylaxis and/or treatment of diseases due to the metabolic disorders and ageing. The biological activity of grey alder extract was confirmed in in vitro experiments by incubation of human blood samples. In vivo experiments with rats also showed positive results. The conclusion is that grey alder extracts have a high potential for prevention of ageing related pathologies. Besides diarylheptanoids, the bark contains condensed tannins in commercially available quantity (12.5%). Eco-friendly wood adhesives were obtained on a tannins basis. The bark left after polyphenols isolation can be used in soil melioration and as a sorbent for the removal of oil products from water surface. The investigation of the phenolic pool of grey alder could contribute to cluster technologies within the biorefinery-based bark processing.


Corresponding author. Latvian State Institute of Wood Chemistry, 27 Dzerbenes St, LV-1006, Riga, Latvia

Received: 2010-11-30
Accepted: 2011-4-13
Published Online: 2011-06-10
Published in Print: 2011-06-01

©2011 by Walter de Gruyter Berlin Boston

Articles in the same Issue

  1. Editorial
  2. EWLP 2010, 16th–19th August 2010, Hamburg, Germany
  3. Review
  4. Bio based fuels and fuel additives from lignocellulose feedstock via the production of levulinic acid and furfural
  5. Original Papers
  6. Optimization of steam pretreatment conditions for enzymatic hydrolysis of poplar wood
  7. Fungal pretreatment of pine wood to reduce the emission of volatile organic compounds
  8. Dilute acid pretreatment of starch-containing rice hulls for ethanol production
  9. Studies of the chemoenzymatic modification of cellulosic pulps by the laccase-TEMPO system
  10. Development of an integrated thermal and enzymatic hydrolysis for lignocellulosic biomass in fixed-bed reactors
  11. A larch based biorefinery: pre-extraction and extract fermentation to lactic acid
  12. Lignins as agents for bio-protection of wood
  13. Isolation and characterization of the phenolic fractions of wood pyrolytic oil
  14. Purification of Eucalyptus globulus water prehydrolyzates using the HiTAC process (high-temperature adsorption on activated charcoal)
  15. Disintegration and dissolution kinetics of wood chips in ionic liquids
  16. Ionic liquids as media for biomass processing: opportunities and restrictions
  17. Autohydrolysis of birch wood
  18. Solvent extraction as a means of preparing homogeneous lignin fractions
  19. Conditioning of SO2-ethanol-water spent liquor from spruce for the production of chemicals by ABE fermentation
  20. Total mass balances of SO2-ethanol-water (SEW) fractionation of forest biomass
  21. Lignin oxidation mechanisms under oxygen delignification conditions. Part 1. Results from direct analyses
  22. Lignin oxidation mechanisms under oxygen delignification conditions. Part 2: Advanced methods for the detailed characterization of lignin oxidation mechanisms
  23. Lignin oxidation mechanisms under oxygen delignification conditions. Part 3. Reaction pathways and modeling
  24. Simplified determination of total lignin content in kraft lignin samples and black liquors
  25. Xylan deposition onto eucalypt pulp fibers during oxygen delignification
  26. Dissolution of dissolving pulp in alkaline solvents after steam explosion pretreatments
  27. Structure and antioxidant activity of diarylheptanoids extracted from bark of grey alder (Alnus incana) and potential of biorefinery-based bark processing of European trees
  28. Short Note
  29. Binding affinities of different metal ions to unbleached hardwood kraft pulp
  30. Meetings
  31. Meetings
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hf.2011.096/html
Scroll to top button